2015-05-03 05:13:58 -03:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
rover simulator class
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "SIM_Rover.h"
|
2015-10-22 10:58:33 -03:00
|
|
|
|
2015-05-03 05:13:58 -03:00
|
|
|
#include <string.h>
|
2016-05-23 21:23:37 -03:00
|
|
|
#include <stdio.h>
|
2015-05-03 05:13:58 -03:00
|
|
|
|
2015-10-22 10:04:42 -03:00
|
|
|
namespace SITL {
|
|
|
|
|
2019-08-15 01:01:24 -03:00
|
|
|
SimRover::SimRover(const char *frame_str) :
|
2020-09-22 19:44:18 -03:00
|
|
|
Aircraft(frame_str)
|
2015-05-03 05:13:58 -03:00
|
|
|
{
|
2016-10-30 02:24:21 -03:00
|
|
|
skid_steering = strstr(frame_str, "skid") != nullptr;
|
2015-05-03 05:13:58 -03:00
|
|
|
|
|
|
|
if (skid_steering) {
|
2016-05-23 21:23:37 -03:00
|
|
|
printf("SKID Steering Rover Simulation Started\n");
|
2015-05-03 05:13:58 -03:00
|
|
|
// these are taken from a 6V wild thumper with skid steering,
|
|
|
|
// with a sabertooth controller
|
|
|
|
max_accel = 14;
|
|
|
|
max_speed = 4;
|
2021-03-30 09:10:58 -03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vectored_thrust = strstr(frame_str, "vector") != nullptr;
|
|
|
|
if (vectored_thrust) {
|
|
|
|
printf("Vectored Thrust Rover Simulation Started\n");
|
2015-05-03 05:13:58 -03:00
|
|
|
}
|
2021-05-17 21:25:12 -03:00
|
|
|
lock_step_scheduled = true;
|
2015-05-03 05:13:58 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
return turning circle (diameter) in meters for steering angle proportion in degrees
|
|
|
|
*/
|
2021-02-01 12:37:57 -04:00
|
|
|
float SimRover::turn_circle(float steering) const
|
2015-05-03 05:13:58 -03:00
|
|
|
{
|
|
|
|
if (fabsf(steering) < 1.0e-6) {
|
|
|
|
return 0;
|
|
|
|
}
|
2016-04-07 04:15:54 -03:00
|
|
|
return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn));
|
2015-05-03 05:13:58 -03:00
|
|
|
}
|
|
|
|
|
2015-05-04 22:49:54 -03:00
|
|
|
/*
|
2015-05-03 05:13:58 -03:00
|
|
|
return yaw rate in degrees/second given steering_angle and speed
|
|
|
|
*/
|
2015-10-21 08:03:55 -03:00
|
|
|
float SimRover::calc_yaw_rate(float steering, float speed)
|
2015-05-03 05:13:58 -03:00
|
|
|
{
|
|
|
|
if (skid_steering) {
|
|
|
|
return steering * skid_turn_rate;
|
|
|
|
}
|
2021-03-30 09:10:58 -03:00
|
|
|
if (vectored_thrust) {
|
|
|
|
return steering * vectored_turn_rate_max;
|
|
|
|
}
|
2015-05-03 05:13:58 -03:00
|
|
|
if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
float d = turn_circle(steering);
|
2016-02-25 13:13:02 -04:00
|
|
|
float c = M_PI * d;
|
2015-05-03 05:13:58 -03:00
|
|
|
float t = c / speed;
|
|
|
|
float rate = 360.0f / t;
|
|
|
|
return rate;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
return lateral acceleration in m/s/s
|
|
|
|
*/
|
2015-10-21 08:03:55 -03:00
|
|
|
float SimRover::calc_lat_accel(float steering_angle, float speed)
|
2015-05-03 05:13:58 -03:00
|
|
|
{
|
|
|
|
float yaw_rate = calc_yaw_rate(steering_angle, speed);
|
|
|
|
float accel = radians(yaw_rate) * speed;
|
|
|
|
return accel;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
update the rover simulation by one time step
|
|
|
|
*/
|
2015-10-21 08:03:55 -03:00
|
|
|
void SimRover::update(const struct sitl_input &input)
|
2015-05-03 05:13:58 -03:00
|
|
|
{
|
|
|
|
float steering, throttle;
|
|
|
|
|
|
|
|
// if in skid steering mode the steering and throttle values are used for motor1 and motor2
|
|
|
|
if (skid_steering) {
|
|
|
|
float motor1 = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
|
|
float motor2 = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
|
|
|
steering = motor1 - motor2;
|
|
|
|
throttle = 0.5*(motor1 + motor2);
|
|
|
|
} else {
|
|
|
|
steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f);
|
|
|
|
throttle = 2*((input.servos[2]-1000)/1000.0f - 0.5f);
|
2021-03-30 09:10:58 -03:00
|
|
|
|
|
|
|
// vectored thrust conversion
|
|
|
|
if (vectored_thrust) {
|
|
|
|
const float steering_angle_rad = radians(steering * vectored_angle_max);
|
|
|
|
steering = sinf(steering_angle_rad) * throttle;
|
|
|
|
throttle *= cosf(steering_angle_rad);
|
|
|
|
}
|
2015-05-03 05:13:58 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
// how much time has passed?
