ardupilot/Tools/LogAnalyzer/DataflashLog.py

629 lines
26 KiB
Python
Raw Normal View History

#
# Code to abstract the parsing of APM Dataflash log files, currently only used by the LogAnalyzer
#
# Initial code by Andrew Chapman (amchapman@gmail.com), 16th Jan 2014
#
from __future__ import print_function
import collections
import os
import numpy
import bisect
import sys
import ctypes
class Format(object):
'''Data channel format as specified by the FMT lines in the log file'''
def __init__(self,msgType,msgLen,name,types,labels):
self.NAME = 'FMT'
self.msgType = msgType
self.msgLen = msgLen
self.name = name
self.types = types
self.labels = labels.split(',')
def __str__(self):
return "%8s %s" % (self.name, `self.labels`)
@staticmethod
def trycastToFormatType(value,valueType):
'''using format characters from libraries/DataFlash/DataFlash.h to cast strings to basic python int/float/string types
tries a cast, if it does not work, well, acceptable as the text logs do not match the format, e.g. MODE is expected to be int'''
try:
if valueType in "fcCeEL":
return float(value)
elif valueType in "bBhHiIM":
return int(value)
elif valueType in "nNZ":
return str(value)
except:
pass
return value
def to_class(self):
members = dict(
NAME = self.name,
labels = self.labels[:],
)
fieldtypes = [i for i in self.types]
fieldlabels = self.labels[:]
# field access
for (label, _type) in zip(fieldlabels, fieldtypes):
def createproperty(name, format):
# extra scope for variable sanity
# scaling via _NAME and def NAME(self): return self._NAME / SCALE
propertyname = name
attributename = '_' + name
p = property(lambda x:getattr(x, attributename),
lambda x, v:setattr(x,attributename, Format.trycastToFormatType(v,format)))
members[propertyname] = p
members[attributename] = None
createproperty(label, _type)
# repr shows all values but the header
members['__repr__'] = lambda x: "<{cls} {data}>".format(cls=x.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(x,'_'+k)) for k in x.labels]))
def init(a, *x):
if len(x) != len(a.labels):
raise ValueError("Invalid Length")
#print(list(zip(a.labels, x)))
for (l,v) in zip(a.labels, x):
try:
setattr(a, l, v)
except Exception as e:
print("{} {} {} failed".format(a,l,v))
print(e)
members['__init__'] = init
# finally, create the class
cls = type(\
'Log__{:s}'.format(self.name),
(object,),
members
)
#print(members)
return cls
class logheader(ctypes.LittleEndianStructure):
_fields_ = [ \
('head1', ctypes.c_uint8),
('head2', ctypes.c_uint8),
('msgid', ctypes.c_uint8),
]
def __repr__(self):
return "<logheader head1=0x{self.head1:x} head2=0x{self.head2:x} msgid=0x{self.msgid:x} ({self.msgid})>".format(self=self)
class BinaryFormat(ctypes.LittleEndianStructure):
NAME = 'FMT'
MSG = 128
SIZE = 0
FIELD_FORMAT = {
'b': ctypes.c_int8,
'B': ctypes.c_uint8,
'h': ctypes.c_int16,
'H': ctypes.c_uint16,
'i': ctypes.c_int32,
'I': ctypes.c_uint32,
'f': ctypes.c_float,
'n': ctypes.c_char * 4,
'N': ctypes.c_char * 16,
'Z': ctypes.c_char * 64,
'c': ctypes.c_int16,# * 100,
'C': ctypes.c_uint16,# * 100,
'e': ctypes.c_int32,# * 100,
'E': ctypes.c_uint32,# * 100,
'L': ctypes.c_int32,
'M': ctypes.c_uint8,
}
FIELD_SCALE = {
'c': 100,
'C': 100,
'e': 100,
'E': 100,
}
_packed_ = True
_fields_ = [ \
('head', logheader),
('type', ctypes.c_uint8),
('length', ctypes.c_uint8),
('name', ctypes.c_char * 4),
('types', ctypes.c_char * 16),
('labels', ctypes.c_char * 64),
]
def __repr__(self):
return "<{cls} {data}>".format(cls=self.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(self,k)) for (k,_) in self._fields_[1:]]))
def to_class(self):
members = dict(
NAME = self.name,
MSG = self.type,
