mirror of https://github.com/ArduPilot/ardupilot
310 lines
9.9 KiB
C++
310 lines
9.9 KiB
C++
|
/*
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
/*
|
||
|
simulate a static tether attached to the vehicle and ground
|
||
|
*/
|
||
|
|
||
|
#include "SIM_config.h"
|
||
|
|
||
|
#if AP_SIM_TETHER_ENABLED
|
||
|
|
||
|
#include "SIM_Tether.h"
|
||
|
#include "SITL.h"
|
||
|
#include <stdio.h>
|
||
|
#include "SIM_Aircraft.h"
|
||
|
#include <AP_HAL_SITL/SITL_State.h>
|
||
|
#include <GCS_MAVLink/GCS.h>
|
||
|
#include <AP_Logger/AP_Logger.h>
|
||
|
|
||
|
using namespace SITL;
|
||
|
|
||
|
// TetherSim parameters
|
||
|
const AP_Param::GroupInfo TetherSim::var_info[] = {
|
||
|
// @Param: ENABLE
|
||
|
// @DisplayName: Tether Simulation Enable/Disable
|
||
|
// @Description: Enable or disable the tether simulation
|
||
|
// @Values: 0:Disabled,1:Enabled
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO_FLAGS("ENABLE", 1, TetherSim, enable, 0, AP_PARAM_FLAG_ENABLE),
|
||
|
|
||
|
// @Param: DENSITY
|
||
|
// @DisplayName: Tether Wire Density
|
||
|
// @Description: Linear mass density of the tether wire
|
||
|
// @Range: 0 1
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO("DENSITY", 2, TetherSim, tether_linear_density, 0.0167),
|
||
|
|
||
|
// @Param: LINELEN
|
||
|
// @DisplayName: Tether Maximum Line Length
|
||
|
// @Description: Maximum length of the tether line in meters
|
||
|
// @Units: m
|
||
|
// @Range: 0 100
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO("LINELEN", 3, TetherSim, max_line_length, 100.0),
|
||
|
|
||
|
// @Param: SYSID
|
||
|
// @DisplayName: Tether Simulation MAVLink System ID
|
||
|
// @Description: MAVLink system ID for the tether simulation, used to distinguish it from other systems on the network
|
||
|
// @Range: 0 255
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO("SYSID", 4, TetherSim, sys_id, 2),
|
||
|
|
||
|
// @Param: STUCK
|
||
|
// @DisplayName: Tether Stuck Enable/Disable
|
||
|
// @Description: Enable or disable a stuck tether simulation
|
||
|
// @Values: 0:Disabled,1:Enabled
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO("STUCK", 5, TetherSim, tether_stuck, 0),
|
||
|
|
||
|
// @Param: SPGCNST
|
||
|
// @DisplayName: Tether Spring Constant
|
||
|
// @Description: Spring constant for the tether to simulate elastic forces when stretched beyond its maximum length
|
||
|
// @Range: 0 255
|
||
|
// @User: Advanced
|
||
|
AP_GROUPINFO("SPGCNST", 6, TetherSim, tether_spring_constant, 100),
|
||
|
|
||
|
AP_GROUPEND
|
||
|
};
|
||
|
|
||
|
// TetherSim handles interaction with main vehicle
|
||
|
TetherSim::TetherSim()
|
||
|
{
|
||
|
AP_Param::setup_object_defaults(this, var_info);
|
||
|
}
|
||
|
|
||
|
|
||
|
void TetherSim::update(const Location& veh_pos)
|
||
|
{
|
||
|
if (!enable) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (veh_pos.is_zero()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// initialise fixed tether ground location
|
||
|
const uint32_t now_us = AP_HAL::micros();
|
||
|
if (!initialised) {
|
||
|
// capture EKF origin
|
||
|
auto *sitl = AP::sitl();
|
||
|
const Location ekf_origin = sitl->state.home;
|
||
|
if (ekf_origin.lat == 0 && ekf_origin.lng == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// more initialisation
|
||
|
last_update_us = now_us;
|
||
|
initialised = true;
|
||
|
}
|
||
|
|
||
|
// calculate dt and update tether forces
|
||
|
