ardupilot/libraries/AP_Soaring/Variometer.cpp

80 lines
3.6 KiB
C++
Raw Normal View History

/* Variometer class by Samuel Tabor
Manages the estimation of aircraft total energy, drag and vertical air velocity.
*/
#include "Variometer.h"
Variometer::Variometer(AP_AHRS &ahrs, const AP_Vehicle::FixedWing &parms) :
_ahrs(ahrs),
_aparm(parms),
new_data(false)
{
}
void Variometer::update(const float polar_K, const float polar_B, const float polar_Cd0)
{
_ahrs.get_relative_position_D_home(alt);
alt = -alt;
if (fabsf(alt - _last_alt) > 0.0001f) { // if no change in altitude then there will be no update of ekf buffer
// Both filtered total energy rates and unfiltered are computed for the thermal switching logic and the EKF
float aspd = 0;
float roll = _ahrs.roll;
if (!_ahrs.airspeed_estimate(&aspd)) {
aspd = _aparm.airspeed_cruise_cm / 100.0f;
}
_aspd_filt = ASPD_FILT * aspd + (1 - ASPD_FILT) * _aspd_filt;
float total_E = alt + 0.5f *_aspd_filt * _aspd_filt / GRAVITY_MSS; // Work out total energy
float sinkrate = correct_netto_rate(0.0f, (roll + _last_roll) / 2, _aspd_filt, polar_K, polar_Cd0, polar_B); // Compute still-air sinkrate
reading = (total_E - _last_total_E) / ((AP_HAL::micros64() - _prev_update_time) * 1e-6) + sinkrate; // Unfiltered netto rate
filtered_reading = TE_FILT * reading + (1 - TE_FILT) * filtered_reading; // Apply low pass timeconst filter for noise
displayed_reading = TE_FILT_DISPLAYED * reading + (1 - TE_FILT_DISPLAYED) * displayed_reading;
_last_alt = alt; // Store variables
_last_roll = roll;
_last_aspd = aspd;
_last_total_E = total_E;
_prev_update_time = AP_HAL::micros64();
new_data = true;
AP::logger().Write("VAR", "TimeUS,aspd_raw,aspd_filt,alt,roll,raw,filt", "Qffffff",
AP_HAL::micros64(),
(double)aspd,
(double)_aspd_filt,
(double)alt,
(double)roll,
(double)reading,
(double)filtered_reading);
}
}
float Variometer::correct_netto_rate(float climb_rate,
float phi,
float aspd,
const float polar_K,
const float polar_CD0,
const float polar_B)
{
// Remove aircraft sink rate
float CL0; // CL0 = 2*W/(rho*S*V^2)
float C1; // C1 = CD0/CL0
float C2; // C2 = CDi0/CL0 = B*CL0
float netto_rate;
float cosphi;
CL0 = polar_K / (aspd * aspd);
C1 = polar_CD0 / CL0; // constant describing expected angle to overcome zero-lift drag
C2 = polar_B * CL0; // constant describing expected angle to overcome lift induced drag at zero bank
cosphi = (1 - phi * phi / 2); // first two terms of mclaurin series for cos(phi)
netto_rate = climb_rate + aspd * (C1 + C2 / (cosphi * cosphi)); // effect of aircraft drag removed
// Remove acceleration effect - needs to be tested.
//float temp_netto = netto_rate;
//float dVdt = SpdHgt_Controller->get_VXdot();
//netto_rate = netto_rate + aspd*dVdt/GRAVITY_MSS;
//gcs().send_text(MAV_SEVERITY_INFO, "%f %f %f %f",temp_netto,dVdt,netto_rate,barometer.get_altitude());
return netto_rate;
}