ardupilot/libraries/GCS_MAVLink/GCS.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

410 lines
12 KiB
C++
Raw Normal View History

#include "GCS_config.h"
#if HAL_GCS_ENABLED
#include "GCS.h"
#include <AC_Fence/AC_Fence.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
2019-04-04 07:49:44 -03:00
#include <AP_Logger/AP_Logger.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_Scheduler/AP_Scheduler.h>
2019-06-26 23:32:25 -03:00
#include <AP_Baro/AP_Baro.h>
#include <AP_AHRS/AP_AHRS.h>
2022-02-25 01:06:31 -04:00
#include <AP_Compass/AP_Compass.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Arming/AP_Arming.h>
2022-02-25 01:06:31 -04:00
#include <AP_VisualOdom/AP_VisualOdom.h>
2022-02-28 21:19:22 -04:00
#include <AP_Notify/AP_Notify.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_GPS/AP_GPS.h>
#include <RC_Channel/RC_Channel.h>
2022-02-25 01:06:31 -04:00
#include "MissionItemProtocol_Waypoints.h"
#include "MissionItemProtocol_Rally.h"
#include "MissionItemProtocol_Fence.h"
extern const AP_HAL::HAL& hal;
void GCS::get_sensor_status_flags(uint32_t &present,
uint32_t &enabled,
uint32_t &health)
{
// if this assert fails then fix it and the comment in GCS.h where
// _statustext_queue is declared
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
ASSERT_STORAGE_SIZE(GCS::statustext_t, 58);
#endif
update_sensor_status_flags();
present = control_sensors_present;
enabled = control_sensors_enabled;
health = control_sensors_health;
}
MissionItemProtocol *GCS::missionitemprotocols[3];
void GCS::init()
{
mavlink_system.sysid = sysid_this_mav();
}
/*
* returns a mask of channels that statustexts should be sent to
*/
uint8_t GCS::statustext_send_channel_mask() const
{
uint8_t ret = 0;
ret |= GCS_MAVLINK::active_channel_mask();
ret |= GCS_MAVLINK::streaming_channel_mask();
ret &= ~GCS_MAVLINK::private_channel_mask();
return ret;
}
/*
send a text message to all GCS
*/
2017-08-01 02:13:34 -03:00
void GCS::send_textv(MAV_SEVERITY severity, const char *fmt, va_list arg_list)
{
uint8_t mask = statustext_send_channel_mask();
if (!update_send_has_been_called) {
// we have not yet initialised the streaming-channel-mask,
// which is done as part of the update() call. So just send
// it to all channels:
mask = (1<<_num_gcs)-1;
}
send_textv(severity, fmt, arg_list, mask);
2017-08-01 02:13:34 -03:00
}
void GCS::send_text(MAV_SEVERITY severity, const char *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
2017-08-01 02:13:34 -03:00
send_textv(severity, fmt, arg_list);
va_end(arg_list);
}
void GCS::send_to_active_channels(uint32_t msgid, const char *pkt)
{
const mavlink_msg_entry_t *entry = mavlink_get_msg_entry(msgid);
if (entry == nullptr) {
return;
}
for (uint8_t i=0; i<num_gcs(); i++) {
GCS_MAVLINK &c = *chan(i);
if (c.is_private()) {
continue;
}
if (!c.is_active()) {
continue;
}
#if HAL_HIGH_LATENCY2_ENABLED
if (c.is_high_latency_link) {
continue;
}
#endif
// size checks done by this method:
c.send_message(pkt, entry);
}
}
void GCS::send_named_float(const char *name, float value) const
{
mavlink_named_value_float_t packet {};
packet.time_boot_ms = AP_HAL::millis();
packet.value = value;
memcpy(packet.name, name, MIN(strlen(name), (uint8_t)MAVLINK_MSG_NAMED_VALUE_FLOAT_FIELD_NAME_LEN));
gcs().send_to_active_channels(MAVLINK_MSG_ID_NAMED_VALUE_FLOAT,
(const char *)&packet);
}
#if HAL_HIGH_LATENCY2_ENABLED
void GCS::enable_high_latency_connections(bool enabled)
{
high_latency_link_enabled = enabled;
gcs().send_text(MAV_SEVERITY_NOTICE, "High Latency %s", enabled ? "enabled" : "disabled");
}
bool GCS::get_high_latency_status()
{
return high_latency_link_enabled;
}
#endif // HAL_HIGH_LATENCY2_ENABLED
/*
install an alternative protocol handler. This allows another
