ardupilot/libraries/AP_HAL_ChibiOS/GPIO.cpp

668 lines
18 KiB
C++
Raw Permalink Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <hal.h>
#include "GPIO.h"
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "hwdef/common/stm32_util.h"
#include <AP_InternalError/AP_InternalError.h>
#ifndef HAL_BOOTLOADER_BUILD
#include <SRV_Channel/SRV_Channel.h>
#endif
#ifndef HAL_NO_UARTDRIVER
#include <GCS_MAVLink/GCS.h>
#endif
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <AP_Math/AP_Math.h>
using namespace ChibiOS;
#if HAL_WITH_IO_MCU
#include <AP_IOMCU/AP_IOMCU.h>
extern AP_IOMCU iomcu;
#endif
// GPIO pin table from hwdef.dat
struct gpio_entry {
uint8_t pin_num;
bool enabled;
uint8_t pwm_num;
ioline_t pal_line;
AP_HAL::GPIO::irq_handler_fn_t fn; // callback for GPIO interface
thread_reference_t thd_wait;
bool is_input;
uint8_t mode;
uint16_t isr_quota;
uint8_t isr_disabled_ticks;
AP_HAL::GPIO::INTERRUPT_TRIGGER_TYPE isr_mode;
};
#ifdef HAL_GPIO_PINS
#define HAVE_GPIO_PINS 1
static struct gpio_entry _gpio_tab[] = HAL_GPIO_PINS;
#else
#define HAVE_GPIO_PINS 0
#endif
/*
map a user pin number to a GPIO table entry
*/
static struct gpio_entry *gpio_by_pin_num(uint8_t pin_num, bool check_enabled=true)
{
#if HAVE_GPIO_PINS
2018-08-02 20:27:17 -03:00
for (uint8_t i=0; i<ARRAY_SIZE(_gpio_tab); i++) {
const auto &t = _gpio_tab[i];
if (pin_num == t.pin_num) {
if (check_enabled && t.pwm_num != 0 && !t.enabled) {
return NULL;
}
return &_gpio_tab[i];
}
}
#endif
return NULL;
}
static void pal_interrupt_cb(void *arg);
static void pal_interrupt_cb_functor(void *arg);
GPIO::GPIO()
{}
void GPIO::init()
{
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware) && !defined(HAL_BOOTLOADER_BUILD)
#if HAL_WITH_IO_MCU || HAVE_GPIO_PINS
uint8_t chan_offset = 0;
#endif
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
uint8_t GPIO_mask = 0;
for (uint8_t i=0; i<8; i++) {
if (SRV_Channels::is_GPIO(i)) {
GPIO_mask |= 1U << i;
}
}
iomcu.set_GPIO_mask(GPIO_mask);
chan_offset = 8;
}
#endif
// auto-disable pins being used for PWM output
#if HAVE_GPIO_PINS
2018-08-02 20:27:17 -03:00
for (uint8_t i=0; i<ARRAY_SIZE(_gpio_tab); i++) {
struct gpio_entry *g = &_gpio_tab[i];
if (g->pwm_num != 0) {
g->enabled = SRV_Channels::is_GPIO((g->pwm_num-1)+chan_offset);
}
}
#endif // HAVE_GPIO_PINS
#endif // HAL_BOOTLOADER_BUILD
#ifdef HAL_PIN_ALT_CONFIG
setup_alt_config();
#endif
}
#ifdef HAL_PIN_ALT_CONFIG
// chosen alternative config
uint8_t GPIO::alt_config;
/*
alternative config table, selected using BRD_ALT_CONFIG
*/
static const struct alt_config {
uint8_t alternate;
uint16_t mode;
ioline_t line;
PERIPH_TYPE periph_type;
uint8_t periph_instance;
} alternate_config[] HAL_PIN_ALT_CONFIG;
/*
change pin configuration based on ALT() lines in hwdef.dat
*/
void GPIO::setup_alt_config(void)
{
AP_BoardConfig *bc = AP::boardConfig();
if (!bc) {
return;
}
alt_config = bc->get_alt_config();
if (alt_config == 0) {
// use defaults
return;
}
for (uint8_t i=0; i<ARRAY_SIZE(alternate_config); i++) {
const struct alt_config &alt = alternate_config[i];
if (alt_config == alt.alternate) {
if (alt.periph_type == PERIPH_TYPE::GPIO) {
