ardupilot/libraries/AP_InertialSensor/AP_InertialSensor_Invensensev2.cpp

922 lines
30 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
driver for all supported Invensensev2 IMUs
ICM20948, ICM20648 and ICM20649
*/
#include <assert.h>
#include <utility>
#include <stdio.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor_Invensensev2.h"
extern const AP_HAL::HAL& hal;
#ifdef INS_TIMING_DEBUG
#include <stdio.h>
#define timing_printf(fmt, args...) do { printf("[timing] " fmt, ##args); } while(0)
#else
#define timing_printf(fmt, args...)
#endif
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
// hal.console can be accessed from bus threads on ChibiOS
#define debug(fmt, args ...) do {hal.console->printf("INV2: " fmt "\n", ## args); } while(0)
#elif CONFIG_HAL_BOARD == HAL_BOARD_ESP32
// esp32 commonly has timing issues
#define debug(fmt, args ...) do {timing_printf("INV2: " fmt "\n", ## args); } while(0)
#else
#define debug(fmt, args ...) do {printf("INV2: " fmt "\n", ## args); } while(0)
#endif
/*
* DS-000189-ICM-20948-v1.3.pdf, page 11, section 3.1 lists LSB sensitivity of
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
*/
static const float GYRO_SCALE = (0.0174532f / 16.4f);
/*
EXT_SYNC allows for frame synchronisation with an external device
such as a camera. When enabled the LSB of AccelZ holds the FSYNC bit
*/
#ifndef INVENSENSE_EXT_SYNC_ENABLE
#define INVENSENSE_EXT_SYNC_ENABLE 0
#endif
#include "AP_InertialSensor_Invensensev2_registers.h"
#define INV2_SAMPLE_SIZE 14
#define INV2_FIFO_BUFFER_LEN 8
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
#define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
AP_InertialSensor_Invensensev2::AP_InertialSensor_Invensensev2(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev,
enum Rotation rotation)
: AP_InertialSensor_Backend(imu)
, _temp_filter(1125, 1)
, _rotation(rotation)
, _dev(std::move(dev))
{
}
AP_InertialSensor_Invensensev2::~AP_InertialSensor_Invensensev2()
{
if (_fifo_buffer != nullptr) {
hal.util->free_type(_fifo_buffer, INV2_FIFO_BUFFER_LEN * INV2_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
}
_dev->deregister_bankselect_callback();
//delete _auxiliary_bus;
}
AP_InertialSensor_Backend *AP_InertialSensor_Invensensev2::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_InertialSensor_Invensensev2 *sensor =
new AP_InertialSensor_Invensensev2(imu, std::move(dev), rotation);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
sensor->_id = HAL_INS_INV2_I2C;
return sensor;
}
AP_InertialSensor_Backend *AP_InertialSensor_Invensensev2::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_InertialSensor_Invensensev2 *sensor;
dev->set_read_flag(0x80);
sensor = new AP_InertialSensor_Invensensev2(imu, std::move(dev), rotation);
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
sensor->_id = HAL_INS_INV2_SPI;
return sensor;
}
bool AP_InertialSensor_Invensensev2::_init()
{
#ifdef INVENSENSEV2_DRDY_PIN
_drdy_pin = hal.gpio->channel(INVENSENSEV2_DRDY_PIN);
_drdy_pin->mode(HAL_GPIO_INPUT);
#endif
bool success = _hardware_init();
return success;
}
void AP_InertialSensor_Invensensev2::_fifo_reset()
{
uint8_t user_ctrl = _last_stat_user_ctrl;
