ardupilot/libraries/SITL/SIM_SerialProximitySensor.cpp

126 lines
4.4 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Base class for serial proximity sensors
*/
#include "SIM_SerialProximitySensor.h"
#include <AP_Math/AP_Math.h>
#include <stdio.h>
using namespace SITL;
void SerialProximitySensor::update(const Location &location)
{
// just send a chunk of data at 5Hz:
const uint32_t now = AP_HAL::millis();
if (now - last_sent_ms < reading_interval_ms()) {
return;
}
last_sent_ms = now;
uint8_t data[255];
const uint32_t packetlen = packet_for_location(location,
data,
ARRAY_SIZE(data));
write_to_autopilot((char*)data, packetlen);
}
float SerialProximitySensor::measure_distance_at_angle(const Location &location, float angle) const
{
// const SITL *sitl = AP::sitl();
Vector2f pos1_cm;
if (!location.get_vector_xy_from_origin_NE(pos1_cm)) {
// should probably use SITL variables...
return 0.0f;
}
static uint64_t count = 0;
count++;
// the 1000 here is so the files don't grow unbounded
const bool write_debug_files = true && count < 1000;
FILE *rayfile = nullptr;
if (write_debug_files) {
rayfile = fopen("/tmp/rayfile.scr", "a");
}
// cast a ray from location out 200m...
Location location2 = location;
location2.offset_bearing(wrap_180(angle), 200);
Vector2f pos2_cm;
if (!location2.get_vector_xy_from_origin_NE(pos2_cm)) {
// should probably use SITL variables...
return 0.0f;
}
if (rayfile != nullptr) {
::fprintf(rayfile, "map icon %f %f barrell\n", location2.lat*1e-7, location2.lng*1e-7);
fclose(rayfile);
}
// setup a grid of posts
FILE *postfile = nullptr;
FILE *intersectionsfile = nullptr;
if (write_debug_files) {
postfile = fopen("/tmp/post-locations.scr", "w");
intersectionsfile = fopen("/tmp/intersections.scr", "a");
}
float min_dist_cm = 1000000.0;
const uint8_t num_post_offset = 10;
for (int8_t x=-num_post_offset; x<num_post_offset; x++) {
for (int8_t y=-num_post_offset; y<num_post_offset; y++) {
Location post_location = post_origin;
post_location.offset(x*10+0.5, y*10+0.5);
if (postfile != nullptr) {
::fprintf(postfile, "map icon %f %f hoop\n", post_location.lat*1e-7, post_location.lng*1e-7);
}
Vector2f post_position_cm;
if (!post_location.get_vector_xy_from_origin_NE(post_position_cm)) {
// should probably use SITL variables...
return 0.0f;
}
const float radius_cm = 10.0f;
Vector2f intersection_point_cm;
if (Vector2f::circle_segment_intersection(pos1_cm, pos2_cm, post_position_cm, radius_cm, intersection_point_cm)) {
float dist_cm = (intersection_point_cm-pos1_cm).length();
if (intersectionsfile != nullptr) {
Location intersection_point = location;
intersection_point.offset(intersection_point_cm.x/100.0f,
intersection_point_cm.y/100.0f);
::fprintf(intersectionsfile,
"map icon %f %f barrell\n",
intersection_point.lat*1e-7,
intersection_point.lng*1e-7);
}
if (dist_cm < min_dist_cm) {
min_dist_cm = dist_cm;
}
}
}
}
if (postfile != nullptr) {
fclose(postfile);
}
if (intersectionsfile != nullptr) {
fclose(intersectionsfile);
}
// ::fprintf(stderr, "Distance @%f = %fm\n", angle, min_dist_cm/100.0f);
return min_dist_cm / 100.0f;
}