ardupilot/libraries/AC_WPNav/AC_Circle.cpp

376 lines
13 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
2020-04-08 03:20:56 -03:00
#include <AP_Terrain/AP_Terrain.h>
#include "AC_Circle.h"
2014-01-27 01:08:11 -04:00
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_Circle::var_info[] = {
2014-01-27 01:08:11 -04:00
// @Param: RADIUS
// @DisplayName: Circle Radius
// @Description: Defines the radius of the circle the vehicle will fly when in Circle flight mode
// @Units: cm
// @Range: 0 200000
2014-01-27 01:08:11 -04:00
// @Increment: 100
// @User: Standard
AP_GROUPINFO("RADIUS", 0, AC_Circle, _radius, AC_CIRCLE_RADIUS_DEFAULT),
// @Param: RATE
// @DisplayName: Circle rate
// @Description: Circle mode's turn rate in deg/sec. Positive to turn clockwise, negative for counter clockwise
// @Units: deg/s
// @Range: -90 90
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RATE", 1, AC_Circle, _rate, AC_CIRCLE_RATE_DEFAULT),
// @Param: CONTROL
// @DisplayName: Circle control
// @Description: Enable or disable using the pitch/roll stick control circle mode's radius and rate
// @Values: 0:Disable,1:Enable
// @User: Standard
AP_GROUPINFO("CONTROL", 2, AC_Circle, _control, 1),
2014-01-27 01:08:11 -04:00
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_Circle::AC_Circle(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control) :
2014-01-27 01:08:11 -04:00
_inav(inav),
_ahrs(ahrs),
_pos_control(pos_control),
_yaw(0.0f),
_angle(0.0f),
_angle_total(0.0f),
_angular_vel(0.0f),
_angular_vel_max(0.0f),
_angular_accel(0.0f)
2014-01-27 01:08:11 -04:00
{
AP_Param::setup_object_defaults(this, var_info);
// init flags
_flags.panorama = false;
2014-01-27 01:08:11 -04:00
}
/// init - initialise circle controller setting center specifically
2020-04-08 03:20:56 -03:00
/// set terrain_alt to true if center.z should be interpreted as an alt-above-terrain
/// caller should set the position controller's x,y and z speeds and accelerations before calling this
2020-04-08 03:20:56 -03:00
void AC_Circle::init(const Vector3f& center, bool terrain_alt)
2014-01-27 01:08:11 -04:00
{
_center = center;
2020-04-08 03:20:56 -03:00
_terrain_alt = terrain_alt;
2014-01-27 01:08:11 -04:00
// initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles)
_pos_control.set_desired_accel_xy(0.0f,0.0f);
_pos_control.set_desired_velocity_xy(0.0f,0.0f);
_pos_control.init_xy_controller();
2014-01-27 01:08:11 -04:00
// set initial position target to reasonable stopping point
_pos_control.set_target_to_stopping_point_xy();
_pos_control.set_target_to_stopping_point_z();
2014-01-27 01:08:11 -04:00
// calculate velocities
calc_velocities(true);
// set start angle from position
init_start_angle(false);
2014-01-27 01:08:11 -04:00
}
/// init - initialise circle controller setting center using stopping point and projecting out based on the copter's heading
/// caller should set the position controller's x,y and z speeds and accelerations before calling this
void AC_Circle::init()
2014-01-27 01:08:11 -04:00
{
// initialise position controller (sets target roll angle, pitch angle and I terms based on vehicle current lean angles)
_pos_control.set_desired_accel_xy(0.0f,0.0f);
_pos_control.set_desired_velocity_xy(0.0f,0.0f);
_pos_control.init_xy_controller();
2014-01-27 01:08:11 -04:00
// set initial position target to reasonable stopping point
_pos_control.set_target_to_stopping_point_xy();
_pos_control.set_target_to_stopping_point_z();
// get stopping point
const Vector3f& stopping_point = _pos_control.get_pos_target();
2014-01-27 01:08:11 -04:00
// set circle center to circle_radius ahead of stopping point
2014-02-08 23:34:50 -04:00
_center.x = stopping_point.x + _radius * _ahrs.cos_yaw();
_center.y = stopping_point.y + _radius * _ahrs.sin_yaw();
2014-01-27 01:08:11 -04:00
_center.z = stopping_point.z;
2020-04-08 03:20:56 -03:00
_terrain_alt = false;
2014-01-27 01:08:11 -04:00
// calculate velocities
calc_velocities(true);
// set starting angle from vehicle heading
init_start_angle(true);
2014-01-27 01:08:11 -04:00
}
2020-04-08 03:20:56 -03:00
/// set circle center to a Location
void AC_Circle::set_center(const Location& center)
{
if (center.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) {
// convert Location with terrain altitude
Vector2f center_xy;
int32_t terr_alt_cm;
if (center.get_vector_xy_from_origin_NE(center_xy) && center.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, terr_alt_cm)) {