SIZE = self.length,
labels = self.labels.split(","),
_pack_ = True)
fieldtypes = [i for i in self.types]
fieldlabels = self.labels.split(",")
if len(fieldtypes) != len(fieldlabels):
print("Broken FMT message for {} .. ignoring".format(self.name), file=sys.stderr)
return None
fields = [('head',logheader)]
# field access
for (label, _type) in zip(fieldlabels, fieldtypes):
def createproperty(name, format):
# extra scope for variable sanity
# scaling via _NAME and def NAME(self): return self._NAME / SCALE
propertyname = name
attributename = '_' + name
scale = BinaryFormat.FIELD_SCALE.get(format, None)
p = property(lambda x:getattr(x, attributename))
if scale is not None:
p = property(lambda x:getattr(x, attributename) / scale)
members[propertyname] = p
fields.append((attributename, BinaryFormat.FIELD_FORMAT[format]))
createproperty(label, _type)
members['_fields_'] = fields
# repr shows all values but the header
members['__repr__'] = lambda x: "<{cls} {data}>".format(cls=x.__class__.__name__, data = ' '.join(["{}:{}".format(k,getattr(x,k)) for k in x.labels]))
# finally, create the class
cls = type(\
'Log__{:s}'.format(self.name),
(ctypes.LittleEndianStructure,),
members
)
if ctypes.sizeof(cls) != cls.SIZE:
print("size mismatch for {} expected {} got {}".format(cls, ctypes.sizeof(cls), cls.SIZE), file=sys.stderr)
# for i in cls.labels:
# print("{} = {}".format(i,getattr(cls,'_'+i)))
return None
return cls
BinaryFormat.SIZE = ctypes.sizeof(BinaryFormat)
class Channel(object):
'''storage for a single stream of data, i.e. all GPS.RelAlt values'''
# TODO: rethink data storage, but do more thorough regression testing before refactoring it
# TODO: store data as a scipy spline curve so we can more easily interpolate and sample the slope?
def __init__(self):
self.dictData = {} # dict of linenum->value # store dupe data in dict and list for now, until we decide which is the better way to go
self.listData = [] # list of (linenum,value) # store dupe data in dict and list for now, until we decide which is the better way to go
def getSegment(self, startLine, endLine):
'''returns a segment of this data (from startLine to endLine, inclusive) as a new Channel instance'''
segment = Channel()
segment.dictData = {k:v for k,v in self.dictData.iteritems() if k >= startLine and k <= endLine}
return segment
def min(self):
return min(self.dictData.values())
def max(self):
return max(self.dictData.values())
def avg(self):
return numpy.mean(self.dictData.values())
def getNearestValueFwd(self, lineNumber):
'''Returns (value,lineNumber)'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999))
while index<len(self.listData):
line = self.listData[index][0]
#print "Looking forwards for nearest value to line number %d, starting at line %d" % (lineNumber,line) # TEMP
if line >= lineNumber:
return (self.listData[index][1],line)
index += 1
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getNearestValueBack(self, lineNumber):
'''Returns (value,lineNumber)'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999)) - 1
while index>=0:
line = self.listData[index][0]
#print "Looking backwards for nearest value to line number %d, starting at line %d" % (lineNumber,line) # TEMP
if line <= lineNumber:
return (self.listData[index][1],line)
index -= 1
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getNearestValue(self, lineNumber, lookForwards=True):
'''find the nearest data value to the given lineNumber, defaults to first looking forwards. Returns (value,lineNumber)'''
if lookForwards:
try:
return self.getNearestValueFwd(lineNumber)
except:
return self.getNearestValueBack(lineNumber)
else:
