ardupilot/ArduCopter/mode_guided.cpp

1172 lines
44 KiB
C++
Raw Normal View History

#include "Copter.h"
#if MODE_GUIDED_ENABLED == ENABLED
2014-01-28 09:44:37 -04:00
/*
* Init and run calls for guided flight mode
2014-01-28 09:44:37 -04:00
*/
#ifndef GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM
# define GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM 500 // point nose at target if it is more than 5m away
#endif
static Vector3p guided_pos_target_cm; // position target (used by posvel controller only)
bool guided_pos_terrain_alt; // true if guided_pos_target_cm.z is an alt above terrain
static Vector3f guided_vel_target_cms; // velocity target (used by pos_vel_accel controller and vel_accel controller)
static Vector3f guided_accel_target_cmss; // acceleration target (used by pos_vel_accel controller vel_accel controller and accel controller)
static uint32_t update_time_ms; // system time of last target update to pos_vel_accel, vel_accel or accel controller
2014-11-25 16:15:45 -04:00
struct {
uint32_t update_time_ms;
float roll_cd;
float pitch_cd;
float yaw_cd;
float yaw_rate_cds;
float climb_rate_cms; // climb rate in cms. Used if use_thrust is false
float thrust; // thrust from -1 to 1. Used if use_thrust is true
bool use_yaw_rate;
bool use_thrust;
} static guided_angle_state;
struct Guided_Limit {
uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked
float alt_min_cm; // lower altitude limit in cm above home (0 = no limit)
float alt_max_cm; // upper altitude limit in cm above home (0 = no limit)
float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit)
uint32_t start_time;// system time in milliseconds that control was handed to the external computer
Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit
} guided_limit;
// init - initialise guided controller
bool ModeGuided::init(bool ignore_checks)
2014-01-28 09:44:37 -04:00
{
// start in velaccel control mode
velaccel_control_start();
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
send_notification = false;
return true;
2014-01-28 09:44:37 -04:00
}
// run - runs the guided controller
// should be called at 100hz or more
void ModeGuided::run()
{
// call the correct auto controller
switch (guided_mode) {
case SubMode::TakeOff:
// run takeoff controller
takeoff_run();
break;
case SubMode::WP:
// run waypoint controller
wp_control_run();
if (send_notification && wp_nav->reached_wp_destination()) {
send_notification = false;
gcs().send_mission_item_reached_message(0);
}
break;
case SubMode::Pos:
// run position controller
pos_control_run();
break;
case SubMode::Accel:
accel_control_run();
break;
case SubMode::VelAccel:
velaccel_control_run();
break;
case SubMode::PosVelAccel:
posvelaccel_control_run();
break;
case SubMode::Angle:
angle_control_run();
break;
}
}
bool ModeGuided::allows_arming(AP_Arming::Method method) const
{
// always allow arming from the ground station
if (method == AP_Arming::Method::MAVLINK) {
return true;
}
// optionally allow arming from the transmitter
return (copter.g2.guided_options & (uint32_t)Options::AllowArmingFromTX) != 0;
};
2017-12-12 06:09:48 -04:00
// do_user_takeoff_start - initialises waypoint controller to implement take-off
bool ModeGuided::do_user_takeoff_start(float takeoff_alt_cm)
{
guided_mode = SubMode::TakeOff;
// initialise wpnav destination
Location target_loc = copter.current_loc;
Location::AltFrame frame = Location::AltFrame::ABOVE_HOME;
if (wp_nav->rangefinder_used_and_healthy() &&
wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER &&
takeoff_alt_cm < copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) {
// can't takeoff downwards
if (takeoff_alt_cm <= copter.rangefinder_state.alt_cm) {
return false;
}
frame = Location::AltFrame::ABOVE_TERRAIN;
}
target_loc.set_alt_cm(takeoff_alt_cm, frame);
if (!wp_nav->set_wp_destination_loc(target_loc)) {
// failure to set destination can only be because of missing terrain data
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
// clear i term when we're taking off
set_throttle_takeoff();
// get initial alt for WP_NAVALT_MIN
auto_takeoff_set_start_alt();
return true;
}
// initialise guided mode's waypoint navigation controller
void ModeGuided::wp_control_start()
{
// set to position control mode
guided_mode = SubMode::WP;
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
