2010-12-19 12:40:33 -04:00
|
|
|
|
|
|
|
|
|
void init_pids()
|
|
|
|
|
{
|
2011-01-02 16:34:42 -04:00
|
|
|
|
// create limits to how much dampening we'll allow
|
|
|
|
|
// this creates symmetry with the P gain value preventing oscillations
|
|
|
|
|
|
|
|
|
|
max_stabilize_dampener = pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15°
|
|
|
|
|
max_yaw_dampener = pid_yaw.kP() * 6000; // .5 * 6000 = 3000
|
2010-12-19 12:40:33 -04:00
|
|
|
|
}
|
|
|
|
|
|
2011-01-02 16:34:42 -04:00
|
|
|
|
|
2010-12-19 12:40:33 -04:00
|
|
|
|
void output_stabilize()
|
|
|
|
|
{
|
|
|
|
|
float roll_error, pitch_error;
|
|
|
|
|
Vector3f omega = dcm.get_gyro();
|
2011-01-02 16:34:42 -04:00
|
|
|
|
long rate;
|
|
|
|
|
int dampener;
|
2010-12-19 12:40:33 -04:00
|
|
|
|
|
|
|
|
|
//pitch_sensor = roll_sensor = 0; // testing only
|
|
|
|
|
|
|
|
|
|
// control +- 45° is mixed with the navigation request by the Autopilot
|
|
|
|
|
// output is in degrees = target pitch and roll of copter
|
|
|
|
|
rc_1.servo_out = rc_1.control_mix(nav_roll);
|
|
|
|
|
rc_2.servo_out = rc_2.control_mix(nav_pitch);
|
|
|
|
|
|
|
|
|
|
roll_error = rc_1.servo_out - roll_sensor;
|
|
|
|
|
pitch_error = rc_2.servo_out - pitch_sensor;
|
|
|
|
|
|
|
|
|
|
// limit the error we're feeding to the PID
|
|
|
|
|
roll_error = constrain(roll_error, -2500, 2500);
|
|
|
|
|
pitch_error = constrain(pitch_error, -2500, 2500);
|
|
|
|
|
|
|
|
|
|
//Serial.printf("s: %d \t mix %d, err %d", (int)roll_sensor, (int)rc_1.servo_out, (int)roll_error);
|
|
|
|
|
|
|
|
|
|
// write out angles back to servo out - this will be converted to PWM by RC_Channel
|
|
|
|
|
rc_1.servo_out = pid_stabilize_roll.get_pid(roll_error, deltaMiliSeconds, 1.0);
|
|
|
|
|
rc_2.servo_out = pid_stabilize_pitch.get_pid(pitch_error, deltaMiliSeconds, 1.0);
|
|
|
|
|
|
|
|
|
|
//Serial.printf("\tpid: %d", (int)rc_1.servo_out);
|
|
|
|
|
|
|
|
|
|
// We adjust the output by the rate of rotation:
|
|
|
|
|
// Rate control through bias corrected gyro rates
|
|
|
|
|
// omega is the raw gyro reading
|
2011-01-02 16:34:42 -04:00
|
|
|
|
|
2010-12-19 12:40:33 -04:00
|
|
|
|
// Limit dampening to be equal to propotional term for symmetry
|
2011-01-02 16:34:42 -04:00
|
|
|
|
rate = degrees(omega.x) * 100; // 6rad = 34377
|
|
|
|
|
dampener = ((float)rate * stabilize_dampener); // 34377 * .175 = 6000
|
|
|
|
|
rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500
|
|
|
|
|
|
|
|
|
|
rate = degrees(omega.y) * 100; // 6rad = 34377
|
|
|
|
|
dampener = ((float)rate * stabilize_dampener); // 34377 * .175 = 6000
|
|
|
|
|
rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500
|
2010-12-19 12:40:33 -04:00
|
|
|
|
|
|
|
|
|
//Serial.printf(" yaw out: %d, d: %d", (int)rc_4.angle_to_pwm(), yaw_dampener);
|
|
|
|
|
|
|
|
|
|
//Serial.printf("\trd: %d", roll_dampener);
|
|
|
|
|
//Serial.printf("\tlimit: %d, PWM: %d", rc_1.servo_out, rc_1.angle_to_pwm());
|
|
|
|
|
}
|
|
|
|
|
|
2011-01-02 16:34:42 -04:00
|
|
|
|
void
|
|
|
|
|
clear_yaw_control()
|
|
|
|
|
{
|
|
|
|
|
//Serial.print("Clear ");
|
|
|
|
|
rate_yaw_flag = false; // exit rate_yaw_flag
|
|
|
|
|
nav_yaw = yaw_sensor; // save our Yaw
|
|
|
|
|
yaw_error = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void output_yaw_with_hold(boolean hold)
|
|
|
|
|
{
|
|
|
|
|
Vector3f omega = dcm.get_gyro();
|
|
|
|
|
|
|
|
|
|
if(hold){
|
|
|
|
|
// yaw hold
|
|
|
|
|
if(rate_yaw_flag){
|
|
|
|
|
// we are still in motion from rate control
|
|
|
|
|
if(fabs(omega.y) < .15){
|
|
|
|
|
//Serial.print("trans ");
|
|
|
|
|
clear_yaw_control();
|
|
|
|
|
hold = true; // just to be explicit
|
|
|
|
|
}else{
|
|
|
|
|
//Serial.print("coast ");
|
|
|
|
|
// return to rate control until we slow down.