set_center(Vector3f(center_xy.x, center_xy.y, terr_alt_cm), true);
} else {
// failed to convert location so set to current position and log error
set_center(_inav.get_position(), false);
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_CIRCLE_INIT);
}
} else {
// convert Location with alt-above-home, alt-above-origin or absolute alt
Vector3f circle_center_neu;
if (!center.get_vector_from_origin_NEU(circle_center_neu)) {
// default to current position and log error
circle_center_neu = _inav.get_position();
AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_CIRCLE_INIT);
}
set_center(circle_center_neu, false);
}
}
/// set_circle_rate - set circle rate in degrees per second
void AC_Circle::set_rate(float deg_per_sec)
{
if (!is_equal(deg_per_sec, _rate.get())) {
_rate = deg_per_sec;
calc_velocities(false);
}
}
/// set_circle_rate - set circle rate in degrees per second
void AC_Circle::set_radius(float radius_cm)
{
_radius = constrain_float(radius_cm, 0, AC_CIRCLE_RADIUS_MAX);
calc_velocities(false);
}
/// returns true if update has been run recently
/// used by vehicle code to determine if get_yaw() is valid
bool AC_Circle::is_active() const
{
return (AP_HAL::millis() - _last_update_ms < 200);
}
2014-01-27 01:08:11 -04:00
/// update - update circle controller
2020-04-08 03:20:56 -03:00
bool AC_Circle::update()
2014-01-27 01:08:11 -04:00
{
// calculate dt
2014-12-17 17:26:13 -04:00
float dt = _pos_control.time_since_last_xy_update();
if (dt >= 0.2f) {
dt = 0.0f;
}
2014-01-27 01:08:11 -04:00
// ramp angular velocity to maximum
if (_angular_vel < _angular_vel_max) {
_angular_vel += fabsf(_angular_accel) * dt;
_angular_vel = MIN(_angular_vel, _angular_vel_max);
}
if (_angular_vel > _angular_vel_max) {
_angular_vel -= fabsf(_angular_accel) * dt;
_angular_vel = MAX(_angular_vel, _angular_vel_max);
2014-01-27 01:08:11 -04:00
}
// update the target angle and total angle traveled
float angle_change = _angular_vel * dt;
_angle += angle_change;
_angle = wrap_PI(_angle);
_angle_total += angle_change;
2020-04-08 03:20:56 -03:00
// calculate terrain adjustments
float terr_offset = 0.0f;
if (_terrain_alt && !get_terrain_offset(terr_offset)) {
return false;
}
// calculate z-axis target
float target_z_cm;
if (_terrain_alt) {
target_z_cm = _center.z + terr_offset;
} else {
target_z_cm = _pos_control.get_alt_target();
}
// if the circle_radius is zero we are doing panorama so no need to update loiter target
if (!is_zero(_radius)) {
// calculate target position
Vector3f target;
target.x = _center.x + _radius * cosf(-_angle);
target.y = _center.y - _radius * sinf(-_angle);
target.z = target_z_cm;
// update position controller target
2020-04-08 03:20:56 -03:00
_pos_control.set_pos_target(target);
2019-04-24 23:35:19 -03:00
// heading is from vehicle to center of circle
_yaw = get_bearing_cd(_inav.get_position(), _center);
} else {
// set target position to center
Vector3f target;
target.x = _center.x;
target.y = _center.y;
target.z = target_z_cm;
// update position controller target
2020-04-08 03:20:56 -03:00
_pos_control.set_pos_target(target);
// heading is same as _angle but converted to centi-degrees
_yaw = _angle * DEGX100;
}
// update position controller
_pos_control.update_xy_controller();
2020-04-08 03:20:56 -03:00
// set update time
_last_update_ms = AP_HAL::millis();
2020-04-08 03:20:56 -03:00
return true;
2014-01-27 01:08:11 -04:00
}
// get_closest_point_on_circle - returns closest point on the circle
// circle's center should already have been set
// closest point on the circle will be placed in result
// result's altitude (i.e. z) will be set to the circle_center's altitude
// if vehicle is at the center of the circle, the edge directly behind vehicle will be returned
void AC_Circle::get_closest_point_on_circle(Vector3f &result) const
{
// return center if radius is zero
if (_radius <= 0) {
result = _center;
return;
}
// get current position
Vector3f stopping_point;
_pos_control.get_stopping_point_xy(stopping_point);
// calc vector from stopping point to circle center
Vector2f vec; // vector from circle center to current location
vec.x = (stopping_point.x - _center.x);
vec.y = (stopping_point.y - _center.y);
float dist = norm(vec.x, vec.y);
// if current location is exactly at the center of the circle return edge directly behind vehicle
2015-05-04 23:34:54 -03:00