user_ctrl &= ~(BIT_USER_CTRL_FIFO_EN);
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
_register_write(INV2REG_FIFO_EN_2, 0);
_register_write(INV2REG_USER_CTRL, user_ctrl);
_register_write(INV2REG_FIFO_RST, 0x0F);
_register_write(INV2REG_FIFO_RST, 0x00);
_register_write(INV2REG_USER_CTRL, user_ctrl | BIT_USER_CTRL_FIFO_EN);
_register_write(INV2REG_FIFO_EN_2, BIT_XG_FIFO_EN | BIT_YG_FIFO_EN |
BIT_ZG_FIFO_EN | BIT_ACCEL_FIFO_EN | BIT_TEMP_FIFO_EN, true);
hal.scheduler->delay_microseconds(1);
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
_last_stat_user_ctrl = user_ctrl | BIT_USER_CTRL_FIFO_EN;
notify_accel_fifo_reset(_accel_instance);
notify_gyro_fifo_reset(_gyro_instance);
}
bool AP_InertialSensor_Invensensev2::_has_auxiliary_bus()
{
return _dev->bus_type() != AP_HAL::Device::BUS_TYPE_I2C;
}
void AP_InertialSensor_Invensensev2::start()
{
// pre-fetch instance numbers for checking fast sampling settings
if (!_imu.get_gyro_instance(_gyro_instance) || !_imu.get_accel_instance(_accel_instance)) {
return;
}
WITH_SEMAPHORE(_dev->get_semaphore());
// initially run the bus at low speed
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
// only used for wake-up in accelerometer only low power mode
_register_write(INV2REG_PWR_MGMT_2, 0x00);
hal.scheduler->delay(1);
// always use FIFO
_fifo_reset();
// grab the used instances
enum DevTypes gdev, adev;
switch (_inv2_type) {
case Invensensev2_ICM20648:
gdev = DEVTYPE_INS_ICM20648;
adev = DEVTYPE_INS_ICM20648;
// using 16g full range, 2048 LSB/g
_accel_scale = (GRAVITY_MSS / 2048);
break;
case Invensensev2_ICM20649:
// 20649 is setup for 30g full scale, 1024 LSB/g
gdev = DEVTYPE_INS_ICM20649;
adev = DEVTYPE_INS_ICM20649;
_accel_scale = (GRAVITY_MSS / 1024);
break;
case Invensensev2_ICM20948:
default:
gdev = DEVTYPE_INS_ICM20948;
adev = DEVTYPE_INS_ICM20948;
// using 16g full range, 2048 LSB/g
_accel_scale = (GRAVITY_MSS / 2048);
break;
}
if (!_imu.register_gyro(_gyro_instance, 1125, _dev->get_bus_id_devtype(gdev)) ||
!_imu.register_accel(_accel_instance, 1125, _dev->get_bus_id_devtype(adev))) {
return;
}
// setup on-sensor filtering and scaling
_set_filter_and_scaling();
#if INVENSENSE_EXT_SYNC_ENABLE
_register_write(INV2REG_FSYNC_CONFIG, FSYNC_CONFIG_EXT_SYNC_AZ, true);
#endif
// update backend sample rate
_set_accel_raw_sample_rate(_accel_instance, _accel_backend_rate_hz);
_set_gyro_raw_sample_rate(_gyro_instance, _gyro_backend_rate_hz);
// indicate what multiplier is appropriate for the sensors'
// readings to fit them into an int16_t:
_set_raw_sample_accel_multiplier(_accel_instance, multiplier_accel);
// set sample rate to 1.125KHz
_register_write(INV2REG_GYRO_SMPLRT_DIV, 0, true);
hal.scheduler->delay(1);
// configure interrupt to fire when new data arrives
_register_write(INV2REG_INT_ENABLE_1, 0x01);
hal.scheduler->delay(1);
// now that we have initialised, we set the bus speed to high
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
// setup sensor rotations from probe()
set_gyro_orientation(_gyro_instance, _rotation);
set_accel_orientation(_accel_instance, _rotation);
// setup scale factors for fifo data after downsampling
