ardupilot/libraries/AP_Proximity/AP_Proximity_LD06.cpp

220 lines
8.1 KiB
C++
Raw Normal View History

2022-06-17 00:28:26 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ArduPilot device driver for Inno-Maker LD06 LiDAR
*
* ALL INFORMATION REGARDING PROTOCOL WAS DERIVED FROM InnoMaker DATASHEET:
*
* http://wiki.inno-maker.com/display/HOMEPAGE/LD06?preview=/6949506/6949511/LDROBOT_LD06_Development%20manual_v1.0_en.pdf
*
* Author: Adithya Patil, Georgia Institute of Technology
* Based on the SLAMTEC RPLiDAR code written by Steven Josefs, IAV GmbH and CYGBOT D1 LiDAR code
*
*/
#include "AP_Proximity_config.h"
#if AP_PROXIMITY_LD06_ENABLED
2022-06-17 00:28:26 -03:00
#include "AP_Proximity_LD06.h"
#define LD_START_CHAR 0x54
#define PROXIMITY_LD06_TIMEOUT_MS 50
// Indices in data array where each value starts being recorded
// See comment below about data payload for more info about formatting
#define START_BEGIN_CHARACTER 0
#define START_DATA_LENGTH 1
#define START_RADAR_SPEED 2
#define START_BEGIN_ANGLE 4
#define START_PAYLOAD 6
#define START_END_ANGLE 42
#define START_CHECK_SUM 46
#define MEASUREMENT_PAYLOAD_LENGTH 3
#define PAYLOAD_COUNT 12
/* ------------------------------------------
Data Packet Structure:
Start Character : 1 Byte
Data Length : 1 Byte
Radar Speed : 2 Bytes
Start Angle : 2 Bytes
Data Measurements : 36 Bytes
Contains 12 measurements of 3 Bytes each
Each measurement has 2 Bytes for distance to closest object
Each measurement has the 3rd Byte as measurement Confidence
End Angle : 2 Bytes
Timestamp : 2 Bytes
Checksum : 1 Byte
------------------------------------------ */
// ----> 47 data bytes in total for one packet
2022-06-17 00:28:26 -03:00
// Update the sensor readings
void AP_Proximity_LD06::update(void)
{
// Escape if no connection detected/supported while running
if (_uart == nullptr) {
return;
}
// Begin getting sensor readings
// Calls method that repeatedly reads through UART channel
get_readings();
// Check if the data is being received correctly and sets Proximity Status
if (_last_distance_received_ms == 0 || (AP_HAL::millis() - _last_distance_received_ms > PROXIMITY_LD06_TIMEOUT_MS)) {
set_status(AP_Proximity::Status::NoData);
} else {
set_status(AP_Proximity::Status::Good);
}
}
// Called repeatedly to get the readings at the current instant
void AP_Proximity_LD06::get_readings()
{
if (_uart == nullptr) {
return;
}
// Store the number of bytes available on the UART input
uint32_t nbytes = MIN((uint16_t) 4000, _uart->available());
// Loops through all bytes that were received
while (nbytes-- > 0) {
uint8_t c;
if (!_uart->read(c)) {
break;
}
2022-06-17 00:28:26 -03:00
// Stores the byte in an array if the byte is a start byte or we have already read a start byte
if (c == LD_START_CHAR || _byte_count) {
2022-06-17 00:28:26 -03:00
// Stores the next byte in an array
_response[_byte_count] = c;
if (_byte_count < START_DATA_LENGTH) {
_byte_count++;
continue;
}
// total_packet_length = sizeof(header) + datalength + sizeof(footer):
const uint32_t total_packet_length = 6 + 3*_response[START_DATA_LENGTH] + 5;
if (_response[START_DATA_LENGTH] != PAYLOAD_COUNT ||
total_packet_length > ARRAY_SIZE(_response)) {
// invalid packet received; throw away all data and
// start again.