// enable pin in GPIO table
#if HAVE_GPIO_PINS
for (uint8_t j=0; j<ARRAY_SIZE(_gpio_tab); j++) {
struct gpio_entry *g = &_gpio_tab[j];
if (g->pal_line == alt.line) {
g->enabled = true;
break;
}
}
#endif // HAVE_GPIO_PINS
continue;
}
const iomode_t mode = alt.mode & ~PAL_STM32_HIGH;
const uint8_t odr = (alt.mode & PAL_STM32_HIGH)?1:0;
palSetLineMode(alt.line, mode);
palWriteLine(alt.line, odr);
}
}
}
#endif // HAL_PIN_ALT_CONFIG
/*
resolve an ioline_t to take account of alternative
configurations. This allows drivers to get the right ioline_t for an
alternative config. Note that this may return 0, meaning the pin is
not mapped to this peripheral in the active config
*/
ioline_t GPIO::resolve_alt_config(ioline_t base, PERIPH_TYPE ptype, uint8_t instance)
{
#ifdef HAL_PIN_ALT_CONFIG
if (alt_config == 0) {
// unchanged
return base;
}
for (uint8_t i=0; i<ARRAY_SIZE(alternate_config); i++) {
const struct alt_config &alt = alternate_config[i];
if (alt_config == alt.alternate) {
if (ptype == alt.periph_type && instance == alt.periph_instance) {
// we've reconfigured this peripheral with a different line
return alt.line;
}
}
}
// now search for pins that have been configured off via BRD_ALT_CONFIG
for (uint8_t i=0; i<ARRAY_SIZE(alternate_config); i++) {
const struct alt_config &alt = alternate_config[i];
if (alt_config == alt.alternate) {
if (alt.line == base) {
// this line is no longer available in this config
return 0;
}
}
}
#endif
return base;
}
void GPIO::pinMode(uint8_t pin, uint8_t output)
{
struct gpio_entry *g = gpio_by_pin_num(pin);
if (g) {
if (!output && g->is_input &&
(g->mode == PAL_MODE_INPUT_PULLUP ||
g->mode == PAL_MODE_INPUT_PULLDOWN)) {
// already set
return;
}
g->mode = output?PAL_MODE_OUTPUT_PUSHPULL:PAL_MODE_INPUT;
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F4) || defined(STM32G4) || defined(STM32L4) || defined(STM32L4PLUS)
if (g->mode == PAL_MODE_OUTPUT_PUSHPULL) {
// retain OPENDRAIN if already set
iomode_t old_mode = palReadLineMode(g->pal_line);
if ((old_mode & PAL_MODE_OUTPUT_OPENDRAIN) == PAL_MODE_OUTPUT_OPENDRAIN) {
g->mode = PAL_MODE_OUTPUT_OPENDRAIN;
}
}
#endif
palSetLineMode(g->pal_line, g->mode);
g->is_input = !output;
}
}
uint8_t GPIO::read(uint8_t pin)
{
struct gpio_entry *g = gpio_by_pin_num(pin);
if (g) {
return palReadLine(g->pal_line);
}
return 0;
}
void GPIO::write(uint8_t pin, uint8_t value)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) {
iomcu.write_GPIO(pin, value);
return;
}
#endif
struct gpio_entry *g = gpio_by_pin_num(pin);
if (g) {
if (g->is_input) {
// control pullup/pulldown
g->mode = value==1?PAL_MODE_INPUT_PULLUP:PAL_MODE_INPUT_PULLDOWN;
palSetLineMode(g->pal_line, g->mode);
} else if (value == PAL_LOW) {
palClearLine(g->pal_line);
} else {
palSetLine(g->pal_line);
}
}
}
void GPIO::toggle(uint8_t pin)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) {
iomcu.toggle_GPIO(pin);
return;
}
#endif
struct gpio_entry *g = gpio_by_pin_num(pin);
if (g) {
palToggleLine(g->pal_line);
}
}
/* Alternative interface: */
2018-03-28 06:41:08 -03:00
AP_HAL::DigitalSource* GPIO::channel(uint16_t pin)
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) {