if (is_zero(dist)) {
result.x = _center.x - _radius * _ahrs.cos_yaw();
result.y = _center.y - _radius * _ahrs.sin_yaw();
result.z = _center.z;
return;
}
// calculate closest point on edge of circle
result.x = _center.x + vec.x / dist * _radius;
result.y = _center.y + vec.y / dist * _radius;
result.z = _center.z;
}
2014-01-27 01:08:11 -04:00
// calc_velocities - calculate angular velocity max and acceleration based on radius and rate
// this should be called whenever the radius or rate are changed
// initialises the yaw and current position around the circle
void AC_Circle::calc_velocities(bool init_velocity)
2014-01-27 01:08:11 -04:00
{
// if we are doing a panorama set the circle_angle to the current heading
if (_radius <= 0) {
_angular_vel_max = ToRad(_rate);
_angular_accel = MAX(fabsf(_angular_vel_max),ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN)); // reach maximum yaw velocity in 1 second
2014-01-27 01:08:11 -04:00
}else{
// calculate max velocity based on waypoint speed ensuring we do not use more than half our max acceleration for accelerating towards the center of the circle
float velocity_max = MIN(_pos_control.get_max_speed_xy(), safe_sqrt(0.5f*_pos_control.get_max_accel_xy()*_radius));
2014-01-27 01:08:11 -04:00
// angular_velocity in radians per second
_angular_vel_max = velocity_max/_radius;
_angular_vel_max = constrain_float(ToRad(_rate),-_angular_vel_max,_angular_vel_max);
// angular_velocity in radians per second
_angular_accel = MAX(_pos_control.get_max_accel_xy()/_radius, ToRad(AC_CIRCLE_ANGULAR_ACCEL_MIN));
2014-01-27 01:08:11 -04:00
}
// initialise angular velocity
if (init_velocity) {
_angular_vel = 0;
}
2014-01-27 01:08:11 -04:00
}
// init_start_angle - sets the starting angle around the circle and initialises the angle_total
// if use_heading is true the vehicle's heading will be used to init the angle causing minimum yaw movement
// if use_heading is false the vehicle's position from the center will be used to initialise the angle
void AC_Circle::init_start_angle(bool use_heading)
{
// initialise angle total
_angle_total = 0;
// if the radius is zero we are doing panorama so init angle to the current heading
if (_radius <= 0) {
_angle = _ahrs.yaw;
return;
}
// if use_heading is true
if (use_heading) {
_angle = wrap_PI(_ahrs.yaw-M_PI);
} else {
// if we are exactly at the center of the circle, init angle to directly behind vehicle (so vehicle will backup but not change heading)
const Vector3f &curr_pos = _inav.get_position();
2015-05-04 23:34:54 -03:00
if (is_equal(curr_pos.x,_center.x) && is_equal(curr_pos.y,_center.y)) {
_angle = wrap_PI(_ahrs.yaw-M_PI);
} else {
// get bearing from circle center to vehicle in radians
float bearing_rad = atan2f(curr_pos.y-_center.y,curr_pos.x-_center.x);
_angle = wrap_PI(bearing_rad);
}
}
}
2020-04-08 03:20:56 -03:00
// get expected source of terrain data
AC_Circle::TerrainSource AC_Circle::get_terrain_source() const
{
// use range finder if connected
if (_rangefinder_available) {
2020-04-08 03:20:56 -03:00
return AC_Circle::TerrainSource::TERRAIN_FROM_RANGEFINDER;
}
#if AP_TERRAIN_AVAILABLE
const AP_Terrain *terrain = AP_Terrain::get_singleton();
if ((terrain != nullptr) && terrain->enabled()) {
return AC_Circle::TerrainSource::TERRAIN_FROM_TERRAINDATABASE;
} else {
return AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE;
}
#else
return AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE;
#endif
}
// get terrain's altitude (in cm above the ekf origin) at the current position (+ve means terrain below vehicle is above ekf origin's altitude)
bool AC_Circle::get_terrain_offset(float& offset_cm)
{
// calculate offset based on source (rangefinder or terrain database)
switch (get_terrain_source()) {
case AC_Circle::TerrainSource::TERRAIN_UNAVAILABLE:
return false;
case AC_Circle::TerrainSource::TERRAIN_FROM_RANGEFINDER:
if (_rangefinder_healthy) {
offset_cm = _inav.get_altitude() - _rangefinder_alt_cm;
return true;
}
return false;
case AC_Circle::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
#if AP_TERRAIN_AVAILABLE
float terr_alt = 0.0f;
AP_Terrain *terrain = AP_Terrain::get_singleton();
if (terrain != nullptr && terrain->height_above_terrain(terr_alt, true)) {
offset_cm = _inav.get_altitude() - (terr_alt * 100.0f);
return true;
}
#endif
return false;
}
// we should never get here but just in case
return false;
}