ardupilot/libraries/AP_NavEKF/Models/QuaternionMathExample/PredictStates.m

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

84 lines
2.8 KiB
Mathematica
Raw Permalink Normal View History

function [nextQuat, nextStates, Tbn, correctedDelAng, correctedDelVel] = PredictStates( ...
quat, ... % previous quaternion states 4x1
states, ... % previous states (3x1 rotation error, 3x1 velocity, 3x1 gyro bias)
angRate, ... % IMU rate gyro measurements, 3x1 (rad/sec)
accel, ... % IMU accelerometer measurements 3x1 (m/s/s)
dt) % time since last IMU measurement (sec)
% Define parameters used for previous angular rates and acceleration shwich
% are used for trapezoidal integration
persistent prevAngRate;
if isempty(prevAngRate)
prevAngRate = angRate;
end
persistent prevAccel;
if isempty(prevAccel)
prevAccel = accel;
end
% define persistent variables for previous delta angle and velocity which
% are required for sculling and coning error corrections
persistent prevDelAng;
if isempty(prevDelAng)
prevDelAng = single([0;0;0]);
end
persistent prevDelVel;
if isempty(prevDelVel)
prevDelVel = single([0;0;0]);
end
% Convert IMU data to delta angles and velocities using trapezoidal
% integration
dAng = 0.5*(angRate + prevAngRate)*dt;
dVel = 0.5*(accel + prevAccel )*dt;
prevAngRate = angRate;
prevAccel = accel;
% Remove sensor bias errors
dAng = dAng - states(7:9);
% Apply rotational and skulling corrections
correctedDelVel= dVel + ...
0.5*cross(prevDelAng + dAng , prevDelVel + dVel) + 1/6*cross(prevDelAng + dAng , cross(prevDelAng + dAng , prevDelVel + dVel)) + ... % rotational correction
1/12*(cross(prevDelAng , dVel) + cross(prevDelVel , dAng)); % sculling correction
% Apply corrections for coning errors
correctedDelAng = dAng - 1/12*cross(prevDelAng , dAng);
% Save current measurements
prevDelAng = dAng;
prevDelVel = dVel;
% Initialise the updated state vector
nextQuat = quat;
nextStates = states;
% Convert the rotation vector to its equivalent quaternion
rotationMag = sqrt(correctedDelAng(1)^2 + correctedDelAng(2)^2 + correctedDelAng(3)^2);
if rotationMag<1e-12
deltaQuat = single([1;0;0;0]);
else
deltaQuat = [cos(0.5*rotationMag); correctedDelAng/rotationMag*sin(0.5*rotationMag)];
end
% Update the quaternions by rotating from the previous attitude through
% the delta angle rotation quaternion
qUpdated = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))];
% Normalise the quaternions and update the quaternion states
quatMag = sqrt(qUpdated(1)^2 + qUpdated(2)^2 + qUpdated(3)^2 + qUpdated(4)^2);
if (quatMag < 1e-16)
nextQuat(1:4) = qUpdated;
else
nextQuat(1:4) = qUpdated / quatMag;
end
% Calculate the body to nav cosine matrix
Tbn = Quat2Tbn(nextQuat);
% transform body delta velocities to delta velocities in the nav frame
delVelNav = Tbn * correctedDelVel + [0;0;9.807]*dt;
% Sum delta velocities to get velocity
nextStates(4:6) = states(4:6) + delVelNav(1:3);
end