return new IOMCU_DigitalSource(pin);
}
#endif
2018-03-28 06:41:08 -03:00
struct gpio_entry *g = gpio_by_pin_num(pin);
if (!g) {
return nullptr;
}
return new DigitalSource(g->pal_line);
}
extern const AP_HAL::HAL& hal;
/*
Attach an interrupt handler to a GPIO pin number. The pin number
must be one specified with a GPIO() marker in hwdef.dat
*/
bool GPIO::attach_interrupt(uint8_t pin,
irq_handler_fn_t fn,
INTERRUPT_TRIGGER_TYPE mode)
{
struct gpio_entry *g = gpio_by_pin_num(pin, false);
if (!g) {
return false;
}
g->isr_disabled_ticks = 0;
g->isr_quota = 0;
if (!_attach_interrupt(g->pal_line,
palcallback_t(fn?pal_interrupt_cb_functor:nullptr),
g,
mode)) {
return false;
}
g->fn = fn;
g->isr_mode = mode;
return true;
}
/*
Attach an interrupt handler to ioline_t
*/
bool GPIO::_attach_interrupt(ioline_t line, AP_HAL::Proc p, uint8_t mode)
{
return _attach_interrupt(line, palcallback_t(p?pal_interrupt_cb:nullptr), (void*)p, mode);
}
bool GPIO::attach_interrupt(uint8_t pin,
AP_HAL::Proc proc,
INTERRUPT_TRIGGER_TYPE mode) {
struct gpio_entry *g = gpio_by_pin_num(pin, false);
if (!g) {
return false;
}
g->isr_disabled_ticks = 0;
g->isr_quota = 0;
g->isr_mode = mode;
return _attach_interrupt(g->pal_line, proc, mode);
}
bool GPIO::_attach_interruptI(ioline_t line, palcallback_t cb, void *p, uint8_t mode)
{
uint32_t chmode = 0;
switch(mode) {
case INTERRUPT_FALLING:
chmode = PAL_EVENT_MODE_FALLING_EDGE;
break;
case INTERRUPT_RISING:
chmode = PAL_EVENT_MODE_RISING_EDGE;
break;
case INTERRUPT_BOTH:
chmode = PAL_EVENT_MODE_BOTH_EDGES;
break;
default:
if (p) {
return false;
}
break;
}
palevent_t *pep = pal_lld_get_line_event(line);
if (pep->cb && p != nullptr) {
// the pad is already being used for a callback
return false;
}
if (!p) {
chmode = PAL_EVENT_MODE_DISABLED;
}
palDisableLineEventI(line);
palSetLineCallbackI(line, cb, p);
palEnableLineEventI(line, chmode);
return true;
}
bool GPIO::_attach_interrupt(ioline_t line, palcallback_t cb, void *p, uint8_t mode)
{
osalSysLock();
bool ret = _attach_interruptI(line, cb, p, mode);
osalSysUnlock();
return ret;
}
bool GPIO::usb_connected(void)
{
return _usb_connected;
}
2018-03-28 06:41:08 -03:00
DigitalSource::DigitalSource(ioline_t _line) :
line(_line)
{}
void DigitalSource::mode(uint8_t output)
2018-03-28 06:41:08 -03:00
{
palSetLineMode(line, output);
}
2018-03-28 06:41:08 -03:00
uint8_t DigitalSource::read()
{
return palReadLine(line);
}
2018-03-28 06:41:08 -03:00
void DigitalSource::write(uint8_t value)
{
palWriteLine(line, value);
}
2018-03-28 06:41:08 -03:00
void DigitalSource::toggle()
{
palToggleLine(line);
}
#if HAL_WITH_IO_MCU
IOMCU_DigitalSource::IOMCU_DigitalSource(uint8_t _pin) :
pin(_pin)
{}
void IOMCU_DigitalSource::write(uint8_t value)
{
iomcu.write_GPIO(pin, value);
}
void IOMCU_DigitalSource::toggle()
{
iomcu.toggle_GPIO(pin);
}
#endif // HAL_WITH_IO_MCU
static void pal_interrupt_cb(void *arg)
{
if (arg != nullptr) {
((AP_HAL::Proc)arg)();
}
}
static void pal_interrupt_cb_functor(void *arg)
{
const uint32_t now = AP_HAL::micros();
struct gpio_entry *g = (gpio_entry *)arg;
if (g == nullptr) {
// what?