const float dt = (now_us - last_update_us)*1.0e-6;
|
||
|
last_update_us = now_us;
|
||
|
|
||
|
update_tether_force(veh_pos, dt);
|
||
|
|
||
|
// send tether location to GCS at 5hz
|
||
|
// TO-Do: add provision to make the tether movable
|
||
|
const uint32_t now_ms = AP_HAL::millis();
|
||
|
if (now_ms - last_report_ms >= reporting_period_ms) {
|
||
|
last_report_ms = now_ms;
|
||
|
send_report();
|
||
|
write_log();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// get earth-frame forces on the vehicle from the tether
|
||
|
// returns true on success and fills in forces_ef argument, false on failure
|
||
|
bool TetherSim::get_forces_on_vehicle(Vector3f& forces_ef) const
|
||
|
{
|
||
|
if (!enable) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
forces_ef = veh_forces_ef;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// send a report to the vehicle control code over MAVLink
|
||
|
void TetherSim::send_report(void)
|
||
|
{
|
||
|
if (!mavlink_connected && mav_socket.connect(target_address, target_port)) {
|
||
|
::printf("Tether System connected to %s:%u\n", target_address, (unsigned)target_port);
|
||
|
mavlink_connected = true;
|
||
|
}
|
||
|
if (!mavlink_connected) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// get current time
|
||
|
uint32_t now_ms = AP_HAL::millis();
|
||
|
|
||
|
// send heartbeat at 1hz
|
||
|
const uint8_t component_id = MAV_COMP_ID_USER11;
|
||
|
if (now_ms - last_heartbeat_ms >= 1000) {
|
||
|
last_heartbeat_ms = now_ms;
|
||
|
|
||
|
const mavlink_heartbeat_t heartbeat{
|
||
|
custom_mode: 0,
|
||
|
type : MAV_TYPE_GROUND_ROVER,
|
||
|
autopilot : MAV_AUTOPILOT_INVALID,
|
||
|
base_mode: 0,
|
||
|
system_status: 0,
|
||
|
mavlink_version: 0,
|
||
|
};
|
||
|
|
||
|
mavlink_message_t msg;
|
||
|
mavlink_msg_heartbeat_encode_status(
|
||
|
sys_id.get(),
|
||
|
component_id,
|
||
|
&mav_status,
|
||
|
&msg,
|
||
|
&heartbeat);
|
||
|
uint8_t buf[300];
|
||
|
const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
|
||
|
mav_socket.send(buf, len);
|
||
|
}
|
||
|
|
||
|
// send a GLOBAL_POSITION_INT messages
|
||
|
{
|
||
|
Location tether_anchor_loc;
|
||
|
int32_t alt_amsl_cm, alt_rel_cm;
|
||
|
if (!get_tether_ground_location(tether_anchor_loc) ||
|
||
|
!tether_anchor_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, alt_amsl_cm) ||
|
||
|
!tether_anchor_loc.get_alt_cm(Location::AltFrame::ABOVE_HOME, alt_rel_cm)) {
|
||
|
return;
|
||
|
}
|
||
|
const mavlink_global_position_int_t global_position_int{
|
||
|
time_boot_ms: now_ms,
|
||
|
lat: tether_anchor_loc.lat,
|
||
|
lon: tether_anchor_loc.lng,
|
||
|
alt: alt_amsl_cm * 10, // amsl alt in mm
|
||
|
relative_alt: alt_rel_cm * 10, // relative alt in mm
|
||
|
vx: 0, // velocity in cm/s
|
||
|
vy: 0, // velocity in cm/s
|
||
|
vz: 0, // velocity in cm/s
|
||
|
hdg: 0 // heading in centi-degrees
|
||
|
};
|
||
|
mavlink_message_t msg;
|
||
|
mavlink_msg_global_position_int_encode_status(sys_id, component_id, &mav_status, &msg, &global_position_int);
|
||
|
uint8_t buf[300];
|
||
|
const uint16_t len = mavlink_msg_to_send_buffer(buf, &msg);
|
||
|
if (len > 0) {
|
||
|
mav_socket.send(buf, len);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void TetherSim::write_log()
|
||
|
{
|
||
|
#if HAL_LOGGING_ENABLED
|
||
|
// write log of tether state
|
||
|
// @LoggerMessage: TETH
|
||
|
// @Description: Tether state
|
||
|
// @Field: TimeUS: Time since system startup