// initialise wpnav to stopping point
Vector3f stopping_point;
wp_nav->get_wp_stopping_point(stopping_point);
// no need to check return status because terrain data is not used
wp_nav->set_wp_destination(stopping_point, false);
// initialise yaw
auto_yaw.set_mode_to_default(false);
}
// run guided mode's waypoint navigation controller
void ModeGuided::wp_control_run()
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from waypoint controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll, pitch from waypoint controller, yaw heading from GCS or auto_heading()
attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw());
}
}
// initialise position controller
void ModeGuided::pva_control_start()
{
// initialise horizontal speed, acceleration
pos_control->set_max_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
pos_control->set_correction_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration());
// initialize vertical speeds and acceleration
pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
// initialise velocity controller
pos_control->init_z_controller();
pos_control->init_xy_controller();
// initialise yaw
auto_yaw.set_mode_to_default(false);
2021-09-03 00:58:37 -03:00
// initialise terrain alt
guided_pos_terrain_alt = false;
}
// initialise guided mode's position controller
void ModeGuided::pos_control_start()
{
// set to position control mode
guided_mode = SubMode::Pos;
// initialise position controller
pva_control_start();
}
// initialise guided mode's velocity controller
void ModeGuided::accel_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::Accel;
// initialise position controller
pva_control_start();
}
// initialise guided mode's velocity and acceleration controller
void ModeGuided::velaccel_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::VelAccel;
// initialise position controller
pva_control_start();
}
// initialise guided mode's position, velocity and acceleration controller
void ModeGuided::posvelaccel_control_start()
2014-11-25 16:15:45 -04:00
{
// set guided_mode to velocity controller
guided_mode = SubMode::PosVelAccel;
2014-11-25 16:15:45 -04:00
// initialise position controller
pva_control_start();
2014-11-25 16:15:45 -04:00
}
bool ModeGuided::is_taking_off() const
{
return guided_mode == SubMode::TakeOff;
}
// initialise guided mode's angle controller
void ModeGuided::angle_control_start()
{
// set guided_mode to velocity controller
guided_mode = SubMode::Angle;
2021-05-19 11:07:38 -03:00
// set vertical speed and acceleration limits
2021-05-11 01:42:02 -03:00
pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z());
2021-05-19 11:07:38 -03:00
// initialise the vertical position controller
if (!pos_control->is_active_z()) {
2021-05-11 01:42:02 -03:00
pos_control->init_z_controller();
}
// initialise targets
guided_angle_state.update_time_ms = millis();
guided_angle_state.roll_cd = ahrs.roll_sensor;
guided_angle_state.pitch_cd = ahrs.pitch_sensor;
guided_angle_state.yaw_cd = ahrs.yaw_sensor;
guided_angle_state.climb_rate_cms = 0.0f;
guided_angle_state.yaw_rate_cds = 0.0f;
guided_angle_state.use_yaw_rate = false;
// pilot always controls yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
// set_destination - sets guided mode's target destination
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool ModeGuided::set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool terrain_alt)
2014-01-28 09:44:37 -04:00
{
#if AC_FENCE == ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// if configured to use wpnav for position control
if (use_wpnav_for_position_control()) {
// ensure we are in position control mode
if (guided_mode != SubMode::WP) {
wp_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// no need to check return status because terrain data is not used
wp_nav->set_wp_destination(destination, terrain_alt);
// log target
copter.Log_Write_GuidedTarget(guided_mode, destination, terrain_alt, Vector3f(), Vector3f());
send_notification = true;
return true;
}
// if configured to use position controller for position control
// ensure we are in position control mode
if (guided_mode != SubMode::Pos) {
pos_control_start();
}
// initialise terrain following if needed
if (terrain_alt) {
// get current alt above terrain
float origin_terr_offset;
if (!wp_nav->get_terrain_offset(origin_terr_offset)) {