_fifo_accel_scale = _accel_scale / _accel_fifo_downsample_rate;
_fifo_gyro_scale = GYRO_SCALE / _gyro_fifo_downsample_rate;
// allocate fifo buffer
_fifo_buffer = (uint8_t *)hal.util->malloc_type(INV2_FIFO_BUFFER_LEN * INV2_SAMPLE_SIZE, AP_HAL::Util::MEM_DMA_SAFE);
if (_fifo_buffer == nullptr) {
AP_HAL::panic("Invensense: Unable to allocate FIFO buffer");
}
// start the timer process to read samples
_dev->register_periodic_callback(1265625UL / _gyro_backend_rate_hz, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Invensensev2::_poll_data, void));
}
// get a startup banner to output to the GCS
bool AP_InertialSensor_Invensensev2::get_output_banner(char* banner, uint8_t banner_len) {
if (_fast_sampling) {
snprintf(banner, banner_len, "IMU%u: fast sampling enabled %.1fkHz/%.1fkHz",
_gyro_instance, _gyro_backend_rate_hz * _gyro_fifo_downsample_rate * 0.001, _gyro_backend_rate_hz * 0.001);
return true;
}
return false;
}
/*
publish any pending data
*/
bool AP_InertialSensor_Invensensev2::update()
{
update_accel(_accel_instance);
update_gyro(_gyro_instance);
_publish_temperature(_accel_instance, _temp_filtered);
return true;
}
/*
accumulate new samples
*/
void AP_InertialSensor_Invensensev2::accumulate()
{
// nothing to do
}
AuxiliaryBus *AP_InertialSensor_Invensensev2::get_auxiliary_bus()
{
if (_auxiliary_bus) {
return _auxiliary_bus;
}
if (_has_auxiliary_bus()) {
_auxiliary_bus = new AP_Invensensev2_AuxiliaryBus(*this, _dev->get_bus_id());
}
return _auxiliary_bus;
}
/*
* Return true if the Invensense has new data available for reading.
*
* We use the data ready pin if it is available. Otherwise, read the
* status register.
*/
bool AP_InertialSensor_Invensensev2::_data_ready()
{
if (_drdy_pin) {
return _drdy_pin->read() != 0;
}
uint8_t status = _register_read(INV2REG_INT_STATUS_1);
return status != 0;
}
/*
* Timer process to poll for new data from the Invensense. Called from bus thread with semaphore held
*/
void AP_InertialSensor_Invensensev2::_poll_data()
{
_read_fifo();
}
bool AP_InertialSensor_Invensensev2::_accumulate(uint8_t *samples, uint8_t n_samples)
{
for (uint8_t i = 0; i < n_samples; i++) {
const uint8_t *data = samples + INV2_SAMPLE_SIZE * i;
Vector3f accel, gyro;
bool fsync_set = false;
#if INVENSENSE_EXT_SYNC_ENABLE
fsync_set = (int16_val(data, 2) & 1U) != 0;
#endif
accel = Vector3f(int16_val(data, 1),
int16_val(data, 0),
-int16_val(data, 2));
accel *= _accel_scale;
int16_t t2 = int16_val(data, 6);
if (!_check_raw_temp(t2)) {
if (!hal.scheduler->in_expected_delay()) {
debug("temp reset IMU[%u] %d %d", _accel_instance, _raw_temp, t2);
}
_fifo_reset();
return false;
}
float temp = t2 * temp_sensitivity + temp_zero;
gyro = Vector3f(int16_val(data, 4),
int16_val(data, 3),
-int16_val(data, 5));
gyro *= GYRO_SCALE;
_rotate_and_correct_accel(_accel_instance, accel);
_rotate_and_correct_gyro(_gyro_instance, gyro);
_notify_new_accel_raw_sample(_accel_instance, accel, 0, fsync_set);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
_temp_filtered = _temp_filter.apply(temp);
}
return true;
}
/*
when doing fast sampling the sensor gives us 9k samples/second. Every 2nd accel sample is a duplicate.