protocol to take over the link if MAVLink goes idle. It is used to
allow for the AP_BLHeli pass-thru protocols to run on hal.serial(0)
*/
bool GCS::install_alternative_protocol(mavlink_channel_t c, GCS_MAVLINK::protocol_handler_fn_t handler)
{
GCS_MAVLINK *link = chan(c);
if (link == nullptr) {
return false;
}
if (link->alternative.handler && handler) {
// already have one installed - we may need to add support for
// multiple alternative handlers
return false;
}
link->alternative.handler = handler;
return true;
}
void GCS::update_sensor_status_flags()
{
control_sensors_present = 0;
control_sensors_enabled = 0;
control_sensors_health = 0;
#if AP_INERTIALSENSOR_ENABLED
const AP_InertialSensor &ins = AP::ins();
#endif
#if AP_AHRS_ENABLED && AP_INERTIALSENSOR_ENABLED
AP_AHRS &ahrs = AP::ahrs();
control_sensors_present |= MAV_SYS_STATUS_AHRS;
if (ahrs.initialised()) {
control_sensors_enabled |= MAV_SYS_STATUS_AHRS;
if (ahrs.healthy()) {
if (!ahrs.have_inertial_nav() || ins.accel_calibrated_ok_all()) {
control_sensors_health |= MAV_SYS_STATUS_AHRS;
}
}
}
#endif
#if AP_COMPASS_ENABLED
const Compass &compass = AP::compass();
if (AP::compass().available()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_MAG;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
if (compass.available() && compass.healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_MAG;
}
#endif
#if AP_BARO_ENABLED
const AP_Baro &barometer = AP::baro();
if (barometer.num_instances() > 0) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
if (barometer.all_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_ABSOLUTE_PRESSURE;
}
}
#endif
#if AP_GPS_ENABLED
const AP_GPS &gps = AP::gps();
if (gps.status() > AP_GPS::NO_GPS) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_GPS;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_GPS;
}
if (gps.is_healthy() && gps.status() >= min_status_for_gps_healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_GPS;
}
#endif
#if AP_BATTERY_ENABLED
const AP_BattMonitor &battery = AP::battery();
control_sensors_present |= MAV_SYS_STATUS_SENSOR_BATTERY;
if (battery.num_instances() > 0) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
if (battery.healthy() && !battery.has_failsafed()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_BATTERY;
}
#endif
#if AP_INERTIALSENSOR_ENABLED
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
control_sensors_present |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
if (!ins.calibrating()) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
if (ins.get_accel_health_all()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_ACCEL;
}
if (ins.get_gyro_health_all() && ins.gyro_calibrated_ok_all()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
}
#endif
#if HAL_LOGGING_ENABLED
const AP_Logger &logger = AP::logger();
bool logging_present = logger.logging_present();
bool logging_enabled = logger.logging_enabled();
bool logging_healthy = !logger.logging_failed();
#if AP_GPS_ENABLED
// some GPS units do logging, so they have to be healthy too:
logging_present |= gps.logging_present();
logging_enabled |= gps.logging_enabled();
logging_healthy &= !gps.logging_failed();
#endif
if (logging_present) {
control_sensors_present |= MAV_SYS_STATUS_LOGGING;
}
if (logging_enabled) {
control_sensors_enabled |= MAV_SYS_STATUS_LOGGING;
}
if (logging_healthy) {
control_sensors_health |= MAV_SYS_STATUS_LOGGING;
}
#endif // HAL_LOGGING_ENABLED
// set motors outputs as enabled if safety switch is not disarmed (i.e. either NONE or ARMED)
#if !defined(HAL_BUILD_AP_PERIPH)
control_sensors_present |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
if (hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
}
control_sensors_health |= MAV_SYS_STATUS_SENSOR_MOTOR_OUTPUTS;