// if we don't have terrain altitude then stop
init(true);
return false;
}
// convert origin to alt-above-terrain if necessary
if (!guided_pos_terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
pos_control->set_pos_offset_z_cm(origin_terr_offset);
}
} else {
pos_control->set_pos_offset_z_cm(0.0);
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set position target and zero velocity and acceleration
guided_pos_target_cm = destination.topostype();
guided_pos_terrain_alt = terrain_alt;
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
update_time_ms = millis();
2016-01-10 22:41:28 -04:00
// log target
copter.Log_Write_GuidedTarget(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
send_notification = true;
return true;
2014-01-28 09:44:37 -04:00
}
2021-07-06 18:02:26 -03:00
bool ModeGuided::get_wp(Location& destination) const
{
switch (guided_mode) {
case SubMode::WP:
return wp_nav->get_oa_wp_destination(destination);
case SubMode::Pos:
destination = Location(guided_pos_target_cm.tofloat(), guided_pos_terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN);
return true;
default:
return false;
}
// should never get here but just in case
return false;
}
// sets guided mode's target from a Location object
// returns false if destination could not be set (probably caused by missing terrain data)
// or if the fence is enabled and guided waypoint is outside the fence
bool ModeGuided::set_destination(const Location& dest_loc, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
#if AC_FENCE == ENABLED
// reject destination outside the fence.
// Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// if using wpnav for position control
if (use_wpnav_for_position_control()) {
if (guided_mode != SubMode::WP) {
wp_control_start();
}
if (!wp_nav->set_wp_destination_loc(dest_loc)) {
// failure to set destination can only be because of missing terrain data
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// log target
copter.Log_Write_GuidedTarget(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), (dest_loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN), Vector3f(), Vector3f());
send_notification = true;
return true;
}
// if configured to use position controller for position control
// ensure we are in position control mode
if (guided_mode != SubMode::Pos) {
pos_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set position target and zero velocity and acceleration
Vector3f pos_target_f;
bool terrain_alt;
if (!wp_nav->get_vector_NEU(dest_loc, pos_target_f, terrain_alt)) {
return false;
}
// initialise terrain following if needed
if (terrain_alt) {
// get current alt above terrain
float origin_terr_offset;
if (!wp_nav->get_terrain_offset(origin_terr_offset)) {
// if we don't have terrain altitude then stop
init(true);
return false;
}
// convert origin to alt-above-terrain if necessary
if (!guided_pos_terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
pos_control->set_pos_offset_z_cm(origin_terr_offset);
}
} else {
pos_control->set_pos_offset_z_cm(0.0);
}
guided_pos_target_cm = pos_target_f.topostype();
guided_pos_terrain_alt = terrain_alt;
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
// log target
copter.Log_Write_GuidedTarget(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
send_notification = true;
return true;
}
// set_velaccel - sets guided mode's target velocity and acceleration
void ModeGuided::set_accel(const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
// check we are in velocity control mode
if (guided_mode != SubMode::Accel) {
accel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set velocity and acceleration targets and zero position
guided_pos_target_cm.zero();
guided_pos_terrain_alt = false;
guided_vel_target_cms.zero();
guided_accel_target_cmss = acceleration;
update_time_ms = millis();
// log target
if (log_request) {
copter.Log_Write_GuidedTarget(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
}
}
// set_velocity - sets guided mode's target velocity
void ModeGuided::set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
set_velaccel(velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw, log_request);
}
// set_velaccel - sets guided mode's target velocity and acceleration
void ModeGuided::set_velaccel(const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