try:
return self.getNearestValueBack(lineNumber)
except:
return self.getNearestValueFwd(lineNumber)
raise Exception("Error finding nearest value for line %d" % lineNumber)
def getInterpolatedValue(self, lineNumber):
(prevValue,prevValueLine) = self.getNearestValue(lineNumber, lookForwards=False)
(nextValue,nextValueLine) = self.getNearestValue(lineNumber, lookForwards=True)
if prevValueLine == nextValueLine:
return prevValue
weight = (lineNumber-prevValueLine) / float(nextValueLine-prevValueLine)
return ((weight*prevValue) + ((1-weight)*nextValue))
def getIndexOf(self, lineNumber):
'''returns the index within this channel's listData of the given lineNumber, or raises an Exception if not found'''
index = bisect.bisect_left(self.listData, (lineNumber,-99999))
#print "INDEX of line %d: %d" % (lineNumber,index)
#print "self.listData[index][0]: %d" % self.listData[index][0]
if (self.listData[index][0] == lineNumber):
return index
else:
raise Exception("Error finding index for line %d" % lineNumber)
class LogIterator:
'''Smart iterator that can move through a log by line number and maintain an index into the nearest values of all data channels'''
# TODO: LogIterator currently indexes the next available value rather than the nearest value, we should make it configurable between next/nearest
class LogIteratorSubValue:
'''syntactic sugar to allow access by LogIterator[lineLabel][dataLabel]'''
logdata = None
iterators = None
lineLabel = None
def __init__(self, logdata, iterators, lineLabel):
self.logdata = logdata
self.lineLabel = lineLabel
self.iterators = iterators
def __getitem__(self, dataLabel):
index = self.iterators[self.lineLabel][0]
return self.logdata.channels[self.lineLabel][dataLabel].listData[index][1]
iterators = {} # lineLabel -> (listIndex,lineNumber)
logdata = None
currentLine = None
def __init__(self, logdata, lineNumber=0):
self.logdata = logdata
self.currentLine = lineNumber
for lineLabel in self.logdata.formats:
if lineLabel in self.logdata.channels:
self.iterators[lineLabel] = ()
self.jump(lineNumber)
def __iter__(self):
return self
def __getitem__(self, lineLabel):
return LogIterator.LogIteratorSubValue(self.logdata, self.iterators, lineLabel)
def next(self):
'''increment iterator to next log line'''
self.currentLine += 1
if self.currentLine > self.logdata.lineCount:
return self
for lineLabel in self.iterators.keys():
# check if the currentLine has gone past our the line we're pointing to for this type of data
dataLabel = self.logdata.formats[lineLabel].labels[0]
(index, lineNumber) = self.iterators[lineLabel]
# if so, and it is not the last entry in the log, then increment the indices for all dataLabels under that lineLabel
if (self.currentLine > lineNumber) and (index < len(self.logdata.channels[lineLabel][dataLabel].listData)-1):
index += 1
lineNumber = self.logdata.channels[lineLabel][dataLabel].listData[index][0]
self.iterators[lineLabel] = (index,lineNumber)
return self
def jump(self, lineNumber):
'''jump iterator to specified log line'''
self.currentLine = lineNumber
for lineLabel in self.iterators.keys():
dataLabel = self.logdata.formats[lineLabel].labels[0]
(value,lineNumber) = self.logdata.channels[lineLabel][dataLabel].getNearestValue(self.currentLine)
self.iterators[lineLabel] = (self.logdata.channels[lineLabel][dataLabel].getIndexOf(lineNumber), lineNumber)
class DataflashLogHelper:
'''helper functions for dealing with log data, put here to keep DataflashLog class as a simple parser and data store'''
@staticmethod
def getTimeAtLine(logdata, lineNumber):
'''returns the nearest GPS timestamp in milliseconds after the given line number'''
