mirror of https://github.com/ArduPilot/ardupilot
253 lines
11 KiB
C++
253 lines
11 KiB
C++
|
/*
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#include <AP_HAL/AP_HAL.h>
|
||
|
#include <AP_Math/AP_Math.h>
|
||
|
#include <AP_InternalError/AP_InternalError.h>
|
||
|
#include "SplineCurve.h"
|
||
|
|
||
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||
|
#include <stdio.h>
|
||
|
#endif
|
||
|
|
||
|
extern const AP_HAL::HAL &hal;
|
||
|
|
||
|
#define SPLINE_FACTOR 4.0f // defines shape of curves. larger numbers result in longer spline curves, lower numbers take a direct path
|
||
|
#define TANGENTIAL_ACCEL_SCALER 0.5f // the proportion of the maximum accel that can be used for tangential acceleration (aka in the direction of travel along the track)
|
||
|
#define LATERAL_ACCEL_SCALER 1.0f // the proportion of the maximum accel that can be used for lateral acceleration (aka crosstrack acceleration)
|
||
|
|
||
|
// limit the maximum speed along the track to that which will achieve a cornering (aka lateral) acceleration of LATERAL_SPEED_SCALER * acceleration limit
|
||
|
|
||
|
// set maximum speed and acceleration
|
||
|
void SplineCurve::set_speed_accel(float speed_xy, float speed_up, float speed_down,
|
||
|
float accel_xy, float accel_z)
|
||
|
{
|
||
|
_speed_xy = fabsf(speed_xy);
|
||
|
_speed_up = fabsf(speed_up);
|
||
|
_speed_down = fabsf(speed_down);
|
||
|
_accel_xy = fabsf(accel_xy);
|
||
|
_accel_z = fabsf(accel_z);
|
||
|
}
|
||
|
|
||
|
// set origin and destination using position vectors (offset from EKF origin)
|
||
|
// origin_vel is vehicle velocity at origin (in NEU frame)
|
||
|
// destination_vel is vehicle velocity at destination (in NEU frame)
|
||
|
// time is reset to zero
|
||
|
void SplineCurve::set_origin_and_destination(const Vector3f &origin, const Vector3f &destination, const Vector3f &origin_vel, const Vector3f &destination_vel)
|
||
|
{
|
||
|
// store origin and destination locations
|
||
|
_origin = origin;
|
||
|
_destination = destination;
|
||
|
|
||
|
// handle zero length track
|
||
|
_zero_length = is_zero((destination - origin).length_squared());
|
||
|
if (_zero_length) {
|
||
|
_time = 1.0f;
|
||
|
_origin_vel.zero();
|
||
|
_destination_vel.zero();
|
||
|
_reached_destination = true;
|
||
|
_origin_speed_max = 0.0f;
|
||
|
_destination_speed_max = 0.0f;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
_origin_vel = origin_vel;
|
||
|
_destination_vel = destination_vel;
|
||
|
_reached_destination = false;
|
||
|
|
||
|
// reset time
|
||
|
// Note: _time could include left-over from previous waypoint
|
||
|
_time = 0.0f;
|
||
|
|
||
|
// code below ensures we don't get too much overshoot when the next segment is short
|
||
|
const float vel_len = _origin_vel.length() + _destination_vel.length();
|
||
|
const float pos_len = (_destination - _origin).length() * SPLINE_FACTOR;
|
||
|
if (vel_len > pos_len) {
|
||
|
// if total start+stop velocity is more than four times the position difference
|
||
|
// use a scaled down start and stop velocity
|
||
|
const float vel_scaling = pos_len / vel_len;
|
||
|
// update spline calculator
|
||
|
update_solution(_origin, _destination, _origin_vel * vel_scaling, _destination_vel * vel_scaling);
|
||
|
} else {
|
||
|
// update spline calculator
|
||
|
update_solution(_origin, _destination, _origin_vel, _destination_vel);
|
||
|
}
|
||
|
Vector3f target_pos;
|
||
|
Vector3f spline_vel_unit;
|
||
|
float spline_dt;
|
||
|
float accel_max;
|
||
|
calc_dt_speed_max(0.0f, 0.0f, spline_dt, target_pos, spline_vel_unit, _origin_speed_max, accel_max);
|
||
|
if (_destination_vel.is_zero()) {
|
||
|
_destination_speed_max = 0.0f;
|
||
|
} else {
|
||
|