// check we are in velocity control mode
if (guided_mode != SubMode::VelAccel) {
velaccel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// set velocity and acceleration targets and zero position
guided_pos_target_cm.zero();
guided_pos_terrain_alt = false;
guided_vel_target_cms = velocity;
guided_accel_target_cmss = acceleration;
update_time_ms = millis();
2016-01-10 22:41:28 -04:00
// log target
if (log_request) {
copter.Log_Write_GuidedTarget(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
}
}
// set_destination_posvel - set guided mode position and velocity target
bool ModeGuided::set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
return set_destination_posvelaccel(destination, velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
}
// set_destination_posvelaccel - set guided mode position, velocity and acceleration target
bool ModeGuided::set_destination_posvelaccel(const Vector3f& destination, const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
#if AC_FENCE == ENABLED
// reject destination if outside the fence
const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// check we are in velocity control mode
if (guided_mode != SubMode::PosVelAccel) {
posvelaccel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
update_time_ms = millis();
guided_pos_target_cm = destination.topostype();
guided_pos_terrain_alt = false;
guided_vel_target_cms = velocity;
guided_accel_target_cmss = acceleration;
2016-01-10 22:41:28 -04:00
// log target
copter.Log_Write_GuidedTarget(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss);
return true;
2014-11-25 16:15:45 -04:00
}
// returns true if GUIDED_OPTIONS param suggests SET_ATTITUDE_TARGET's "thrust" field should be interpreted as thrust instead of climb rate
bool ModeGuided::set_attitude_target_provides_thrust() const
{
return ((copter.g2.guided_options.get() & uint32_t(Options::SetAttitudeTarget_ThrustAsThrust)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies position should be controlled (when velocity and/or acceleration control is active)
bool ModeGuided::stabilizing_pos_xy() const
{
return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizePositionXY)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies velocity should be controlled (when acceleration control is active)
bool ModeGuided::stabilizing_vel_xy() const
{
return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizeVelocityXY)) != 0);
}
// returns true if GUIDED_OPTIONS param specifies waypoint navigation should be used for position control (allow path planning to be used but updates must be slower)
bool ModeGuided::use_wpnav_for_position_control() const
{
return ((copter.g2.guided_options.get() & uint32_t(Options::WPNavUsedForPosControl)) != 0);
}
// set guided mode angle target and climbrate
void ModeGuided::set_angle(const Quaternion &q, float climb_rate_cms_or_thrust, bool use_yaw_rate, float yaw_rate_rads, bool use_thrust)
{
// check we are in velocity control mode
if (guided_mode != SubMode::Angle) {
angle_control_start();
}
// convert quaternion to euler angles
q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd);
guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f;
guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f;
guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f);
guided_angle_state.yaw_rate_cds = ToDeg(yaw_rate_rads) * 100.0f;
guided_angle_state.use_yaw_rate = use_yaw_rate;
guided_angle_state.use_thrust = use_thrust;
if (use_thrust) {
guided_angle_state.thrust = climb_rate_cms_or_thrust;
guided_angle_state.climb_rate_cms = 0.0f;
} else {
guided_angle_state.thrust = 0.0f;
guided_angle_state.climb_rate_cms = climb_rate_cms_or_thrust;
}
guided_angle_state.update_time_ms = millis();
2016-01-10 22:41:28 -04:00
// log target
copter.Log_Write_GuidedTarget(guided_mode,
2016-01-10 22:41:28 -04:00
Vector3f(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd),
false,
Vector3f(0.0f, 0.0f, climb_rate_cms_or_thrust), Vector3f());
}
// takeoff_run - takeoff in guided mode
// called by guided_run at 100hz or more
void ModeGuided::takeoff_run()
{
auto_takeoff_run();
if (wp_nav->reached_wp_destination()) {
#if LANDING_GEAR_ENABLED == ENABLED
// optionally retract landing gear
copter.landinggear.retract_after_takeoff();
#endif
// change to velocity control after take off.