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL && AP_AHRS_ENABLED
if (ahrs.get_ekf_type() == 10) {
// always show EKF type 10 as healthy. This prevents spurious error
// messages in xplane and other simulators that use EKF type 10
control_sensors_health |= MAV_SYS_STATUS_AHRS | MAV_SYS_STATUS_SENSOR_GPS | MAV_SYS_STATUS_SENSOR_3D_ACCEL | MAV_SYS_STATUS_SENSOR_3D_GYRO;
}
#endif
#if AP_FENCE_ENABLED
const AC_Fence *fence = AP::fence();
if (fence != nullptr) {
if (fence->sys_status_enabled()) {
control_sensors_enabled |= MAV_SYS_STATUS_GEOFENCE;
}
if (fence->sys_status_present()) {
control_sensors_present |= MAV_SYS_STATUS_GEOFENCE;
}
if (!fence->sys_status_failed()) {
control_sensors_health |= MAV_SYS_STATUS_GEOFENCE;
}
}
#endif
// airspeed
#if AP_AIRSPEED_ENABLED
const AP_Airspeed *airspeed = AP_Airspeed::get_singleton();
if (airspeed && airspeed->enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
const bool use = airspeed->use();
#if AP_AHRS_ENABLED
const bool enabled = AP::ahrs().airspeed_sensor_enabled();
#else
const AP_Airspeed *_airspeed = AP::airspeed();
const bool enabled = (_airspeed != nullptr && _airspeed->use());
#endif
if (use) {
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
if (airspeed->all_healthy() && (!use || enabled)) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_DIFFERENTIAL_PRESSURE;
}
}
#endif
#if AP_OPTICALFLOW_ENABLED
const AP_OpticalFlow *optflow = AP::opticalflow();
if (optflow && optflow->enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
if (optflow && optflow->healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_OPTICAL_FLOW;
}
#endif
#if HAL_VISUALODOM_ENABLED
const AP_VisualOdom *visual_odom = AP::visualodom();
if (visual_odom && visual_odom->enabled()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
if (visual_odom->healthy()) {
control_sensors_health |= MAV_SYS_STATUS_SENSOR_VISION_POSITION;
}
}
#endif
// give GCS status of prearm checks. This is enabled if any arming checks are enabled.
// it is healthy if armed or checks are passing
#if AP_ARMING_ENABLED
control_sensors_present |= MAV_SYS_STATUS_PREARM_CHECK;
if (AP::arming().get_enabled_checks()) {
control_sensors_enabled |= MAV_SYS_STATUS_PREARM_CHECK;
if (hal.util->get_soft_armed() || AP_Notify::flags.pre_arm_check) {
control_sensors_health |= MAV_SYS_STATUS_PREARM_CHECK;
}
}
#endif
#if AP_RC_CHANNEL_ENABLED
if (rc().has_ever_seen_rc_input()) {
control_sensors_present |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
control_sensors_enabled |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
if (!rc().in_rc_failsafe()) { // should this be has_valid_input?
control_sensors_health |= MAV_SYS_STATUS_SENSOR_RC_RECEIVER;
}
}
#endif
update_vehicle_sensor_status_flags();
}
bool GCS::out_of_time() const
{
#if defined(HAL_BUILD_AP_PERIPH)
// we are never out of time for AP_Periph
// as we don't have concept of AP_Scheduler in AP_Periph
return false;
#endif
// while we are in the delay callback we are never out of time:
if (hal.scheduler->in_delay_callback()) {
return false;
}
// we always want to be able to send messages out while in the error loop:
if (AP_BoardConfig::in_config_error()) {
return false;
}
#if AP_SCHEDULER_ENABLED
if (min_loop_time_remaining_for_message_send_us() <= AP::scheduler().time_available_usec()) {
return false;
}
#endif
return true;
}
void gcs_out_of_space_to_send(mavlink_channel_t chan)
{
GCS_MAVLINK *link = gcs().chan(chan);
if (link == nullptr) {
return;
}
link->out_of_space_to_send();
}
/*
check there is enough space for a message
*/
bool GCS_MAVLINK::check_payload_size(uint16_t max_payload_len)
{
if (txspace() < unsigned(packet_overhead()+max_payload_len)) {
gcs_out_of_space_to_send(chan);
return false;
}
return true;
}
#endif // HAL_GCS_ENABLED