To filter this we first apply a 1p low pass filter at 188Hz, then we
average over 8 samples to bring the data rate down to 1kHz. This
gives very good aliasing rejection at frequencies well above what
can be handled with 1kHz sample rates.
*/
bool AP_InertialSensor_Invensensev2::_accumulate_sensor_rate_sampling(uint8_t *samples, uint8_t n_samples)
{
int32_t tsum = 0;
int32_t unscaled_clip_limit = _clip_limit / _accel_scale;
bool clipped = false;
bool ret = true;
for (uint8_t i = 0; i < n_samples; i++) {
const uint8_t *data = samples + INV2_SAMPLE_SIZE * i;
// use temperature to detect FIFO corruption
int16_t t2 = int16_val(data, 6);
if (!_check_raw_temp(t2)) {
if (!hal.scheduler->in_expected_delay()) {
debug("temp reset IMU[%u] %d %d", _accel_instance, _raw_temp, t2);
}
_fifo_reset();
ret = false;
break;
}
tsum += t2;
if (_accum.gyro_count % 2 == 0) {
// accel data is at 4kHz or 1kHz
Vector3f a(int16_val(data, 1),
int16_val(data, 0),
-int16_val(data, 2));
if (fabsf(a.x) > unscaled_clip_limit ||
fabsf(a.y) > unscaled_clip_limit ||
fabsf(a.z) > unscaled_clip_limit) {
clipped = true;
}
_accum.accel += _accum.accel_filter.apply(a);
Vector3f a2 = a * _accel_scale;
_notify_new_accel_sensor_rate_sample(_accel_instance, a2);
_accum.accel_count++;
if (_accum.accel_count % _accel_fifo_downsample_rate == 0) {
_accum.accel *= _fifo_accel_scale;
_rotate_and_correct_accel(_accel_instance, _accum.accel);
_notify_new_accel_raw_sample(_accel_instance, _accum.accel, 0, false);
_accum.accel.zero();
_accum.accel_count = 0;
// we assume that the gyro rate is always >= and a multiple of the accel rate
_accum.gyro_count = 0;
}
}
_accum.gyro_count++;
Vector3f g(int16_val(data, 4),
int16_val(data, 3),
-int16_val(data, 5));
Vector3f g2 = g * GYRO_SCALE;
_notify_new_gyro_sensor_rate_sample(_gyro_instance, g2);
_accum.gyro += g;
if (_accum.gyro_count % _gyro_fifo_downsample_rate == 0) {
_accum.gyro *= _fifo_gyro_scale;
_rotate_and_correct_gyro(_gyro_instance, _accum.gyro);
_notify_new_gyro_raw_sample(_gyro_instance, _accum.gyro);
_accum.gyro.zero();
}
}
if (clipped) {
increment_clip_count(_accel_instance);
}
if (ret) {
float temp = (static_cast<float>(tsum)/n_samples)*temp_sensitivity + temp_zero;
_temp_filtered = _temp_filter.apply(temp);
}
return ret;
}
void AP_InertialSensor_Invensensev2::_read_fifo()
{
uint8_t n_samples;
uint16_t bytes_read;
uint8_t *rx = _fifo_buffer;
bool need_reset = false;
if (!_block_read(INV2REG_FIFO_COUNTH, rx, 2)) {
goto check_registers;
}
bytes_read = uint16_val(rx, 0);
n_samples = bytes_read / INV2_SAMPLE_SIZE;
if (n_samples == 0) {
/* Not enough data in FIFO */
goto check_registers;
}
/*
testing has shown that if we have more than 32 samples in the
FIFO then some of those samples will be corrupt. It always is
the ones at the end of the FIFO, so clear those with a reset
once we've read the first 24. Reading 24 gives us the normal
number of samples for fast sampling at 400Hz
On I2C with the much lower clock rates we need a lower threshold
or we may never catch up
*/
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C) {
