ardupilot/libraries/AP_NavEKF/Models/AttErrVecMathExample/RunSyntheticData.m

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

78 lines
3.0 KiB
Mathematica
Raw Permalink Normal View History

%% Set initial conditions
clear all;
dt = 1/100;
duration = 10;
indexLimit = round(duration/dt);
statesLog = zeros(10,indexLimit);
eulLog = zeros(4,indexLimit);
velInnovLog = zeros(4,indexLimit);
decInnovLog = zeros(2,indexLimit);
velInnovVarLog = velInnovLog;
decInnovVarLog = decInnovLog;
angErrLog = zeros(2,indexLimit);
% Use a random initial orientation
quatTruth = [rand;randn;randn;randn];
quatLength = sqrt(quatTruth(1)^2 + quatTruth(2)^2 + quatTruth(3)^2 + quatTruth(4)^2);
quatTruth = quatTruth / quatLength;
TbnTruth = Quat2Tbn(quatTruth);
% initialise the filter to level
quat = [1;0;0;0];
states = zeros(9,1);
Tbn = Quat2Tbn(quat);
% define the earths truth magnetic field
magEarthTruth = [0.3;0.1;-0.5];
% define the assumed declination using th etruth field plus location
% variation
measDec = atan2(magEarthTruth(2),magEarthTruth(1)) + 2*pi/180*randn;
% define the magnetometer bias errors
magMeasBias = 0.02*[randn;randn;randn];
% define the state covariances with the exception of the quaternion covariances
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
Sigma_dAngBias = 1*pi/180*dt; % 1 Sigma uncertainty in delta angle bias
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2));
%% Main Loop
headingAligned=0;
time = 0;
for index = 1:indexLimit
time=time+dt;
% synthesise IMU measurements
angRate = 0*[randn;randn;randn];
accel = 0*[randn;randn;randn] + transpose(TbnTruth)*[0;0;-9.81];
% predict states
[quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt);
statesLog(1,index) = time;
statesLog(2:10,index) = states;
eulLog(1,index) = time;
eulLog(2:4,index) = QuatToEul(quat);
% predict covariance matrix
covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt);
% synthesise velocity measurements
measVel = [0;0;0];
% fuse velocity measurements
[quat,states,angErr,covariance,velInnov,velInnovVar] = FuseVelocity(quat,states,covariance,measVel);
velInnovLog(1,index) = time;
velInnovLog(2:4,index) = velInnov;
velInnovVarLog(1,index) = time;
velInnovVarLog(2:4,index) = velInnovVar;
angErrLog(1,index) = time;
angErrLog(2,index) = angErr;
% synthesise magnetometer measurements adding sensor bias
magBody = transpose(TbnTruth)*magEarthTruth + magMeasBias;
% fuse magnetometer measurements
if (index > 500 && headingAligned==0 && angErr < 1e-4)
quat = AlignHeading(quat,magBody,measDec);
headingAligned = 1;
end
if (headingAligned == 1)
[quat,states,covariance,decInnov,decInnovVar] = FuseMagnetometer(quat,states,covariance,magBody,measDec,Tbn);
decInnovLog(1,index) = time;
decInnovLog(2,index) = decInnov;
decInnovVarLog(1,index) = time;
decInnovVarLog(2,index) = decInnovVar;
end
end
%% Generate Plots
PlotData;