|
|
|
|
float delta_time = frame_time_us * 1.0e-6f;
|
|
|
|
|
|
|
|
// speed in m/s in body frame
|
|
|
|
Vector3f velocity_body = dcm.transposed() * velocity_ef;
|
|
|
|
|
|
|
|
// speed along x axis, +ve is forward
|
|
|
|
float speed = velocity_body.x;
|
|
|
|
|
|
|
|
// yaw rate in degrees/s
|
|
|
|
float yaw_rate = calc_yaw_rate(steering, speed);
|
|
|
|
|
|
|
|
// target speed with current throttle
|
|
|
|
float target_speed = throttle * max_speed;
|
|
|
|
|
|
|
|
// linear acceleration in m/s/s - very crude model
|
|
|
|
float accel = max_accel * (target_speed - speed) / max_speed;
|
|
|
|
|
|
|
|
gyro = Vector3f(0,0,radians(yaw_rate));
|
|
|
|
|
|
|
|
// update attitude
|
|
|
|
dcm.rotate(gyro * delta_time);
|
|
|
|
dcm.normalize();
|
|
|
|
|
|
|
|
// accel in body frame due to motor
|
|
|
|
accel_body = Vector3f(accel, 0, 0);
|
|
|
|
|
|
|
|
// add in accel due to direction change
|
|
|
|
accel_body.y += radians(yaw_rate) * speed;
|
|
|
|
|
|
|
|
// now in earth frame
|
|
|
|
Vector3f accel_earth = dcm * accel_body;
|
|
|
|
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
|
|
|
|
|
|
|
|
// we are on the ground, so our vertical accel is zero
|
|
|
|
accel_earth.z = 0;
|
|
|
|
|
|
|
|
// work out acceleration as seen by the accelerometers. It sees the kinematic
|
|
|
|
// acceleration (ie. real movement), plus gravity
|
|
|
|
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
|
|
|
|
|
|
|
|
// new velocity vector
|
|
|
|
velocity_ef += accel_earth * delta_time;
|
|
|
|
|
|
|
|
// new position vector
|
2021-06-20 23:59:02 -03:00
|
|
|
position += (velocity_ef * delta_time).todouble();
|
2015-05-03 05:13:58 -03:00
|
|
|
|
2019-02-07 19:46:26 -04:00
|
|
|
update_external_payload(input);
|
|
|
|
|
2015-05-03 05:13:58 -03:00
|
|
|
// update lat/lon/altitude
|
|
|
|
update_position();
|
2017-03-03 06:23:40 -04:00
|
|
|
time_advance();
|
2016-06-17 00:46:12 -03:00
|
|
|
|
|
|
|
// update magnetic field
|
|
|
|
update_mag_field_bf();
|
2015-05-03 05:13:58 -03:00
|
|
|
}
|
2015-10-22 10:04:42 -03:00
|
|
|
|
|
|
|
} // namespace SITL
|