calc_dt_speed_max(1.0f, 0.0f, spline_dt, target_pos, spline_vel_unit, _destination_speed_max, accel_max);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// move target location along track from origin to destination
|
||
|
// target_pos is updated with the target position from EKF origin in NEU frame
|
||
|
// target_vel is updated with the target velocity in NEU frame
|
||
|
void SplineCurve::advance_target_along_track(float dt, Vector3f &target_pos, Vector3f &target_vel)
|
||
|
{
|
||
|
// handle zero length track
|
||
|
if (_zero_length) {
|
||
|
target_pos = _destination;
|
||
|
target_vel.zero();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// calculate target position and velocity using spline calculator
|
||
|
float speed_cms = target_vel.length();
|
||
|
const float distance_delta = speed_cms * dt;
|
||
|
float spline_dt;
|
||
|
Vector3f spline_vel_unit;
|
||
|
float speed_max;
|
||
|
float accel_max;
|
||
|
|
||
|
calc_dt_speed_max(_time, distance_delta, spline_dt, target_pos, spline_vel_unit, speed_max, accel_max);
|
||
|
speed_cms = constrain_float(speed_max, speed_cms - accel_max * dt, speed_cms + accel_max * dt);
|
||
|
target_vel = spline_vel_unit * speed_cms;
|
||
|
|
||
|
_time += spline_dt;
|
||
|
|
||
|
// we will reach the destination in the next step so set reached_destination flag
|
||
|
if (_time >= 1.0f) {
|
||
|
_time = 1.0f;
|
||
|
_reached_destination = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// calculate the spline delta time for a given delta distance
|
||
|
// returns the spline position and velocity and maximum speed and acceleration the vehicle can travel without exceeding acceleration limits
|
||
|
void SplineCurve::calc_dt_speed_max(float time, float distance_delta, float &spline_dt, Vector3f &target_pos, Vector3f &spline_vel_unit, float &speed_max, float &accel_max)
|
||
|
{
|
||
|
// initialise outputs
|
||
|
spline_dt = 0.0f;
|
||
|
spline_vel_unit.zero();
|
||
|
speed_max = 0.0f;
|
||
|
accel_max = 0.0f;
|
||
|
|
||
|
// calculate target position and velocity using spline calculator
|
||
|
Vector3f spline_vel;
|
||
|
Vector3f spline_accel;
|
||
|
Vector3f spline_jerk;
|
||
|
|
||
|
calc_target_pos_vel(time, target_pos, spline_vel, spline_accel, spline_jerk);
|
||
|
|
||
|
// vel, accel and jerk should never all be zero
|
||
|
if (spline_vel.is_zero() && spline_accel.is_zero() && spline_jerk.is_zero()) {
|
||
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||
|
::printf("SplineCurve::calc_dt_speed_max vel, accel and jerk are all zero\n");
|
||
|
#endif
|
||
|
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||
|
_reached_destination = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// aircraft velocity and acceleration along the spline will be defined based on the aircraft kinematic limits
|
||
|
// aircraft velocity along the spline should be reduced to ensure normal accelerations do not exceed kinematic limits
|
||
|
const float spline_vel_length = spline_vel.length();
|
||
|
if (is_zero(spline_vel_length)) {
|
||
|
// if spline velocity is zero then direction must be defined by acceleration or jerk
|
||
|
if (is_zero(spline_accel.length_squared())) {
|
||
|
// if acceleration is zero then direction must be defined by jerk
|
||
|
spline_vel_unit = spline_jerk.normalized();
|
||
|
spline_dt = powf(6.0f * distance_delta / spline_jerk.length(), 1.0f/3.0f);
|
||
|
} else {
|
||
|
// all spline acceleration is in the direction of travel
|
||
|
spline_vel_unit = spline_accel.normalized();
|
||
|
spline_dt = safe_sqrt(2.0f * distance_delta / spline_accel.length());
|
||
|
}
|
||
|
} else {
|
||
|
spline_vel_unit = spline_vel.normalized();
|
||
|
spline_dt = distance_delta / spline_vel_length;
|
||
|
}
|
||
|
|
||
|
