// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- #include #include "RC_Channel_aux.h" extern RC_Channel_aux* g_rc_function[RC_Channel_aux::k_nr_aux_servo_functions]; // the aux. servo ch. assigned to each function int16_t RC_Channel_aux::closest_limit(int16_t angle) { // Change scaling to 0.1 degrees in order to avoid overflows in the angle arithmetic int16_t min = angle_min / 10; int16_t max = angle_max / 10; // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (min < -1800) min += 3600; while (min >= 1800) min -= 3600; while (max < -1800) max += 3600; while (max >= 1800) max -= 3600; set_range(min, max); // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < min) && (angle > max)){ // angle error if min limit is used int16_t err_min = min - angle + (anglemax?0:3600); // add 360 degrees if on the "wrong side" angle = err_minfunction.get(); aux_servo_function[CH_6] = (RC_Channel_aux::Aux_servo_function_t)rc_6->function.get(); aux_servo_function[CH_7] = (RC_Channel_aux::Aux_servo_function_t)rc_7->function.get(); aux_servo_function[CH_8] = (RC_Channel_aux::Aux_servo_function_t)rc_8->function.get(); // Assume that no auxiliary function is used for (int i = 0; i < RC_Channel_aux::k_nr_aux_servo_functions ; i++) { g_rc_function[i] = NULL; } // assign the RC channel to each function g_rc_function[aux_servo_function[CH_5]] = rc_5; g_rc_function[aux_servo_function[CH_6]] = rc_6; g_rc_function[aux_servo_function[CH_7]] = rc_7; g_rc_function[aux_servo_function[CH_8]] = rc_8; }