ardupilot/ArduCopter/mode_zigzag.cpp

273 lines
9.5 KiB
C++
Raw Normal View History

#include "Copter.h"
#if MODE_ZIGZAG_ENABLED == ENABLED
/*
* Init and run calls for zigzag flight mode
*/
#define ZIGZAG_WP_RADIUS_CM 300
// initialise zigzag controller
bool Copter::ModeZigZag::init(bool ignore_checks)
{
// initialize's loiter position and velocity on xy-axes from current pos and velocity
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
// initialise position_z and desired velocity_z
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise waypoint state
stage = STORING_POINTS;
dest_A.zero();
dest_B.zero();
return true;
}
// run the zigzag controller
// should be called at 100hz or more
void Copter::ModeZigZag::run()
{
// initialize vertical speed and acceleration's range
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control->set_max_accel_z(g.pilot_accel_z);
// if not auto armed or motors not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock() || ap.land_complete) {
zero_throttle_and_relax_ac(copter.is_tradheli() && motors->get_interlock());
return;
}
// auto control
if (stage == AUTO) {
// if vehicle has reached destination switch to manual control
if (reached_destination()) {
AP_Notify::events.waypoint_complete = 1;
stage = MANUAL_REGAIN;
loiter_nav->init_target(wp_nav->get_wp_destination());
} else {
auto_control();
}
}
// manual control
if (stage == STORING_POINTS || stage == MANUAL_REGAIN) {
// receive pilot's inputs, do position and attitude control
manual_control();
}
}
// save current position as A (dest_num = 0) or B (dest_num = 1). If both A and B have been saved move to the one specified
void Copter::ModeZigZag::save_or_move_to_destination(uint8_t dest_num)
{
// sanity check
if (dest_num > 1) {
return;
}
// get current position as an offset from EKF origin
const Vector3f curr_pos = inertial_nav.get_position();
// handle state machine changes
switch (stage) {
case STORING_POINTS:
if (dest_num == 0) {
// store point A
dest_A.x = curr_pos.x;
dest_A.y = curr_pos.y;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point A stored");
copter.Log_Write_Event(DATA_ZIGZAG_STORE_A);
} else {
// store point B
dest_B.x = curr_pos.x;
dest_B.y = curr_pos.y;
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: point B stored");
copter.Log_Write_Event(DATA_ZIGZAG_STORE_B);
}
// if both A and B have been stored advance state
if (!dest_A.is_zero() && !dest_B.is_zero() && is_positive((dest_B - dest_A).length_squared())) {
stage = MANUAL_REGAIN;
}
break;
case AUTO:
case MANUAL_REGAIN:
// A and B have been defined, move vehicle to destination A or B
Vector3f next_dest;
if (calculate_next_dest(dest_num, next_dest)) {
// initialise waypoint controller
wp_nav->wp_and_spline_init();
if (wp_nav->set_wp_destination(next_dest, false)) {
stage = AUTO;
reach_wp_time_ms = 0;
if (dest_num == 0) {
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to A");
} else {
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: moving to B");
}
}
}
break;
}
}
// return manual control to the pilot
void Copter::ModeZigZag::return_to_manual_control()
{
if (stage == AUTO) {
stage = MANUAL_REGAIN;
loiter_nav->clear_pilot_desired_acceleration();
loiter_nav->init_target();
gcs().send_text(MAV_SEVERITY_INFO, "ZigZag: manual control");
}
}
// fly the vehicle to closest point on line perpendicular to dest_A or dest_B
void Copter::ModeZigZag::auto_control()
{
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wp_nav should have already updated its alt target)
pos_control->update_z_controller();
// call attitude controller
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
}
// manual_control - process manual control
void Copter::ModeZigZag::manual_control()
{
float target_yaw_rate = 0.0f;
float target_climb_rate = 0.0f;
// process pilot inputs unless we are in radio failsafe
if (!copter.failsafe.radio) {
float target_roll, target_pitch;
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// convert pilot input to lean angles
get_pilot_desired_lean_angles(target_roll, target_pitch, loiter_nav->get_angle_max_cd(), attitude_control->get_althold_lean_angle_max());
// process pilot's roll and pitch input
loiter_nav->set_pilot_desired_acceleration(target_roll, target_pitch, G_Dt);
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
// get pilot desired climb rate
target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in());
// make sure the climb rate is in the given range, prevent floating point errors
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up);
} else {
// clear out pilot desired acceleration in case radio failsafe event occurs and we
// do not switch to RTL for some reason
loiter_nav->clear_pilot_desired_acceleration();
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run loiter controller
loiter_nav->update();
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(loiter_nav->get_roll(), loiter_nav->get_pitch(), target_yaw_rate);
// adjust climb rate using rangefinder
target_climb_rate = get_surface_tracking_climb_rate(target_climb_rate, pos_control->get_alt_target(), G_Dt);
// get avoidance adjusted climb rate
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate);
// update altitude target and call position controller
pos_control->set_alt_target_from_climb_rate_ff(target_climb_rate, G_Dt, false);
// adjusts target up or down using a climb rate
pos_control->update_z_controller();
}
// return true if vehicle is within a small area around the destination
bool Copter::ModeZigZag::reached_destination()
{
// check if wp_nav believes it has reached the destination
if (!wp_nav->reached_wp_destination()) {
return false;
}
// check distance to destination
if (wp_nav->get_wp_distance_to_destination() > ZIGZAG_WP_RADIUS_CM) {
return false;
}
// wait at least one second
uint32_t now = AP_HAL::millis();
if (reach_wp_time_ms == 0) {
reach_wp_time_ms = now;
}
return ((now - reach_wp_time_ms) > 1000);
}
// calculate next destination according to vector A-B and current position
bool Copter::ModeZigZag::calculate_next_dest(uint8_t dest_num, Vector3f& next_dest) const
{
// sanity check dest_num
if (dest_num > 1) {
return false;
}
// define start_pos as either A or B depending upon dest_num
Vector2f start_pos = dest_num == 0 ? dest_A : dest_B;
// calculate vector from A to B
Vector2f AB_diff = dest_B - dest_A;
// check distance between A and B
if (!is_positive(AB_diff.length_squared())) {
return false;
}
// get distance from vehicle to start_pos
const Vector3f curr_pos = inertial_nav.get_position();
const Vector2f curr_pos2d = Vector2f(curr_pos.x, curr_pos.y);
Vector2f veh_to_start_pos = curr_pos2d - start_pos;
// lengthen AB_diff so that it is at least as long as vehicle is from start point
// we need to ensure that the lines perpendicular to AB are long enough to reach the vehicle
float scalar = 1.0f;
if (veh_to_start_pos.length_squared() > AB_diff.length_squared()) {
scalar = veh_to_start_pos.length() / AB_diff.length();
}
// create a line perpendicular to AB but originating at start_pos
Vector2f perp1 = start_pos + Vector2f(-AB_diff[1] * scalar, AB_diff[0] * scalar);
Vector2f perp2 = start_pos + Vector2f(AB_diff[1] * scalar, -AB_diff[0] * scalar);
// find the closest point on the perpendicular line
const Vector2f closest2d = Vector2f::closest_point(curr_pos2d, perp1, perp2);
next_dest.x = closest2d.x;
next_dest.y = closest2d.y;
next_dest.z = pos_control->is_active_z() ? pos_control->get_alt_target() : curr_pos.z;
return true;
}
#endif // MODE_ZIGZAG_ENABLED == ENABLED