if (n_samples > 4) {
need_reset = true;
n_samples = 4;
}
} else {
if (n_samples > 32) {
need_reset = true;
n_samples = 24;
}
}
while (n_samples > 0) {
uint8_t n = MIN(n_samples, INV2_FIFO_BUFFER_LEN);
if (!_dev->set_chip_select(true)) {
if (!_block_read(INV2REG_FIFO_R_W, rx, n * INV2_SAMPLE_SIZE)) {
goto check_registers;
}
} else {
// this ensures we keep things nicely setup for DMA
uint8_t reg = GET_REG(INV2REG_FIFO_R_W) | 0x80;
if (!_dev->transfer_bank(GET_BANK(INV2REG_FIFO_R_W), &reg, 1, nullptr, 0)) {
_dev->set_chip_select(false);
goto check_registers;
}
memset(rx, 0, n * INV2_SAMPLE_SIZE);
if (!_dev->transfer(rx, n * INV2_SAMPLE_SIZE, rx, n * INV2_SAMPLE_SIZE)) {
if (!hal.scheduler->in_expected_delay()) {
debug("INV2: error in fifo read %u bytes\n", n * INV2_SAMPLE_SIZE);
}
_dev->set_chip_select(false);
goto check_registers;
}
_dev->set_chip_select(false);
}
if (_fast_sampling) {
if (!_accumulate_sensor_rate_sampling(rx, n)) {
if (!hal.scheduler->in_expected_delay()) {
debug("IMU[%u] stop at %u of %u", _accel_instance, n_samples, bytes_read/INV2_SAMPLE_SIZE);
}
break;
}
} else {
if (!_accumulate(rx, n)) {
break;
}
}
n_samples -= n;
}
if (need_reset) {
//debug("fifo reset n_samples %u", bytes_read/INV2_SAMPLE_SIZE);
_fifo_reset();
}
check_registers:
// check next register value for correctness
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
AP_HAL::Device::checkreg reg;
if (!_dev->check_next_register(reg)) {
log_register_change(_dev->get_bus_id(), reg);
_inc_gyro_error_count(_gyro_instance);
_inc_accel_error_count(_accel_instance);
}
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
}
/*
fetch temperature in order to detect FIFO sync errors
*/
bool AP_InertialSensor_Invensensev2::_check_raw_temp(int16_t t2)
{
// we have increased this threshold from 400 to 800 to cope with
// few instances observed where the temperature was varying more than
// 400 units on ICM20649
if (abs(t2 - _raw_temp) < 800) {
// cached copy OK
return true;
}
uint8_t trx[2];
if (_block_read(INV2REG_TEMP_OUT_H, trx, 2)) {
_raw_temp = int16_val(trx, 0);
}
return (abs(t2 - _raw_temp) < 800);
}
bool AP_InertialSensor_Invensensev2::_block_read(uint16_t reg, uint8_t *buf,
uint32_t size)
{
return _dev->read_bank_registers(GET_BANK(reg), GET_REG(reg), buf, size);
}
uint8_t AP_InertialSensor_Invensensev2::_register_read(uint16_t reg)
{
uint8_t val = 0;
_dev->read_bank_registers(GET_BANK(reg), GET_REG(reg), &val, 1);
return val;
}
void AP_InertialSensor_Invensensev2::_register_write(uint16_t reg, uint8_t val, bool checked)
{
_dev->write_bank_register(GET_BANK(reg), GET_REG(reg), val, checked);
}
bool AP_InertialSensor_Invensensev2::_select_bank(uint8_t bank)
{
if (_current_bank != bank) {
if (!_dev->write_register(INV2REG_BANK_SEL, bank << 4, true)) {
return false;
}
_current_bank = bank;
}
return true;
}
/*
set the DLPF filter frequency and Gyro Accel Scaling. Assumes caller has taken semaphore
*/
void AP_InertialSensor_Invensensev2::_set_filter_and_scaling(void)
{