if not "GPS" in logdata.channels:
raise Exception("no GPS log data found")
# older logs use 'TIme', newer logs use 'TimeMS'
timeLabel = "TimeMS"
if "Time" in logdata.channels["GPS"]:
timeLabel = "Time"
while lineNumber <= logdata.lineCount:
if lineNumber in logdata.channels["GPS"][timeLabel].dictData:
return logdata.channels["GPS"][timeLabel].dictData[lineNumber]
lineNumber = lineNumber + 1
sys.stderr.write("didn't find GPS data for " + str(lineNumber) + " - using maxtime\n")
return logdata.channels["GPS"][timeLabel].max()
@staticmethod
def findLoiterChunks(logdata, minLengthSeconds=0, noRCInputs=True):
'''returns a list of (to,from) pairs defining sections of the log which are in loiter mode. Ordered from longest to shortest in time. If noRCInputs == True it only returns chunks with no control inputs'''
# TODO: implement noRCInputs handling when identifying stable loiter chunks, for now we're ignoring it
def chunkSizeCompare(chunk1, chunk2):
chunk1Len = chunk1[1]-chunk1[0]
chunk2Len = chunk2[1]-chunk2[0]
if chunk1Len == chunk2Len:
return 0
elif chunk1Len > chunk2Len:
return -1
else:
return 1
od = collections.OrderedDict(sorted(logdata.modeChanges.items(), key=lambda t: t[0]))
chunks = []
for i in range(len(od.keys())):
if od.values()[i][0] == "LOITER":
startLine = od.keys()[i]
endLine = None
if i == len(od.keys())-1:
endLine = logdata.lineCount
else:
endLine = od.keys()[i+1]-1
chunkTimeSeconds = (DataflashLogHelper.getTimeAtLine(logdata,endLine)-DataflashLogHelper.getTimeAtLine(logdata,startLine)+1) / 1000.0
if chunkTimeSeconds > minLengthSeconds:
chunks.append((startLine,endLine))
#print "LOITER chunk: %d to %d, %d lines" % (startLine,endLine,endLine-startLine+1)
#print " (time %d to %d, %d seconds)" % (DataflashLogHelper.getTimeAtLine(logdata,startLine), DataflashLogHelper.getTimeAtLine(logdata,endLine), chunkTimeSeconds)
chunks.sort(chunkSizeCompare)
return chunks
@staticmethod
def isLogEmpty(logdata):
'''returns an human readable error string if the log is essentially empty, otherwise returns None'''
# naive check for now, see if the throttle output was ever above 20%
throttleThreshold = 20
if logdata.vehicleType == "ArduCopter":
throttleThreshold = 200 # copter uses 0-1000, plane+rover use 0-100
if "CTUN" in logdata.channels:
maxThrottle = logdata.channels["CTUN"]["ThrOut"].max()
if maxThrottle < throttleThreshold:
return "Throttle never above 20%"
return None
class DataflashLog(object):
'''APM Dataflash log file reader and container class. Keep this simple, add more advanced or specific functions to DataflashLogHelper class'''
knownHardwareTypes = ["APM", "PX4", "MPNG"]
intTypes = "bBhHiIM"
floatTypes = "fcCeEL"
charTypes = "nNZ"
def __init__(self, logfile=None, format="auto", ignoreBadlines=False):
self.filename = None
self.vehicleType = "" # ArduCopter, ArduPlane, ArduRover, etc, verbatim as given by header
self.firmwareVersion = ""
self.firmwareHash = ""
self.freeRAM = 0
self.hardwareType = "" # APM 1, APM 2, PX4, MPNG, etc What is VRBrain? BeagleBone, etc? Needs more testing
self.formats = {} # name -> Format
self.parameters = {} # token -> value
self.messages = {} # lineNum -> message
self.modeChanges = {} # lineNum -> (mode,value)
self.channels = {} # lineLabel -> {dataLabel:Channel}
self.filesizeKB = 0
self.durationSecs = 0
self.lineCount = 0
self.skippedLines = 0
if logfile:
self.read(logfile, format, ignoreBadlines)
def getCopterType(self):
'''returns quad/hex/octo/tradheli if this is a copter log'''
if self.vehicleType != "ArduCopter":
return None
motLabels = []
if "MOT" in self.formats: # not listed in PX4 log header for some reason?
