ardupilot/Tools/autotest/pysim/helicopter.py

123 lines
4.4 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from aircraft import Aircraft
import util, time, math
from math import degrees, radians, sin, cos
from rotmat import Vector3, Matrix3
class HeliCopter(Aircraft):
'''a HeliCopter simulator'''
def __init__(self, frame='+',
hover_throttle=0.65,
terminal_velocity=40.0,
frame_height=0.1,
hover_lean=8.0,
yaw_zero=0.1,
rotor_rot_accel=radians(20),
mass=2.13):
Aircraft.__init__(self)
self.mass = mass # Kg
self.hover_throttle = hover_throttle
self.terminal_velocity = terminal_velocity
self.terminal_rotation_rate = 4*radians(360.0)
self.frame_height = frame_height
self.last_time = time.time()
self.roll_rate_max = radians(1400)
self.pitch_rate_max = radians(1400)
self.yaw_rate_max = radians(1400)
self.rsc_setpoint = 0.8
self.thrust_scale = (self.mass * self.gravity) / self.hover_throttle
self.rotor_rot_accel=rotor_rot_accel
# calculate lateral thrust ratio for tail rotor
self.tail_thrust_scale = sin(radians(hover_lean)) * self.thrust_scale / yaw_zero
def update(self, servos):
# how much time has passed?
t = time.time()
delta_time = t - self.last_time
self.last_time = t
# get swash proportions (these are from 0 to 1)
swash1 = servos[0]
swash2 = servos[1]
swash3 = servos[2]
tail_rotor = servos[3]
rsc = servos[7]
# get total thrust from 0 to 1
thrust = (rsc/self.rsc_setpoint)*(swash1+swash2+swash3)/3.0
# very simplistic mapping to body euler rates
roll_rate = swash1 - swash2
pitch_rate = (swash1 + swash2)/2.0 - swash3
yaw_rate = tail_rotor - 0.5
#print(swash1, swash2, swash3, roll_rate, pitch_rate, yaw_rate, thrust, rsc)
rsc_scale = rsc/self.rsc_setpoint
roll_rate *= rsc_scale
pitch_rate *= rsc_scale
yaw_rate *= rsc_scale
rot_accel = Vector3(roll_rate*self.roll_rate_max,
pitch_rate*self.pitch_rate_max,
yaw_rate*self.yaw_rate_max)
# rotational air resistance
rot_accel.x -= self.gyro.x * radians(5000.0) / self.terminal_rotation_rate
rot_accel.y -= self.gyro.y * radians(5000.0) / self.terminal_rotation_rate
rot_accel.z -= self.gyro.z * radians(5000.0) / self.terminal_rotation_rate
rot_accel.z += (rsc_scale+thrust) * self.rotor_rot_accel
# update rotational rates in body frame
self.gyro += rot_accel * delta_time
# update attitude
self.dcm.rotate(self.gyro * delta_time)
self.dcm.normalize()
# air resistance
air_resistance = - self.velocity * (self.gravity/self.terminal_velocity)
thrust *= self.thrust_scale
accel_body = Vector3(0, yaw_rate * rsc_scale * self.tail_thrust_scale, -thrust / self.mass)
accel_earth = self.dcm * accel_body
accel_earth += Vector3(0, 0, self.gravity)
accel_earth += air_resistance
# if we're on the ground, then our vertical acceleration is limited
# to zero. This effectively adds the force of the ground on the aircraft
if self.on_ground() and accel_earth.z > 0:
accel_earth.z = 0
# work out acceleration as seen by the accelerometers. It sees the kinematic
# acceleration (ie. real movement), plus gravity
self.accel_body = self.dcm.transposed() * (accel_earth + Vector3(0, 0, -self.gravity))
# new velocity vector
self.velocity += accel_earth * delta_time
# new position vector
old_position = self.position.copy()
self.position += self.velocity * delta_time
# constrain height to the ground
if self.on_ground():
if not self.on_ground(old_position):
print("Hit ground at %f m/s" % (self.velocity.z))
self.velocity = Vector3(0, 0, 0)
# zero roll/pitch, but keep yaw
(r, p, y) = self.dcm.to_euler()
self.dcm.from_euler(0, 0, y)
self.position = Vector3(self.position.x, self.position.y,
-(self.ground_level + self.frame_height - self.home_altitude))
# update lat/lon/altitude
self.update_position()