|
|
|
|
|
hold = false;
|
|
|
|
|
}
|
|
|
|
|
}else{
|
|
|
|
|
//Serial.print("hold ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
//Serial.print("rate ");
|
|
|
|
|
// rate control
|
|
|
|
|
rate_yaw_flag = true;
|
|
|
|
|
yaw_error = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(hold){
|
|
|
|
|
yaw_error = nav_yaw - yaw_sensor; // +- 60°
|
|
|
|
|
yaw_error = wrap_180(yaw_error);
|
|
|
|
|
|
|
|
|
|
// limit the error we're feeding to the PID
|
|
|
|
|
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees
|
|
|
|
|
rc_4.servo_out = pid_yaw.get_pid(yaw_error, deltaMiliSeconds, 1.0); // .5 * 6000 = 3000
|
|
|
|
|
|
|
|
|
|
// We adjust the output by the rate of rotation
|
|
|
|
|
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
|
|
|
|
|
int dampener = ((float)rate * hold_yaw_dampener); // 18000 * .17 = 3000
|
|
|
|
|
|
|
|
|
|
// Limit dampening to be equal to propotional term for symmetry
|
|
|
|
|
rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000
|
|
|
|
|
|
|
|
|
|
}else{
|
|
|
|
|
//yaw_error = 0;
|
|
|
|
|
|
|
|
|
|
// rate control
|
|
|
|
|
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
|
|
|
|
|
rate = constrain(rate, -36000, 36000); // limit to something fun!
|
|
|
|
|
long error = ((long)rc_4.control_in * 6) - rate; // control is += 6000
|
|
|
|
|
// -error = CCW, +error = CW
|
|
|
|
|
rc_4.servo_out = pid_acro_rate_yaw.get_pid(error, deltaMiliSeconds, 1.0); // .075 * 36000 = 2700
|
|
|
|
|
rc_4.servo_out = constrain(rc_4.servo_out, -2400, 2400); // limit to 2400
|
|
|
|
|
|
|
|
|
|
// this indicates we are under rate control, when we enter Yaw Hold and
|
|
|
|
|
// return to 0° per second, we exit rate control and hold the current Yaw
|
|
|
|
|
//rate_yaw_flag = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2010-12-19 12:40:33 -04:00
|
|
|
|
|
|
|
|
|
void output_rate_control()
|
|
|
|
|
{
|
2011-01-02 16:34:42 -04:00
|
|
|
|
/*
|
2010-12-19 12:40:33 -04:00
|
|
|
|
Vector3f omega = dcm.get_gyro();
|
|
|
|
|
|
|
|
|
|
rc_1.servo_out = rc_2.control_in;
|
|
|
|
|
rc_2.servo_out = rc_2.control_in;
|
|
|
|
|
|
|
|
|
|
// Rate control through bias corrected gyro rates
|
|
|
|
|
// omega is the raw gyro reading plus Omega_I, so it´s bias corrected
|
2011-01-02 16:34:42 -04:00
|
|
|
|
rc_1.servo_out -= (omega.x * 5729.57795 * acro_dampener);
|
|
|
|
|
rc_2.servo_out -= (omega.y * 5729.57795 * acro_dampener);
|
2010-12-19 12:40:33 -04:00
|
|
|
|
|
|
|
|
|
//Serial.printf("\trated out %d, omega ", rc_1.servo_out);
|
|
|
|
|
//Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3);
|
|
|
|
|
|
|
|
|
|
// Limit output
|
2010-12-26 01:25:52 -04:00
|
|
|
|
rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
|
2010-12-19 12:40:33 -04:00
|
|
|
|
rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
|
2011-01-02 16:34:42 -04:00
|
|
|
|
*/
|
2010-12-19 12:40:33 -04:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
|
|
|
|
|
// Keeps outdated data out of our calculations
|
|
|
|
|
void reset_I(void)
|
|
|
|
|
{
|
|
|
|
|
pid_nav.reset_I();
|
|
|
|
|
pid_throttle.reset_I();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|