motLabels = self.formats["MOT"].labels
if "GGain" in motLabels:
return "tradheli"
elif len(motLabels) == 4:
return "quad"
elif len(motLabels) == 6:
return "hex"
elif len(motLabels) == 8:
return "octo"
else:
return ""
def read(self, logfile, format="auto", ignoreBadlines=False):
'''returns on successful log read (including bad lines if ignoreBadlines==True), will throw an Exception otherwise'''
# TODO: dataflash log parsing code is pretty hacky, should re-write more methodically
self.filename = logfile
if self.filename == '<stdin>':
f = sys.stdin
else:
f = open(self.filename, 'r')
if format == 'bin':
head = '\xa3\x95\x80\x80'
elif format == 'log':
head = ""
elif format == 'auto':
if self.filename == '<stdin>':
# assuming TXT format
# raise ValueError("Invalid log format for stdin: {}".format(format))
head = ""
else:
head = f.read(4)
f.seek(0)
else:
raise ValueError("Unknown log format for {}: {}".format(self.filename, format))
if head == '\xa3\x95\x80\x80':
numBytes, lineNumber = self.read_binary(f, ignoreBadlines)
pass
else:
numBytes, lineNumber = self.read_text(f, ignoreBadlines)
# gather some general stats about the log
self.lineCount = lineNumber
self.filesizeKB = numBytes / 1024.0
# TODO: switch duration calculation to use TimeMS values rather than GPS timestemp
if "GPS" in self.channels:
# the GPS time label changed at some point, need to handle both
timeLabel = "TimeMS"
if timeLabel not in self.channels["GPS"]:
timeLabel = "Time"
firstTimeGPS = self.channels["GPS"][timeLabel].listData[0][1]
lastTimeGPS = self.channels["GPS"][timeLabel].listData[-1][1]
self.durationSecs = (lastTimeGPS-firstTimeGPS) / 1000
# TODO: calculate logging rate based on timestamps
# ...
def process(self, lineNumber, e):
if e.NAME == 'FMT':
cls = e.to_class()
if cls is not None: # FMT messages can be broken ...
if hasattr(e, 'type') and e.type not in self._formats: # binary log specific
self._formats[e.type] = cls
if cls.NAME not in self.formats:
self.formats[cls.NAME] = cls
elif e.NAME == "PARM":
self.parameters[e.Name] = e.Value
elif e.NAME == "MSG":
if not self.vehicleType:
tokens = e.Message.split(' ')
vehicleTypes = ["ArduPlane", "ArduCopter", "ArduRover"]
self.vehicleType = tokens[0]
self.firmwareVersion = tokens[1]
if len(tokens) == 3:
self.firmwareHash = tokens[2][1:-1]
else:
self.messages[lineNumber] = e.Message
elif e.NAME == "MODE":
if self.vehicleType == "ArduCopter":
try:
modes = {0:'STABILIZE',
1:'ACRO',
2:'ALT_HOLD',
3:'AUTO',
4:'GUIDED',
5:'LOITER',
6:'RTL',
7:'CIRCLE',
9:'LAND',
10:'OF_LOITER',
11:'DRIFT',
13:'SPORT',
14:'FLIP',
15:'AUTOTUNE',
16:'HYBRID',}
self.modeChanges[lineNumber] = (modes[int(e.Mode)], e.ThrCrs)
except:
self.modeChanges[lineNumber] = (e.Mode, e.ThrCrs)
elif self.vehicleType == "ArduPlane" or self.vehicleType == "ArduRover":
self.modeChanges[lineNumber] = (e.Mode, e.ModeNum)
else:
raise Exception("Unknown log type for MODE line {} {}".format(self.vehicleType, repr(e)))
# anything else must be the log data
else:
groupName = e.NAME