init(true);
}
}
// pos_control_run - runs the guided position controller
// called from guided_run
void ModeGuided::pos_control_run()
{
2014-01-28 09:44:37 -04:00
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
2014-01-28 09:44:37 -04:00
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-01-28 09:44:37 -04:00
}
}
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// calculate terrain adjustments
float terr_offset = 0.0f;
if (guided_pos_terrain_alt && !wp_nav->get_terrain_offset(terr_offset)) {
2021-07-08 22:50:29 -03:00
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// send position and velocity targets to position controller
guided_accel_target_cmss.zero();
guided_vel_target_cms.zero();
float pos_offset_z_buffer = 0.0; // Vertical buffer size in m
if (guided_pos_terrain_alt) {
pos_offset_z_buffer = MIN(copter.wp_nav->get_terrain_margin() * 100.0, 0.5 * fabsf(guided_pos_target_cm.z));
}
pos_control->input_pos_xyz(guided_pos_target_cm, terr_offset, pos_offset_z_buffer);
2014-01-28 09:44:37 -04:00
// run position controllers
pos_control->update_xy_controller();
pos_control->update_z_controller();
2014-01-28 09:44:37 -04:00
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from position controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll & pitch from position controller, yaw heading from GCS or auto_heading()
2021-07-09 05:44:07 -03:00
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds());
}
}
// velaccel_control_run - runs the guided velocity controller
// called from guided_run
void ModeGuided::accel_control_run()
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) {
auto_yaw.set_rate(0.0f);
}
pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false, false);
} else {
// update position controller with new target
pos_control->input_accel_xy(guided_accel_target_cmss);
if (!stabilizing_vel_xy()) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy()) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
pos_control->input_accel_z(guided_accel_target_cmss.z);
}
// call velocity controller which includes z axis controller
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from position controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll & pitch from position controller, yaw heading from GCS or auto_heading()
2021-07-09 05:44:07 -03:00
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds());
}
}
// velaccel_control_run - runs the guided velocity and acceleration controller
// called from guided_run
void ModeGuided::velaccel_control_run()
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// if not armed set throttle to zero and exit immediately
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) {
auto_yaw.set_rate(0.0f);
}
}
bool do_avoid = false;
#if AC_AVOID_ENABLED
// limit the velocity for obstacle/fence avoidance
copter.avoid.adjust_velocity(guided_vel_target_cms, pos_control->get_pos_xy_p().kP(), pos_control->get_max_accel_xy_cmss(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z_cmss(), G_Dt);
do_avoid = copter.avoid.limits_active();
#endif
// update position controller with new target
if (!stabilizing_vel_xy() && !do_avoid) {
// set the current commanded xy vel to the desired vel
guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x;
guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y;
}
pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
if (!stabilizing_vel_xy() && !do_avoid) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy() && !do_avoid) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false, false);
// call velocity controller which includes z axis controller
2021-05-11 01:42:02 -03:00
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from position controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll & pitch from position controller, yaw heading from GCS or auto_heading()
2021-07-09 05:44:07 -03:00
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds());
2014-01-28 09:44:37 -04:00
}
}
// posvelaccel_control_run - runs the guided position, velocity and acceleration controller
2014-11-25 16:15:45 -04:00
// called from guided_run
void ModeGuided::posvelaccel_control_run()
2014-11-25 16:15:45 -04:00
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio && use_pilot_yaw()) {
2014-11-25 16:15:45 -04:00
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
2014-11-25 16:15:45 -04:00
}
}
// if not armed set throttle to zero and exit immediately
2019-04-08 05:15:57 -03:00
if (is_disarmed_or_landed()) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
2014-11-25 16:15:45 -04:00
uint32_t tnow = millis();
if (tnow - update_time_ms > get_timeout_ms()) {
