ardupilot/libraries/AP_RPM/AP_RPM.cpp

258 lines
7.7 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_RPM.h"
#include "RPM_Pin.h"
2015-11-22 23:28:17 -04:00
#include "RPM_SITL.h"
2019-11-11 00:37:44 -04:00
#include "RPM_EFI.h"
#include "RPM_HarmonicNotch.h"
#include "RPM_ESC_Telem.h"
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_RPM::var_info[] = {
// @Param: _TYPE
// @DisplayName: RPM type
// @Description: What type of RPM sensor is connected
// @Values: 0:None,1:PWM,2:AUXPIN,3:EFI,4:Harmonic Notch,5:ESC Telemetry Motors Bitmask
2016-07-26 02:35:15 -03:00
// @User: Standard
AP_GROUPINFO("_TYPE", 0, AP_RPM, _type[0], 0),
// @Param: _SCALING
// @DisplayName: RPM scaling
// @Description: Scaling factor between sensor reading and RPM.
// @Increment: 0.001
2016-07-26 02:35:15 -03:00
// @User: Standard
AP_GROUPINFO("_SCALING", 1, AP_RPM, _scaling[0], 1.0f),
// @Param: _MAX
// @DisplayName: Maximum RPM
// @Description: Maximum RPM to report
// @Increment: 1
2016-07-26 02:35:15 -03:00
// @User: Standard
AP_GROUPINFO("_MAX", 2, AP_RPM, _maximum[0], 100000),
2015-11-20 18:07:41 -04:00
// @Param: _MIN
// @DisplayName: Minimum RPM
// @Description: Minimum RPM to report
// @Increment: 1
2016-07-26 02:35:15 -03:00
// @User: Standard
AP_GROUPINFO("_MIN", 3, AP_RPM, _minimum[0], 10),
2015-11-20 18:07:41 -04:00
2015-11-20 20:18:12 -04:00
// @Param: _MIN_QUAL
// @DisplayName: Minimum Quality
// @Description: Minimum data quality to be used
// @Increment: 0.1
2016-07-26 02:35:15 -03:00
// @User: Advanced
2015-11-20 20:18:12 -04:00
AP_GROUPINFO("_MIN_QUAL", 4, AP_RPM, _quality_min[0], 0.5),
// @Param: _PIN
// @DisplayName: Input pin number
// @Description: Which pin to use
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
2021-07-14 22:40:00 -03:00
AP_GROUPINFO("_PIN", 5, AP_RPM, _pin[0], -1),
// @Param: _ESC_MASK
// @DisplayName: Bitmask of ESC telemetry channels to average
// @Description: Mask of channels which support ESC rpm telemetry. RPM telemetry of the selected channels will be averaged
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("_ESC_MASK", 6, AP_RPM, _esc_mask[0], 0),
#if RPM_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second RPM type
// @Description: What type of RPM sensor is connected
// @Values: 0:None,1:PWM,2:AUXPIN,3:EFI,4:Harmonic Notch,5:ESC Telemetry Motors Bitmask
2016-07-26 02:35:15 -03:00
// @User: Advanced
AP_GROUPINFO("2_TYPE", 10, AP_RPM, _type[1], 0),
// @Param: 2_SCALING
// @DisplayName: RPM scaling
// @Description: Scaling factor between sensor reading and RPM.
// @Increment: 0.001
2016-07-26 02:35:15 -03:00
// @User: Advanced
AP_GROUPINFO("2_SCALING", 11, AP_RPM, _scaling[1], 1.0f),
// @Param: 2_PIN
// @DisplayName: RPM2 input pin number
// @Description: Which pin to use
// @Values: -1:Disabled,50:AUX1,51:AUX2,52:AUX3,53:AUX4,54:AUX5,55:AUX6
// @User: Standard
AP_GROUPINFO("2_PIN", 12, AP_RPM, _pin[1], -1),
// @Param: 2_ESC_MASK
// @DisplayName: Bitmask of ESC telemetry channels to average
// @Description: Mask of channels which support ESC rpm telemetry. RPM telemetry of the selected channels will be averaged
// @Bitmask: 0:Channel1,1:Channel2,2:Channel3,3:Channel4,4:Channel5,5:Channel6,6:Channel7,7:Channel8,8:Channel9,9:Channel10,10:Channel11,11:Channel12,12:Channel13,13:Channel14,14:Channel15,15:Channel16
// @User: Advanced
AP_GROUPINFO("2_ESC_MASK", 13, AP_RPM, _esc_mask[1], 0),
#endif
AP_GROUPEND
};
AP_RPM::AP_RPM(void)
{
AP_Param::setup_object_defaults(this, var_info);
2019-02-25 12:48:19 -04:00
if (_singleton != nullptr) {
AP_HAL::panic("AP_RPM must be singleton");
}
_singleton = this;
}
/*
initialise the AP_RPM class.