return;
}
if (!(g->fn)) {
return;
}
if (g->isr_quota >= 1) {
/*
we have an interrupt quota enabled for this pin. If the
quota remaining drops to 1 without it being refreshed in
timer_tick then we disable the interrupt source. This is to
prevent CPU overload due to very high GPIO interrupt counts
*/
if (g->isr_quota == 1) {
osalSysLockFromISR();
palDisableLineEventI(g->pal_line);
osalSysUnlockFromISR();
return;
}
g->isr_quota--;
}
(g->fn)(g->pin_num, palReadLine(g->pal_line), now);
}
/*
handle interrupt from pin change for wait_pin()
*/
static void pal_interrupt_wait(void *arg)
{
osalSysLockFromISR();
struct gpio_entry *g = (gpio_entry *)arg;
if (g == nullptr || g->thd_wait == nullptr) {
osalSysUnlockFromISR();
return;
}
osalThreadResumeI(&g->thd_wait, MSG_OK);
osalSysUnlockFromISR();
}
/*
block waiting for a pin to change. Return true on pin change, false on timeout
*/
bool GPIO::wait_pin(uint8_t pin, INTERRUPT_TRIGGER_TYPE mode, uint32_t timeout_us)
{
struct gpio_entry *g = gpio_by_pin_num(pin);
if (!g) {
return false;
}
osalSysLock();
if (g->thd_wait) {
// only allow single waiter
osalSysUnlock();
return false;
}
if (!_attach_interruptI(g->pal_line,
palcallback_t(pal_interrupt_wait),
g,
mode)) {
osalSysUnlock();
return false;
}
// don't allow for very long timeouts, or below the delta
timeout_us = constrain_uint32(TIME_US2I(timeout_us), CH_CFG_ST_TIMEDELTA, TIME_US2I(30000U));
msg_t msg = osalThreadSuspendTimeoutS(&g->thd_wait, timeout_us);
_attach_interruptI(g->pal_line,
palcallback_t(nullptr),
nullptr,
mode);
osalSysUnlock();
return msg == MSG_OK;
}
2021-07-20 01:19:40 -03:00
// check if a pin number is valid
bool GPIO::valid_pin(uint8_t pin) const
{
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled() && iomcu.valid_GPIO_pin(pin)) {
return true;
}
#endif
2021-07-20 01:19:40 -03:00
return gpio_by_pin_num(pin) != nullptr;
}
// return servo channel associated with GPIO pin. Returns true on success and fills in servo_ch argument
// servo_ch uses zero-based indexing
bool GPIO::pin_to_servo_channel(uint8_t pin, uint8_t& servo_ch) const
{
#if HAL_WITH_IO_MCU || HAVE_GPIO_PINS
uint8_t fmu_chan_offset = 0;
#endif
#if HAL_WITH_IO_MCU
if (AP_BoardConfig::io_enabled()) {
// check if this is one of the main pins
uint8_t main_servo_ch = pin;
if (iomcu.convert_pin_number(main_servo_ch)) {
servo_ch = main_servo_ch;
return true;
}
// with IOMCU the local (FMU) channels start at 8
fmu_chan_offset = 8;
}
#endif
#if HAVE_GPIO_PINS
// search _gpio_tab for matching pin
for (uint8_t i=0; i<ARRAY_SIZE(_gpio_tab); i++) {
if (_gpio_tab[i].pin_num == pin) {
if (_gpio_tab[i].pwm_num == 0) {
return false;
}
servo_ch = _gpio_tab[i].pwm_num-1+fmu_chan_offset;