# first time seeing this type of log line, create the channel storage
if not groupName in self.channels:
self.channels[groupName] = {}
for label in e.labels:
self.channels[groupName][label] = Channel()
# store each token in its relevant channel
for label in e.labels:
value = getattr(e, label)
channel = self.channels[groupName][label]
channel.dictData[lineNumber] = value
channel.listData.append((lineNumber, value))
def read_text(self, f, ignoreBadlines):
self.formats = {'FMT':Format}
lineNumber = 0
numBytes = 0
knownHardwareTypes = ["APM", "PX4", "MPNG"]
for line in f:
lineNumber = lineNumber + 1
numBytes += len(line) + 1
try:
#print "Reading line: %d" % lineNumber
line = line.strip('\n\r')
tokens = line.split(', ')
# first handle the log header lines
if line == " Ready to drive." or line == " Ready to FLY.":
continue
if line == "----------------------------------------": # present in pre-3.0 logs
raise Exception("Log file seems to be in the older format (prior to self-describing logs), which isn't supported")
if len(tokens) == 1:
tokens2 = line.split(' ')
if line == "":
pass
elif len(tokens2) == 1 and tokens2[0].isdigit(): # log index
pass
elif len(tokens2) == 3 and tokens2[0] == "Free" and tokens2[1] == "RAM:":
self.freeRAM = int(tokens2[2])
elif tokens2[0] in knownHardwareTypes:
self.hardwareType = line # not sure if we can parse this more usefully, for now only need to report it back verbatim
elif (len(tokens2) == 2 or len(tokens2) == 3) and tokens2[1][0].lower() == "v": # e.g. ArduCopter V3.1 (5c6503e2)
self.vehicleType = tokens2[0]
self.firmwareVersion = tokens2[1]
if len(tokens2) == 3:
self.firmwareHash = tokens2[2][1:-1]
else:
errorMsg = "Error parsing line %d of log file: %s" % (lineNumber, self.filename)
if ignoreBadlines:
print(errorMsg + " (skipping line)", file=sys.stderr)
self.skippedLines += 1
else:
raise Exception("")
else:
if not tokens[0] in self.formats:
raise ValueError("Unknown Format {}".format(tokens[0]))
e = self.formats[tokens[0]](*tokens[1:])
self.process(lineNumber, e)
except Exception as e:
print("BAD LINE: " + line, file=sys.stderr)
if not ignoreBadlines:
raise Exception("Error parsing line %d of log file %s - %s" % (lineNumber,self.filename,e.args[0]))
return (numBytes,lineNumber)
def read_binary(self, f, ignoreBadlines):
lineNumber = 0
numBytes = 0
for e in self._read_binary(f, ignoreBadlines):
lineNumber += 1
if e is None:
continue
numBytes += e.SIZE
# print(e)
self.process(lineNumber, e)
return (numBytes,lineNumber)
def _read_binary(self, f, ignoreBadlines):
self._formats = {128:BinaryFormat}
data = bytearray(f.read())
offset = 0
while len(data) > offset:
h = logheader.from_buffer(data, offset)
if not (h.head1 == 0xa3 and h.head2 == 0x95):
raise ValueError(h)
if h.msgid in self._formats:
typ = self._formats[h.msgid]
if len(data) <= offset + typ.SIZE:
break
try:
e = typ.from_buffer(data, offset)
except:
print("data:{} offset:{} size:{} sizeof:{} sum:{}".format(len(data),offset,typ.SIZE,ctypes.sizeof(typ),offset+typ.SIZE))
raise
offset += typ.SIZE
else:
raise ValueError(str(h) + "unknown type")
yield e