// calculate acceleration normal to the direction of travel
|
||
|
const float spline_accel_tangent_length = spline_accel.dot(spline_vel_unit);
|
||
|
Vector3f spline_accel_norm = spline_accel - (spline_vel_unit * spline_accel_tangent_length);
|
||
|
const float spline_accel_norm_length = spline_accel_norm.length();
|
||
|
|
||
|
// limit the maximum speed along the track to that which will achieve a cornering (aka lateral) acceleration of LATERAL_SPEED_SCALER * acceleration limit
|
||
|
const float tangential_speed_max = kinematic_limit(spline_vel_unit, _speed_xy, _speed_up, _speed_down);
|
||
|
const float accel_norm_max = LATERAL_ACCEL_SCALER * kinematic_limit(spline_accel_norm, _accel_xy, _accel_z, _accel_z);
|
||
|
|
||
|
// sanity check to avoid divide by zero
|
||
|
if (is_zero(tangential_speed_max)) {
|
||
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||
|
::printf("SplineCurve::calc_dt_speed_max tangential_speed_max is zero\n");
|
||
|
#endif
|
||
|
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||
|
_reached_destination = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if ((is_positive(accel_norm_max)) && is_positive(spline_accel_norm_length) && is_positive(spline_vel_length) &&
|
||
|
((spline_accel_norm_length/accel_norm_max) > sq(spline_vel_length/tangential_speed_max))) {
|
||
|
speed_max = spline_vel_length / safe_sqrt(spline_accel_norm_length/accel_norm_max);
|
||
|
} else {
|
||
|
speed_max = tangential_speed_max;
|
||
|
}
|
||
|
|
||
|
// calculate accel max and sanity check
|
||
|
accel_max = TANGENTIAL_ACCEL_SCALER * kinematic_limit(spline_vel_unit, _accel_xy, _accel_z, _accel_z);
|
||
|
if (is_zero(accel_max)) {
|
||
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
||
|
::printf("SplineCurve::calc_dt_speed_max accel_max is zero\n");
|
||
|
#endif
|
||
|
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
|
||
|
_reached_destination = true;
|
||
|
return;
|
||
|
}
|
||
|
const float dist = (_destination - target_pos).length();
|
||
|
speed_max = MIN(speed_max, safe_sqrt(2.0f * accel_max * (dist + sq(_destination_speed_max) / (2.0f*accel_max))));
|
||
|
}
|
||
|
|
||
|
// recalculate hermite_solution grid
|
||
|
// relies on _origin_vel, _destination_vel and _origin and _destination
|
||
|
void SplineCurve::update_solution(const Vector3f &origin, const Vector3f &dest, const Vector3f &origin_vel, const Vector3f &dest_vel)
|
||
|
{
|
||
|
_hermite_solution[0] = origin;
|
||
|
_hermite_solution[1] = origin_vel;
|
||
|
_hermite_solution[2] = -origin*3.0f -origin_vel*2.0f + dest*3.0f - dest_vel;
|
||
|
_hermite_solution[3] = origin*2.0f + origin_vel -dest*2.0f + dest_vel;
|
||
|
}
|
||
|
|
||
|
// calculate target position and velocity from given spline time
|
||
|
// time is a value from 0 to 1
|
||
|
// position is updated with target position as an offset from EKF origin in NEU frame
|
||
|
// velocity is updated with the unscaled velocity
|
||
|
// relies on set_origin_and_destination having been called to update_solution
|
||
|
void SplineCurve::calc_target_pos_vel(float time, Vector3f &position, Vector3f &velocity, Vector3f &acceleration, Vector3f &jerk)
|
||
|
{
|
||
|
const float time_sq = sq(time);
|
||
|
const float time_cubed = time_sq * time;
|
||
|
|
||
|
position = _hermite_solution[0] + \
|
||
|
_hermite_solution[1] * time + \
|
||
|
_hermite_solution[2] * time_sq + \
|
||
|
_hermite_solution[3] * time_cubed;
|
||
|
|
||
|
velocity = _hermite_solution[1] + \
|
||
|
_hermite_solution[2] * 2.0f * time + \
|
||
|
_hermite_solution[3] * 3.0f * time_sq;
|
||
|
|
||
|
acceleration = _hermite_solution[2] * 2.0f + \
|
||
|
_hermite_solution[3] * 6.0f * time;
|
||
|
|
||
|
jerk = _hermite_solution[3] * 6.0f;
|
||
|
}
|
||
|
|