return true;
}
}
#endif // HAVE_GPIO_PINS
return false;
}
#if defined(STM32F7) || defined(STM32H7) || defined(STM32F4) || defined(STM32F3) || defined(STM32G4) || defined(STM32L4) || defined(STM32L4PLUS)
// allow for save and restore of pin settings
bool GPIO::get_mode(uint8_t pin, uint32_t &mode)
{
auto *p = gpio_by_pin_num(pin);
if (!p) {
return false;
}
mode = uint32_t(palReadLineMode(p->pal_line));
return true;
}
void GPIO::set_mode(uint8_t pin, uint32_t mode)
{
auto *p = gpio_by_pin_num(pin);
if (p) {
palSetLineMode(p->pal_line, ioline_t(mode));
}
}
#endif
#ifndef IOMCU_FW
/*
timer to setup interrupt quotas for a 100ms period from
monitor thread
*/
void GPIO::timer_tick()
{
// allow 100k interrupts/second max for GPIO interrupt sources, which is
// 10k per 100ms call to timer_tick()
#if HAVE_GPIO_PINS
const uint16_t quota = 10000U;
for (uint8_t i=0; i<ARRAY_SIZE(_gpio_tab); i++) {
if (_gpio_tab[i].isr_quota != 1) {
// Reset quota for next tick
_gpio_tab[i].isr_quota = quota;
continue;
}
// we ran out of ISR quota for this pin since the last
// check. This is not really an internal error, but we use
// INTERNAL_ERROR() to get the reporting mechanism
if (_gpio_tab[i].isr_disabled_ticks == 0) {
#ifndef HAL_NO_UARTDRIVER
GCS_SEND_TEXT(MAV_SEVERITY_ERROR,"ISR flood on pin %u", _gpio_tab[i].pin_num);
#endif
// Only trigger internal error if armed
if (hal.util->get_soft_armed()) {
INTERNAL_ERROR(AP_InternalError::error_t::gpio_isr);
}
}
if (hal.util->get_soft_armed()) {
// Don't start counting until disarmed
_gpio_tab[i].isr_disabled_ticks = 1;
continue;
}
// Increment disabled ticks, don't wrap
if (_gpio_tab[i].isr_disabled_ticks < UINT8_MAX) {
_gpio_tab[i].isr_disabled_ticks++;
}
// 100 * 100ms = 10 seconds
const uint8_t ISR_retry_ticks = 100U;
if ((_gpio_tab[i].isr_disabled_ticks > ISR_retry_ticks) && (_gpio_tab[i].fn != nullptr)) {
// Try re-enabling
#ifndef HAL_NO_UARTDRIVER
GCS_SEND_TEXT(MAV_SEVERITY_NOTICE, "Retrying pin %d after ISR flood", _gpio_tab[i].pin_num);
#endif
if (attach_interrupt(_gpio_tab[i].pin_num, _gpio_tab[i].fn, _gpio_tab[i].isr_mode)) {
// Success, reset quota
_gpio_tab[i].isr_quota = quota;
} else {
// Failed, reset disabled count to try again later
_gpio_tab[i].isr_disabled_ticks = 1;
}
}
}
#endif // HAVE_GPIO_PINS
}
// Check for ISR floods
bool GPIO::arming_checks(size_t buflen, char *buffer) const
{
#if HAVE_GPIO_PINS
for (uint8_t i=0; i<ARRAY_SIZE(_gpio_tab); i++) {
if (_gpio_tab[i].isr_disabled_ticks != 0) {
hal.util->snprintf(buffer, buflen, "Pin %u disabled (ISR flood)", _gpio_tab[i].pin_num);
return false;
}
}
#endif // HAVE_GPIO_PINS
return true;
}
#endif // IOMCU_FW