uint8_t gyro_config = (_inv2_type == Invensensev2_ICM20649)?BITS_GYRO_FS_2000DPS_20649 : BITS_GYRO_FS_2000DPS;
uint8_t accel_config = (_inv2_type == Invensensev2_ICM20649)?BITS_ACCEL_FS_30G_20649:BITS_ACCEL_FS_16G;
// assume 1.125kHz sampling to start
_gyro_fifo_downsample_rate = _accel_fifo_downsample_rate = 1;
_gyro_backend_rate_hz = _accel_backend_rate_hz = 1125;
if (enable_fast_sampling(_accel_instance)) {
_fast_sampling = _dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI;
if (_fast_sampling) {
// constrain the gyro rate to be at least the loop rate
uint8_t loop_limit = 1;
if (get_loop_rate_hz() > 1125) {
loop_limit = 2;
}
if (get_loop_rate_hz() > 2250) {
loop_limit = 4;
}
// constrain the gyro rate to be a 2^N multiple
uint8_t fast_sampling_rate = constrain_int16(get_fast_sampling_rate(), loop_limit, 8);
// calculate rate we will be giving gyro samples to the backend
_gyro_fifo_downsample_rate = 8 / fast_sampling_rate;
_gyro_backend_rate_hz *= fast_sampling_rate;
// calculate rate we will be giving accel samples to the backend
_accel_fifo_downsample_rate = MAX(4 / fast_sampling_rate, 1);
_accel_backend_rate_hz *= MIN(fast_sampling_rate, 4);
// for logging purposes set the oversamping rate
_set_accel_oversampling(_accel_instance, _accel_fifo_downsample_rate);
_set_gyro_oversampling(_gyro_instance, _gyro_fifo_downsample_rate);
_set_accel_sensor_rate_sampling_enabled(_accel_instance, true);
_set_gyro_sensor_rate_sampling_enabled(_gyro_instance, true);
/* set divider for internal sample rate to 0x1F when fast
sampling enabled. This reduces the impact of the slave
sensor on the sample rate.
*/
_register_write(INV2REG_I2C_SLV4_CTRL, 0x1F);
}
}
if (_fast_sampling) {
// this gives us 9kHz sampling on gyros
gyro_config |= BIT_GYRO_NODLPF_9KHZ;
accel_config |= BIT_ACCEL_NODLPF_4_5KHZ;
} else {
// limit to 1.125kHz if not on SPI
gyro_config |= BIT_GYRO_DLPF_ENABLE | (GYRO_DLPF_CFG_188HZ << GYRO_DLPF_CFG_SHIFT);
accel_config |= BIT_ACCEL_DLPF_ENABLE | (ACCEL_DLPF_CFG_265HZ << ACCEL_DLPF_CFG_SHIFT);
}
_register_write(INV2REG_GYRO_CONFIG_1, gyro_config, true);
_register_write(INV2REG_ACCEL_CONFIG, accel_config, true);
_register_write(INV2REG_FIFO_MODE, 0xF, true);
}
/*
check whoami for sensor type
*/
bool AP_InertialSensor_Invensensev2::_check_whoami(void)
{
uint8_t whoami = _register_read(INV2REG_WHO_AM_I);
switch (whoami) {
case INV2_WHOAMI_ICM20648:
_inv2_type = Invensensev2_ICM20648;
return true;
case INV2_WHOAMI_ICM20948:
_inv2_type = Invensensev2_ICM20948;
return true;
case INV2_WHOAMI_ICM20649:
_inv2_type = Invensensev2_ICM20649;
return true;
}
// not a value WHOAMI result
return false;
}
bool AP_InertialSensor_Invensensev2::_hardware_init(void)
{
WITH_SEMAPHORE(_dev->get_semaphore());
// disabled setup of checked registers as it can't cope with bank switching
_dev->setup_checked_registers(7, _dev->bus_type() == AP_HAL::Device::BUS_TYPE_I2C?200:20);
_dev->setup_bankselect_callback(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_Invensensev2::_select_bank, bool, uint8_t));
// initially run the bus at low speed
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