*/
void AP_RPM::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) {
switch (_type[i]) {
#if CONFIG_HAL_BOARD != HAL_BOARD_SITL
case RPM_TYPE_PWM:
case RPM_TYPE_PIN:
2019-10-17 03:04:59 -03:00
// PWM option same as PIN option, for upgrade
drivers[i] = new AP_RPM_Pin(*this, i, state[i]);
break;
#endif
case RPM_TYPE_ESC_TELEM:
drivers[i] = new AP_RPM_ESC_Telem(*this, i, state[i]);
break;
2021-06-08 01:17:00 -03:00
#if HAL_EFI_ENABLED
case RPM_TYPE_EFI:
2019-11-11 00:37:44 -04:00
drivers[i] = new AP_RPM_EFI(*this, i, state[i]);
break;
2019-11-11 00:37:44 -04:00
#endif
// include harmonic notch last
// this makes whatever process is driving the dynamic notch appear as an RPM value
case RPM_TYPE_HNTCH:
drivers[i] = new AP_RPM_HarmonicNotch(*this, i, state[i]);
break;
2015-11-22 23:28:17 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
case RPM_TYPE_SITL:
2019-11-11 00:37:44 -04:00
drivers[i] = new AP_RPM_SITL(*this, i, state[i]);
break;
#endif
}
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1; // num_instances is a high-water-mark
}
}
}
/*
update RPM state for all instances. This should be called by main loop
*/
void AP_RPM::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (drivers[i] != nullptr) {
if (_type[i] == RPM_TYPE_NONE) {
// allow user to disable an RPM sensor at runtime and force it to re-learn the quality if re-enabled.
state[i].signal_quality = 0;
continue;
}
drivers[i]->update();
}
}
}
/*
check if an instance is healthy
*/
bool AP_RPM::healthy(uint8_t instance) const
{
if (instance >= num_instances || _type[instance] == RPM_TYPE_NONE) {
return false;
}
2015-11-20 20:18:12 -04:00
// check that data quality is above minimum required
if (state[instance].signal_quality < _quality_min[0]) {
return false;
}
return true;
}
/*
check if an instance is activated
*/
bool AP_RPM::enabled(uint8_t instance) const
{
if (instance >= num_instances) {
return false;
}
// if no sensor type is selected, the sensor is not activated.
if (_type[instance] == RPM_TYPE_NONE) {
return false;
}
return true;
}
2019-02-25 12:48:19 -04:00
/*
get RPM value, return true on success
*/
bool AP_RPM::get_rpm(uint8_t instance, float &rpm_value) const
{
if (!healthy(instance)) {
return false;
}
rpm_value = state[instance].rate_rpm;
return true;
}
2021-07-20 01:20:16 -03:00
// check settings are valid
bool AP_RPM::arming_checks(size_t buflen, char *buffer) const
{
for (uint8_t i=0; i<RPM_MAX_INSTANCES; i++) {
switch (_type[i]) {
case RPM_TYPE_PWM:
case RPM_TYPE_PIN:
if (_pin[i] == -1) {
hal.util->snprintf(buffer, buflen, "RPM[%u] no pin set", i + 1);
return false;
}
if (!hal.gpio->valid_pin(_pin[i])) {
hal.util->snprintf(buffer, buflen, "RPM[%u] pin %d invalid", unsigned(i + 1), int(_pin[i].get()));
2021-07-20 01:20:16 -03:00
return false;
}
break;
}
}
return true;
}
2019-02-25 12:48:19 -04:00
// singleton instance
AP_RPM *AP_RPM::_singleton;
namespace AP {
AP_RPM *rpm()
{
return AP_RPM::get_singleton();
}
}