|
||
|
// @Field: Len: Tether length
|
||
|
// @Field: VFN: Force on vehicle in North direction
|
||
|
// @Field: VFE: Force on vehicle in East direction
|
||
|
// @Field: VFD: Force on vehicle in Down direction
|
||
|
AP::logger().WriteStreaming("TETH",
|
||
|
"TimeUS,Len,VFN,VFE,VFD", // labels
|
||
|
"s----", // units
|
||
|
"F----", // multipliers
|
||
|
"Qffff", // format
|
||
|
AP_HAL::micros64(),
|
||
|
(float)tether_length,
|
||
|
(double)veh_forces_ef.x,
|
||
|
(double)veh_forces_ef.y,
|
||
|
(double)veh_forces_ef.z);
|
||
|
#endif
|
||
|
}
|
||
|
// returns true on success and fills in tether_ground_loc argument, false on failure
|
||
|
bool TetherSim::get_tether_ground_location(Location& tether_ground_loc) const
|
||
|
{
|
||
|
// get EKF origin
|
||
|
auto *sitl = AP::sitl();
|
||
|
if (sitl == nullptr) {
|
||
|
return false;
|
||
|
}
|
||
|
const Location ekf_origin = sitl->state.home;
|
||
|
if (ekf_origin.lat == 0 && ekf_origin.lng == 0) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
tether_ground_loc = ekf_origin;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void TetherSim::update_tether_force(const Location& veh_pos, float dt)
|
||
|
{
|
||
|
|
||
|
Location tether_anchor_loc;
|
||
|
if (!get_tether_ground_location(tether_anchor_loc)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Step 1: Calculate the vector from the tether anchor to the vehicle
|
||
|
Vector3f tether_vector = veh_pos.get_distance_NED(tether_anchor_loc);
|
||
|
tether_length = tether_vector.length();
|
||
|
|
||
|
// Step 2: Check if tether is taut (length exceeds maximum allowed length) or stuck
|
||
|
if (tether_length > max_line_length) {
|
||
|
|
||
|
// Calculate the stretch beyond the maximum length
|
||
|
float stretch = MAX(tether_length - max_line_length, 0.0f);
|
||
|
|
||
|
// Apply a spring-like penalty force proportional to the stretch
|
||
|
float penalty_force_magnitude = tether_spring_constant * stretch;
|
||
|
|
||
|
// Direction of force is along the tether, pulling toward the anchor
|
||
|
veh_forces_ef = tether_vector.normalized() * penalty_force_magnitude;
|
||
|
|
||
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Tether: Exceeded maximum length.");
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (tether_stuck) {
|
||
|
|
||
|
// Calculate the stretch beyond the maximum length
|
||
|
float stretch = MAX(tether_length - tether_not_stuck_length, 0.0f);
|
||
|
|
||
|
// Apply a spring-like penalty force proportional to the stretch
|
||
|
float penalty_force_magnitude = tether_spring_constant * stretch;
|
||
|
|
||
|
// Direction of force is directly along the tether, towards the tether anchor point
|
||
|
veh_forces_ef = tether_vector.normalized() * penalty_force_magnitude;
|
||
|
|
||
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Tether: Stuck.");
|
||
|
|
||
|
return;
|
||
|
} else {
|
||
|
tether_not_stuck_length = tether_length;
|
||
|
}
|
||
|
|
||
|
// Step 3: Calculate the weight of the tether being lifted
|
||
|
// The weight is proportional to the current tether length
|
||
|
const float tether_weight_force = tether_linear_density * tether_length * GRAVITY_MSS;
|
||
|
|
||
|
// Step 4: Calculate the tension force
|
||
|
Vector3f tension_force_NED = tether_vector.normalized() * tether_weight_force;
|
||
|
|
||
|
// Step 5: Apply the force to the vehicle
|
||
|
veh_forces_ef = tension_force_NED;
|
||
|
}
|
||
|
|
||
|
#endif
|