ardupilot/libraries/RC_Channel/RC_Channel_aux.cpp

97 lines
3.5 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
#include <APM_RC.h>
#include "RC_Channel_aux.h"
extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function
int16_t
RC_Channel_aux::closest_limit(int16_t angle)
{
// Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic
int16_t min = angle_min / 10;
int16_t max = angle_max / 10;
// Make sure the angle lies in the interval [-180 .. 180[ degrees
while (angle < -1800) angle += 3600;
while (angle >= 1800) angle -= 3600;
// Make sure the angle limits lie in the interval [-180 .. 180[ degrees
while (min < -1800) min += 3600;
while (min >= 1800) min -= 3600;
while (max < -1800) max += 3600;
while (max >= 1800) max -= 3600;
set_range(min, max);
// If the angle is outside servo limits, saturate the angle to the closest limit
// On a circle the closest angular position must be carefully calculated to account for wrap-around
if ((angle < min) && (angle > max)){
// angle error if min limit is used
int16_t err_min = min - angle + (angle<min?0:3600); // add 360 degrees if on the "wrong side"
// angle error if max limit is used
int16_t err_max = angle - max + (angle>max?0:3600); // add 360 degrees if on the "wrong side"
angle = err_min<err_max?min:max;
}
servo_out = angle;
// convert angle to PWM using a linear transformation (ignores trimming because the camera limits might not be symmetric)
calc_pwm();
return angle;
}
// map a function to a servo channel and output it
void
RC_Channel_aux::output_ch(unsigned char ch_nr)
{
switch(function)
{
case k_none: // disabled
return;
break;
case k_manual: // manual
radio_out = radio_in;
break;
case k_flap: // flaps
case k_flap_auto: // flaps automated
case k_aileron: // aileron
case k_flaperon: // flaperon (flaps and aileron combined, needs two independent servos one for each wing)
case k_mount_yaw: // mount yaw (pan)
case k_mount_pitch: // mount pitch (tilt)
case k_mount_roll: // mount roll
case k_cam_trigger: // camera trigger
case k_cam_open: // camera open
case k_egg_drop: // egg drop
case k_nr_aux_servo_functions: // dummy, just to avoid a compiler warning
default:
break;
}
APM_RC.OutputCh(ch_nr, radio_out);
}
// update the g_rc_function array from pointers to rc_x channels
// This should be done periodically because the user might change the configuration and
// expects the changes to take effect instantly
void update_aux_servo_function(RC_Channel_aux* rc_5, RC_Channel_aux* rc_6, RC_Channel_aux* rc_7, RC_Channel_aux* rc_8)
{
// positions 0..3 of this array never get used, but this is a stack array, so the entire array gets freed at the end of the function
RC_Channel_aux::Aux_servo_function_t aux_servo_function[NUM_CHANNELS]; // the function of the aux. servos
aux_servo_function[CH_5] = (RC_Channel_aux::Aux_servo_function_t)rc_5->function.get();
aux_servo_function[CH_6] = (RC_Channel_aux::Aux_servo_function_t)rc_6->function.get();
aux_servo_function[CH_7] = (RC_Channel_aux::Aux_servo_function_t)rc_7->function.get();
aux_servo_function[CH_8] = (RC_Channel_aux::Aux_servo_function_t)rc_8->function.get();
// Assume that no auxiliary function is used
for (int i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++)
{
g_rc_function[i] = NULL;
}
// assign the RC channel to each function
g_rc_function[aux_servo_function[CH_5]] = rc_5;
g_rc_function[aux_servo_function[CH_6]] = rc_6;
g_rc_function[aux_servo_function[CH_7]] = rc_7;
g_rc_function[aux_servo_function[CH_8]] = rc_8;
}