ardupilot/libraries/AP_NavEKF/Models/GimbalEstimatorExample/calcEKF.m

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

96 lines
3.1 KiB
Mathematica
Raw Permalink Normal View History

function [quatOut,angRateBiasOut,logOut,headingAlignedOut] = calcEKF(delAngSlow,delVelSlow,measVel,gPhi,gPsi,gTheta,magMeas,declParam,time,dtSlow,frameIndex,maxFrameIndex)
persistent velocityAligned;
if isempty(velocityAligned)
velocityAligned = 0;
end
persistent quat;
if isempty(quat)
quat = [1;0;0;0];
end
persistent states;
if isempty(states)
states = zeros(9,1);
end
persistent covariance;
if isempty(covariance)
% define the state covariances with the exception of the quaternion covariances
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
Sigma_dAngBias = 1*pi/180*dtSlow; % 1 Sigma uncertainty in delta angle bias
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]]).^2);
end
persistent headingAligned
if isempty(headingAligned)
headingAligned = 0;
end
persistent log;
if isempty(log)
% create data logging variables
log.time = zeros(1,maxFrameIndex);
log.states = zeros(9,maxFrameIndex);
log.quat = zeros(4,maxFrameIndex);
log.euler = zeros(3,maxFrameIndex);
log.tiltCorr = zeros(1,maxFrameIndex);
log.velInnov = zeros(3,maxFrameIndex);
log.decInnov = zeros(1,maxFrameIndex);
log.velInnovVar = log.velInnov;
log.decInnovVar = log.decInnov;
end
% predict states
[quat, states, Tsn, delAngCorrected, delVelCorrected] = PredictStates(quat,states,delAngSlow,delVelSlow,dtSlow);
% log state prediction data
log.states(:,frameIndex) = states;
log.quat(:,frameIndex) = quat;
log.euler(:,frameIndex) = QuatToEul(quat);
% predict covariance matrix
covariance = PredictCovarianceOptimised(delAngCorrected,delVelCorrected,quat,states,covariance,dtSlow);
if (velocityAligned == 0)
% initialise velocity states
states(4:6) = measVel;
velocityAligned = 1;
else
% fuse velocity measurements
[quat,states,tiltCorrection,covariance,velInnov,velInnovVar] = FuseVelocity(quat,states,covariance,measVel);
% log velocity fusion data
log.velInnov(:,frameIndex) = velInnov;
log.velInnovVar(:,frameIndex) = velInnovVar;
log.tiltCorr(1,frameIndex) = tiltCorrection;
end
% Align the heading once there has been enough time for the filter to
% settle and the tilt corrections have dropped below a threshold
if (((time > 5.0 && tiltCorrection < 1e-4) || (time > 30.0)) && headingAligned==0)
% calculate the initial heading using magnetometer, gimbal,
% estimated tilt and declination
quat = AlignHeading(gPhi,gPsi,gTheta,Tsn,magMeas,quat,declParam);
headingAligned = 1;
end
% fuse magnetometer measurements and log fusion data
if (headingAligned == 1)
[quat,states,covariance,decInnov,decInnovVar] = FuseMagnetometer(quat,states,covariance,magMeas,declParam,gPhi,gPsi,gTheta);
log.decInnov(:,frameIndex) = decInnov;
log.decInnovVar(:,frameIndex) = decInnovVar;
end
% time stamp the log data
log.time(frameIndex) = time;
% write to the output data
quatOut = quat;
angRateBiasOut = states(7:9)/dtSlow;
logOut = log;
headingAlignedOut = headingAligned;
end