guided_vel_target_cms.zero();
guided_accel_target_cmss.zero();
if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) {
auto_yaw.set_rate(0.0f);
}
2014-11-25 16:15:45 -04:00
}
// send position and velocity targets to position controller
if (!stabilizing_vel_xy()) {
// set the current commanded xy pos to the target pos and xy vel to the desired vel
guided_pos_target_cm.x = pos_control->get_pos_target_cm().x;
guided_pos_target_cm.y = pos_control->get_pos_target_cm().y;
guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x;
guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y;
} else if (!stabilizing_pos_xy()) {
// set the current commanded xy pos to the target pos
guided_pos_target_cm.x = pos_control->get_pos_target_cm().x;
guided_pos_target_cm.y = pos_control->get_pos_target_cm().y;
}
pos_control->input_pos_vel_accel_xy(guided_pos_target_cm.xy(), guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false);
if (!stabilizing_vel_xy()) {
// set position and velocity errors to zero
pos_control->stop_vel_xy_stabilisation();
} else if (!stabilizing_pos_xy()) {
// set position errors to zero
pos_control->stop_pos_xy_stabilisation();
}
// guided_pos_target z-axis should never be a terrain altitude
if (guided_pos_terrain_alt) {
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
}
float pz = guided_pos_target_cm.z;
pos_control->input_pos_vel_accel_z(pz, guided_vel_target_cms.z, guided_accel_target_cmss.z, false);
guided_pos_target_cm.z = pz;
2014-11-25 16:15:45 -04:00
// run position controllers
pos_control->update_xy_controller();
pos_control->update_z_controller();
2014-11-25 16:15:45 -04:00
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from position controller, yaw rate from pilot
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position controller, yaw rate from mavlink command or mission item
attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds());
} else {
// roll & pitch from position controller, yaw heading from GCS or auto_heading()
2021-07-09 05:44:07 -03:00
attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds());
2014-11-25 16:15:45 -04:00
}
}
2014-11-14 17:26:45 -04:00
// angle_control_run - runs the guided angle controller
// called from guided_run
void ModeGuided::angle_control_run()
{
// constrain desired lean angles
float roll_in = guided_angle_state.roll_cd;
float pitch_in = guided_angle_state.pitch_cd;
float total_in = norm(roll_in, pitch_in);
float angle_max = MIN(attitude_control->get_althold_lean_angle_max_cd(), copter.aparm.angle_max);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// wrap yaw request
float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd);
float yaw_rate_in = guided_angle_state.yaw_rate_cds;
float climb_rate_cms = 0.0f;
if (!guided_angle_state.use_thrust) {
// constrain climb rate
climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up());
// get avoidance adjusted climb rate
climb_rate_cms = get_avoidance_adjusted_climbrate(climb_rate_cms);
}
// check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - guided_angle_state.update_time_ms > get_timeout_ms()) {
roll_in = 0.0f;
pitch_in = 0.0f;
climb_rate_cms = 0.0f;
yaw_rate_in = 0.0f;
if (guided_angle_state.use_thrust) {
// initialise vertical velocity controller
pos_control->init_z_controller();
guided_angle_state.use_thrust = false;
}
}
// interpret positive climb rate or thrust as triggering take-off
const bool positive_thrust_or_climbrate = is_positive(guided_angle_state.use_thrust ? guided_angle_state.thrust : climb_rate_cms);
if (motors->armed() && positive_thrust_or_climbrate) {
copter.set_auto_armed(true);
}
// if not armed set throttle to zero and exit immediately
if (!motors->armed() || !copter.ap.auto_armed || (copter.ap.land_complete && !positive_thrust_or_climbrate)) {
// do not spool down tradheli when on the ground with motor interlock enabled
make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock());
return;
}
// TODO: use get_alt_hold_state
// landed with positive desired climb rate, takeoff
if (copter.ap.land_complete && (guided_angle_state.climb_rate_cms > 0.0f)) {
zero_throttle_and_relax_ac();
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) {
set_land_complete(false);
set_throttle_takeoff();
}
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// call attitude controller
if (guided_angle_state.use_yaw_rate) {
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll_in, pitch_in, yaw_rate_in);
} else {
attitude_control->input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true);
}
// call position controller
if (guided_angle_state.use_thrust) {
attitude_control->set_throttle_out(guided_angle_state.thrust, true, copter.g.throttle_filt);