_byte_count = 0;
_uart->discard_input();
break;
}
2022-06-17 00:28:26 -03:00
_byte_count++;
if (_byte_count == total_packet_length) {
const uint32_t current_ms = AP_HAL::millis();
2022-06-17 00:28:26 -03:00
_last_distance_received_ms = current_ms;
2022-06-17 00:28:26 -03:00
// Updates the temporary boundary and passes off the completed data
parse_response_data();
// Resets the bytes read and whether or not we are reading data to accept a new payload
_byte_count = 0;
}
}
}
}
// Parses the data packet received from the LiDAR
void AP_Proximity_LD06::parse_response_data()
{
2022-06-17 00:28:26 -03:00
// Data interpretation based on:
// http://wiki.inno-maker.com/display/HOMEPAGE/LD06?preview=/6949506/6949511/LDROBOT_LD06_Development%20manual_v1.0_en.pdf
// Second byte in array stores length of data - not used but stored for debugging
// const uint8_t data_length = _response[START_DATA_LENGTH];
// Verify the checksum that is stored in the last element of the response array
// Return if checksum is incorrect - i.e. bad data, bad readings, etc.
const uint8_t check_sum = _response[START_CHECK_SUM];
if (check_sum != crc8_generic(&_response[0], sizeof(_response) / sizeof(_response[0]) - 1, 0x4D)) {
return;
}
// Respective bits store the radar speed, start/end angles
// Use bitwise operations to correctly obtain correct angles
// Divide angles by 100 as per manual
const float start_angle = float(UINT16_VALUE(_response[START_BEGIN_ANGLE + 1], _response[START_BEGIN_ANGLE])) * 0.01;
const float end_angle = float(UINT16_VALUE(_response[START_END_ANGLE + 1], _response[START_END_ANGLE])) * 0.01;
2022-06-17 00:28:26 -03:00
float angle_step;
if (start_angle < end_angle) {
angle_step = (end_angle - start_angle) / (PAYLOAD_COUNT - 1);
} else {
angle_step = (end_angle + 360 - start_angle) / (PAYLOAD_COUNT - 1);
2022-06-17 00:28:26 -03:00
}
// Each recording point is three bytes long, goes through all of that and updates database
for (uint16_t i = START_PAYLOAD; i < START_PAYLOAD + MEASUREMENT_PAYLOAD_LENGTH * PAYLOAD_COUNT; i += MEASUREMENT_PAYLOAD_LENGTH) {
// Gets the distance recorded and converts to meters
const float angle_deg = correct_angle_for_orientation(start_angle + angle_step * (i / MEASUREMENT_PAYLOAD_LENGTH));
const float distance_m = UINT16_VALUE(_response[i + 1], _response[i]) * 0.001;
2022-06-17 00:28:26 -03:00
if (distance_m < distance_min() || distance_m > distance_max() || _response[i + 2] < 20) { // XXX 20 good?
continue;
}
if (ignore_reading(angle_deg, distance_m)) {
continue;
}
uint16_t a2d = (int)(angle_deg / 2.0) * 2;
if (_angle_2deg == a2d) {
if (distance_m < _dist_2deg_m) {
_dist_2deg_m = distance_m;
2022-06-17 00:28:26 -03:00
}
} else {
// New 2deg angle, record the old one
const AP_Proximity_Boundary_3D::Face face = frontend.boundary.get_face((float)_angle_2deg);
if (face != _last_face) {
// distance is for a new face, the previous one can be updated now
if (_last_distance_valid) {
frontend.boundary.set_face_attributes(_last_face, _last_angle_deg, _last_distance_m, state.instance);
} else {
// reset distance from last face
frontend.boundary.reset_face(face, state.instance);
}
2022-06-17 00:28:26 -03:00
// initialize the new face
_last_face = face;
_last_distance_valid = false;
}
2022-06-17 00:28:26 -03:00
// update shortest distance
if (!_last_distance_valid || (_dist_2deg_m < _last_distance_m)) {
_last_distance_m = _dist_2deg_m;
_last_distance_valid = true;
_last_angle_deg = (float)_angle_2deg;
}
// update OA database
database_push(_last_angle_deg, _last_distance_m);
_angle_2deg = a2d;
_dist_2deg_m = distance_m;
}
2022-06-17 00:28:26 -03:00
}
}
#endif // AP_PROXIMITY_LD06_ENABLED