ardupilot/ArduCopterMega/radio.pde

261 lines
7.1 KiB
Plaintext
Raw Normal View History

void init_rc_in()
{
read_EEPROM_radio(); // read Radio limits
rc_1.set_angle(4500);
rc_1.dead_zone = 60;
rc_2.set_angle(4500);
rc_2.dead_zone = 60;
rc_3.set_range(0,1000);
rc_3.dead_zone = 20;
rc_3.scale_output = .9;
rc_4.set_angle(6000);
rc_4.dead_zone = 500;
rc_5.set_range(0,1000);
rc_5.set_filter(false);
// for kP values
//rc_6.set_range(200,800);
rc_6.set_range(0,4000);
// for camera angles
//rc_6.set_angle(4500);
//rc_6.dead_zone = 60;
rc_7.set_range(0,1000);
rc_8.set_range(0,1000);
}
void init_rc_out()
{
#if ARM_AT_STARTUP == 1
motor_armed = 1;
#endif
APM_RC.OutputCh(CH_1, rc_3.radio_min); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
APM_RC.Init(); // APM Radio initialization
APM_RC.OutputCh(CH_1, rc_3.radio_min); // Initialization of servo outputs
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
}
void read_radio()
{
rc_1.set_pwm(APM_RC.InputCh(CH_1));
rc_2.set_pwm(APM_RC.InputCh(CH_2));
rc_3.set_pwm(APM_RC.InputCh(CH_3));
rc_4.set_pwm(APM_RC.InputCh(CH_4));
rc_5.set_pwm(APM_RC.InputCh(CH_5));
rc_6.set_pwm(APM_RC.InputCh(CH_6));
rc_7.set_pwm(APM_RC.InputCh(CH_7));
rc_8.set_pwm(APM_RC.InputCh(CH_8));
//Serial.printf_P(PSTR("OUT 1: %d\t2: %d\t3: %d\t4: %d \n"), rc_1.control_in, rc_2.control_in, rc_3.control_in, rc_4.control_in);
}
void trim_radio()
{
for (byte i = 0; i < 30; i++){
read_radio();
}
rc_1.trim(); // roll
rc_2.trim(); // pitch
rc_4.trim(); // yaw
}
void trim_yaw()
{
for (byte i = 0; i < 30; i++){
read_radio();
}
rc_4.trim(); // yaw
}
#define ARM_DELAY 10
#define DISARM_DELAY 10
void arm_motors()
{
static byte arming_counter;
// Arm motor output : Throttle down and full yaw right for more than 2 seconds
if (rc_3.control_in == 0){
if (rc_4.control_in > 2700) {
if (arming_counter > ARM_DELAY) {
motor_armed = true;
} else{
arming_counter++;
}
}else if (rc_4.control_in < -2700) {
if (arming_counter > DISARM_DELAY){
motor_armed = false;
}else{
arming_counter++;
}
}else{
arming_counter = 0;
}
}
}
/*****************************************
* Set the flight control servos based on the current calculated values
*****************************************/
void set_servos_4(void)
{
static byte num;
// Quadcopter mix
if (motor_armed == true) {
int out_min = rc_3.radio_min;
// Throttle is 0 to 1000 only
rc_3.servo_out = constrain(rc_3.servo_out, 0, 1000);
if(rc_3.servo_out > 0)
out_min = rc_3.radio_min + 50;
//Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
// creates the radio_out and pwm_out values
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
rc_4.calc_pwm();
//Serial.printf("out: %d %d %d %d\n", rc_1.radio_out, rc_2.radio_out, rc_3.radio_out, rc_4.radio_out);
//Serial.printf("yaw: %d ", rc_4.radio_out);
if(frame_type == PLUS_FRAME){
//Serial.println("+");
motor_out[RIGHT] = rc_3.radio_out - rc_1.pwm_out;
motor_out[LEFT] = rc_3.radio_out + rc_1.pwm_out;
motor_out[FRONT] = rc_3.radio_out + rc_2.pwm_out;
motor_out[BACK] = rc_3.radio_out - rc_2.pwm_out;
}else if(frame_type == X_FRAME){
int roll_out = rc_1.pwm_out / 2;
int pitch_out = rc_2.pwm_out / 2;
motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out;
motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out;
motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out;
motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out;
}else{
/*
replace this with Tri-frame control law
int roll_out = rc_1.pwm_out / 2;
int pitch_out = rc_2.pwm_out / 2;
motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out;
motor_out[LEFT] = rc_3.radio_out + roll_out - pitch_out;
motor_out[RIGHT] = rc_3.radio_out - roll_out + pitch_out;
motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out;
*/
}
//Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
if((frame_type == PLUS_FRAME) || (frame_type == X_FRAME)){
motor_out[RIGHT] += rc_4.pwm_out;
motor_out[LEFT] += rc_4.pwm_out;
motor_out[FRONT] -= rc_4.pwm_out;
motor_out[BACK] -= rc_4.pwm_out;
}
//Serial.printf("\tl8r: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
motor_out[RIGHT] = constrain(motor_out[RIGHT], out_min, rc_3.radio_max);
motor_out[LEFT] = constrain(motor_out[LEFT], out_min, rc_3.radio_max);
motor_out[FRONT] = constrain(motor_out[FRONT], out_min, rc_3.radio_max);
motor_out[BACK] = constrain(motor_out[BACK], out_min, rc_3.radio_max);
/*
int r_out = ((long)(motor_out[RIGHT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int l_out = ((long)(motor_out[LEFT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int f_out = ((long)(motor_out[FRONT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int b_out = ((long)(motor_out[BACK] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
//*/
//
/* debugging and dynamic kP
num++;
if (num > 50){
num = 0;
hold_yaw_dampener = (float)rc_6.control_in;
//pid_stabilize_roll.kP((float)rc_6.control_in / 1000);
//stabilize_rate_roll_pitch = pid_stabilize_roll.kP() *.25;
//init_pids();
//Serial.print("nav_yaw: ");
//Serial.println(nav_yaw,DEC);
//Serial.print("kP: ");
//Serial.println(pid_stabilize_roll.kP(),3);
}
// out: 41 38 39 39
// pwm: 358, 1412 1380 1395 1389
//*/
//Serial.printf("set: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
//Serial.printf("s: %d %d %d\t\t", (int)roll_sensor, (int)pitch_sensor, (int)yaw_sensor);
///Serial.printf("outmin: %d\n", out_min);
/*
write_int(r_out);
write_int(l_out);
write_int(f_out);
write_int(b_out);
write_int((int)(roll_sensor / 100));
write_int((int)(pitch_sensor / 100));
write_int((int)(yaw_sensor / 100));
write_int((int)(yaw_error / 100));
write_int((int)(current_loc.alt));
write_int((int)(altitude_error));
flush(10);
//*/
// Send commands to motors
if(rc_3.servo_out > 0){
APM_RC.OutputCh(CH_1, motor_out[RIGHT]);
APM_RC.OutputCh(CH_2, motor_out[LEFT]);
APM_RC.OutputCh(CH_3, motor_out[FRONT]);
APM_RC.OutputCh(CH_4, motor_out[BACK]);
}else{
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
}
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
}else{
// Send commands to motors
APM_RC.OutputCh(CH_1, rc_3.radio_min);
APM_RC.OutputCh(CH_2, rc_3.radio_min);
APM_RC.OutputCh(CH_3, rc_3.radio_min);
APM_RC.OutputCh(CH_4, rc_3.radio_min);
// reset I terms of PID controls
reset_I();
// Initialize yaw command to actual yaw when throttle is down...
rc_4.control_in = ToDeg(yaw);
}
}