if (!_check_whoami()) {
return false;
}
// Chip reset
uint8_t tries;
for (tries = 0; tries < 5; tries++) {
_last_stat_user_ctrl = _register_read(INV2REG_USER_CTRL);
/* First disable the master I2C to avoid hanging the slaves on the
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
* is used */
if (_last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN) {
_last_stat_user_ctrl &= ~BIT_USER_CTRL_I2C_MST_EN;
_register_write(INV2REG_USER_CTRL, _last_stat_user_ctrl);
hal.scheduler->delay(10);
}
/* reset device */
_register_write(INV2REG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
hal.scheduler->delay(100);
/* bus-dependent initialization */
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
* done just after the device is reset) */
_last_stat_user_ctrl |= BIT_USER_CTRL_I2C_IF_DIS;
_register_write(INV2REG_USER_CTRL, _last_stat_user_ctrl);
}
// Wake up device and select Auto clock. Note that the
// Invensense starts up in sleep mode, and it can take some time
// for it to come out of sleep
_register_write(INV2REG_PWR_MGMT_1, BIT_PWR_MGMT_1_CLK_AUTO);
hal.scheduler->delay(5);
// check it has woken up
if (_register_read(INV2REG_PWR_MGMT_1) == BIT_PWR_MGMT_1_CLK_AUTO) {
break;
}
hal.scheduler->delay(10);
if (_data_ready()) {
break;
}
}
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
if (tries == 5) {
DEV_PRINTF("Failed to boot Invensense 5 times\n");
return false;
}
if (_inv2_type == Invensensev2_ICM20649) {
_clip_limit = 29.5f * GRAVITY_MSS;
}
return true;
}
AP_Invensensev2_AuxiliaryBusSlave::AP_Invensensev2_AuxiliaryBusSlave(AuxiliaryBus &bus, uint8_t addr,
uint8_t instance)
: AuxiliaryBusSlave(bus, addr, instance)
, _inv2_addr(INV2REG_I2C_SLV0_ADDR + _instance * 4)
, _inv2_reg(_inv2_addr + 1)
, _inv2_ctrl(_inv2_addr + 2)
, _inv2_do(_inv2_addr + 3)
{
}
int AP_Invensensev2_AuxiliaryBusSlave::_set_passthrough(uint8_t reg, uint8_t size,
uint8_t *out)
{
auto &backend = AP_InertialSensor_Invensensev2::from(_bus.get_backend());
uint8_t addr;
/* Ensure the slave read/write is disabled before changing the registers */
backend._register_write(_inv2_ctrl, 0);
if (out) {
backend._register_write(_inv2_do, *out);
addr = _addr;
} else {
addr = _addr | BIT_READ_FLAG;
}
backend._register_write(_inv2_addr, addr);
backend._register_write(_inv2_reg, reg);
backend._register_write(_inv2_ctrl, BIT_I2C_SLVX_EN | size);
return 0;
}
int AP_Invensensev2_AuxiliaryBusSlave::passthrough_read(uint8_t reg, uint8_t *buf,
uint8_t size)
{
if (_registered) {
DEV_PRINTF("Error: can't passthrough when slave is already configured\n");
return -1;
}
int r = _set_passthrough(reg, size);
if (r < 0) {
return r;
}
/* wait the value to be read from the slave and read it back */
hal.scheduler->delay(10);
auto &backend = AP_InertialSensor_Invensensev2::from(_bus.get_backend());
if (!backend._block_read(INV2REG_EXT_SLV_SENS_DATA_00 + _ext_sens_data, buf, size)) {
return -1;
}
/* disable new reads */
backend._register_write(_inv2_ctrl, 0);
return size;
}
int AP_Invensensev2_AuxiliaryBusSlave::passthrough_write(uint8_t reg, uint8_t val)