} else {
pos_control->set_pos_target_z_from_climb_rate_cm(climb_rate_cms);
pos_control->update_z_controller();
}
}
// helper function to set yaw state and targets
void ModeGuided::set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle)
{
2021-07-09 05:44:07 -03:00
if (use_yaw && relative_angle) {
auto_yaw.set_fixed_yaw(yaw_cd * 0.01f, 0.0f, 0, relative_angle);
2021-07-09 05:44:07 -03:00
} else if (use_yaw && use_yaw_rate) {
auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, yaw_rate_cds * 0.01f);
} else if (use_yaw && !use_yaw_rate) {
auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, 0.0f);
} else if (use_yaw_rate) {
auto_yaw.set_rate(yaw_rate_cds);
}
}
// returns true if pilot's yaw input should be used to adjust vehicle's heading
bool ModeGuided::use_pilot_yaw(void) const
{
return (copter.g2.guided_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
}
// Guided Limit code
// limit_clear - clear/turn off guided limits
void ModeGuided::limit_clear()
{
guided_limit.timeout_ms = 0;
guided_limit.alt_min_cm = 0.0f;
guided_limit.alt_max_cm = 0.0f;
guided_limit.horiz_max_cm = 0.0f;
}
// limit_set - set guided timeout and movement limits
void ModeGuided::limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm)
{
guided_limit.timeout_ms = timeout_ms;
guided_limit.alt_min_cm = alt_min_cm;
guided_limit.alt_max_cm = alt_max_cm;
guided_limit.horiz_max_cm = horiz_max_cm;
}
// limit_init_time_and_pos - initialise guided start time and position as reference for limit checking
// only called from AUTO mode's auto_nav_guided_start function
void ModeGuided::limit_init_time_and_pos()
{
// initialise start time
guided_limit.start_time = AP_HAL::millis();
// initialise start position from current position
guided_limit.start_pos = inertial_nav.get_position();
}
// limit_check - returns true if guided mode has breached a limit
// used when guided is invoked from the NAV_GUIDED_ENABLE mission command
bool ModeGuided::limit_check()
{
// check if we have passed the timeout
if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) {
return true;
}
// get current location
const Vector3f& curr_pos = inertial_nav.get_position();
// check if we have gone below min alt
2015-05-04 23:34:21 -03:00
if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) {
return true;
}
// check if we have gone above max alt
2015-05-04 23:34:21 -03:00
if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) {
return true;
}
// check if we have gone beyond horizontal limit
if (guided_limit.horiz_max_cm > 0.0f) {
float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos, curr_pos);
if (horiz_move > guided_limit.horiz_max_cm) {
return true;
}
}
// if we got this far we must be within limits
return false;
}
const Vector3p &ModeGuided::get_target_pos() const
{
return guided_pos_target_cm;
}
const Vector3f& ModeGuided::get_target_vel() const
{
return guided_vel_target_cms;
}
const Vector3f& ModeGuided::get_target_accel() const
{
return guided_accel_target_cmss;
}
uint32_t ModeGuided::wp_distance() const
{
switch(guided_mode) {
case SubMode::WP:
return wp_nav->get_wp_distance_to_destination();
case SubMode::Pos:
return norm(guided_pos_target_cm.x - inertial_nav.get_position().x, guided_pos_target_cm.y - inertial_nav.get_position().y);
case SubMode::PosVelAccel:
2021-05-11 01:42:02 -03:00
return pos_control->get_pos_error_xy_cm();
break;
default:
return 0;
}
}
int32_t ModeGuided::wp_bearing() const
{
switch(guided_mode) {
case SubMode::WP:
return wp_nav->get_wp_bearing_to_destination();
case SubMode::Pos:
return get_bearing_cd(inertial_nav.get_position(), guided_pos_target_cm.tofloat());
case SubMode::PosVelAccel:
2021-05-11 01:42:02 -03:00
return pos_control->get_bearing_to_target_cd();
break;
case SubMode::TakeOff:
case SubMode::Accel:
case SubMode::VelAccel:
case SubMode::Angle:
// these do not have bearings
return 0;
}
// compiler guarantees we don't get here
return 0.0;
}
2018-05-23 12:34:24 -03:00
float ModeGuided::crosstrack_error() const
2018-05-23 12:34:24 -03:00
{
switch (guided_mode) {
case SubMode::WP:
return wp_nav->crosstrack_error();
case SubMode::Pos:
case SubMode::TakeOff:
case SubMode::Accel:
case SubMode::VelAccel:
case SubMode::PosVelAccel:
return pos_control->crosstrack_error();
case SubMode::Angle:
// no track to have a crosstrack to
2018-05-23 12:34:24 -03:00
return 0;
}
// compiler guarantees we don't get here
return 0;
2018-05-23 12:34:24 -03:00
}
// return guided mode timeout in milliseconds. Only used for velocity, acceleration and angle control
uint32_t ModeGuided::get_timeout_ms() const
{
return MAX(copter.g2.guided_timeout, 0.1) * 1000;
}
#endif