ardupilot/libraries/AP_OpticalFlow/OpticalFlow.cpp

93 lines
3.4 KiB
C++
Raw Normal View History

#include "OpticalFlow.h"
#include "AP_OpticalFlow_Onboard.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo OpticalFlow::var_info[] = {
2015-07-05 23:09:11 -03:00
// @Param: _ENABLE
// @DisplayName: Optical flow enable/disable
// @Description: Setting this to Enabled(1) will enable optical flow. Setting this to Disabled(0) will disable optical flow
// @Values: 0:Disabled, 1:Enabled
// @User: Standard
AP_GROUPINFO("_ENABLE", 0, OpticalFlow, _enabled, 0),
2015-07-05 23:09:11 -03:00
// @Param: _FXSCALER
// @DisplayName: X axis optical flow scale factor correction
// @Description: This sets the parts per thousand scale factor correction applied to the flow sensor X axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the X axis optical flow reading by 0.1%. Negative values reduce the scale factor.
// @Range: -200 +200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_FXSCALER", 1, OpticalFlow, _flowScalerX, 0),
2015-07-05 23:09:11 -03:00
// @Param: _FYSCALER
// @DisplayName: Y axis optical flow scale factor correction
// @Description: This sets the parts per thousand scale factor correction applied to the flow sensor Y axis optical rate. It can be used to correct for variations in effective focal length. Each positive increment of 1 increases the scale factor applied to the Y axis optical flow reading by 0.1%. Negative values reduce the scale factor.
// @Range: -200 +200
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_FYSCALER", 2, OpticalFlow, _flowScalerY, 0),
2015-07-05 23:09:11 -03:00
// @Param: _ORIENT_YAW
// @DisplayName: Flow sensor yaw alignment
// @Description: Specifies the number of centi-degrees that the flow sensor is yawed relative to the vehicle. A sensor with its X-axis pointing to the right of the vehicle X axis has a positive yaw angle.
// @Range: -18000 +18000
// @Increment: 1
// @User: Standard
AP_GROUPINFO("_ORIENT_YAW", 3, OpticalFlow, _yawAngle_cd, 0),
AP_GROUPEND
};
// default constructor
OpticalFlow::OpticalFlow(AP_AHRS_NavEKF &ahrs)
: _last_update_ms(0)
{
AP_Param::setup_object_defaults(this, var_info);
memset(&_state, 0, sizeof(_state));
// healthy flag will be overwritten on update
_flags.healthy = false;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP ||\
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE ||\
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI
backend = new AP_OpticalFlow_Onboard(*this, ahrs);
#endif
}
void OpticalFlow::init(void)
{
if (!backend) {
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
backend = new AP_OpticalFlow_PX4(*this);
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
backend = new AP_OpticalFlow_HIL(*this);
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
backend = new AP_OpticalFlow_Linux(*this, hal.i2c_mgr->get_device(HAL_OPTFLOW_PX4FLOW_I2C_BUS, HAL_OPTFLOW_PX4FLOW_I2C_ADDRESS));
#endif
}
if (backend != NULL) {
backend->init();
} else {
_enabled = 0;
}
}
void OpticalFlow::update(void)
{
if (backend != NULL) {
backend->update();
}
// only healthy if the data is less than 0.5s old
_flags.healthy = (AP_HAL::millis() - _last_update_ms < 500);
}
void OpticalFlow::setHIL(const struct OpticalFlow::OpticalFlow_state &state)
{
if (backend) {
backend->_update_frontend(state);
}
}