{
if (_registered) {
DEV_PRINTF("Error: can't passthrough when slave is already configured\n");
return -1;
}
int r = _set_passthrough(reg, 1, &val);
if (r < 0) {
return r;
}
/* wait the value to be written to the slave */
hal.scheduler->delay(10);
auto &backend = AP_InertialSensor_Invensensev2::from(_bus.get_backend());
/* disable new writes */
backend._register_write(_inv2_ctrl, 0);
return 1;
}
int AP_Invensensev2_AuxiliaryBusSlave::read(uint8_t *buf)
{
if (!_registered) {
DEV_PRINTF("Error: can't read before configuring slave\n");
return -1;
}
auto &backend = AP_InertialSensor_Invensensev2::from(_bus.get_backend());
if (!backend._block_read(INV2REG_EXT_SLV_SENS_DATA_00 + _ext_sens_data, buf, _sample_size)) {
return -1;
}
return _sample_size;
}
/* Invensense provides up to 5 slave devices, but the 5th is way too different to
* configure and is seldom used */
AP_Invensensev2_AuxiliaryBus::AP_Invensensev2_AuxiliaryBus(AP_InertialSensor_Invensensev2 &backend, uint32_t devid)
: AuxiliaryBus(backend, 4, devid)
{
}
AP_HAL::Semaphore *AP_Invensensev2_AuxiliaryBus::get_semaphore()
{
return static_cast<AP_InertialSensor_Invensensev2&>(_ins_backend)._dev->get_semaphore();
}
AuxiliaryBusSlave *AP_Invensensev2_AuxiliaryBus::_instantiate_slave(uint8_t addr, uint8_t instance)
{
/* Enable slaves on Invensense if this is the first time */
if (_ext_sens_data == 0) {
_configure_slaves();
}
return new AP_Invensensev2_AuxiliaryBusSlave(*this, addr, instance);
}
void AP_Invensensev2_AuxiliaryBus::_configure_slaves()
{
auto &backend = AP_InertialSensor_Invensensev2::from(_ins_backend);
WITH_SEMAPHORE(backend._dev->get_semaphore());
/* Enable the I2C master to slaves on the auxiliary I2C bus*/
if (!(backend._last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN)) {
backend._last_stat_user_ctrl |= BIT_USER_CTRL_I2C_MST_EN;
backend._register_write(INV2REG_USER_CTRL, backend._last_stat_user_ctrl);
}
/* stop condition between reads; clock at 400kHz */
backend._register_write(INV2REG_I2C_MST_CTRL,
BIT_I2C_MST_P_NSR | BIT_I2C_MST_CLK_400KHZ);
/* Hard-code divider for internal sample rate, 1.125 kHz, resulting in a
* sample rate of ~100Hz */
backend._register_write(INV2REG_I2C_SLV4_CTRL, 10);
/* All slaves are subject to the sample rate */
backend._register_write(INV2REG_I2C_MST_DELAY_CTRL,
BIT_I2C_SLV0_DLY_EN | BIT_I2C_SLV1_DLY_EN |
BIT_I2C_SLV2_DLY_EN | BIT_I2C_SLV3_DLY_EN);
}
int AP_Invensensev2_AuxiliaryBus::_configure_periodic_read(AuxiliaryBusSlave *slave,
uint8_t reg, uint8_t size)
{
if (_ext_sens_data + size > MAX_EXT_SENS_DATA) {
return -1;
}
AP_Invensensev2_AuxiliaryBusSlave *inv2_slave =
static_cast<AP_Invensensev2_AuxiliaryBusSlave*>(slave);
inv2_slave->_set_passthrough(reg, size);
inv2_slave->_ext_sens_data = _ext_sens_data;
_ext_sens_data += size;
return 0;
}
AP_HAL::Device::PeriodicHandle AP_Invensensev2_AuxiliaryBus::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb)
{
auto &backend = AP_InertialSensor_Invensensev2::from(_ins_backend);
return backend._dev->register_periodic_callback(period_usec, cb);
}