650 lines
18 KiB
C
650 lines
18 KiB
C
/* Random objects */
|
|
|
|
/* ------------------------------------------------------------------
|
|
The code in this module was based on a download from:
|
|
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
|
|
|
|
It was modified in 2002 by Raymond Hettinger as follows:
|
|
|
|
* the principal computational lines untouched.
|
|
|
|
* renamed genrand_res53() to random_random() and wrapped
|
|
in python calling/return code.
|
|
|
|
* genrand_uint32() and the helper functions, init_genrand()
|
|
and init_by_array(), were declared static, wrapped in
|
|
Python calling/return code. also, their global data
|
|
references were replaced with structure references.
|
|
|
|
* unused functions from the original were deleted.
|
|
new, original C python code was added to implement the
|
|
Random() interface.
|
|
|
|
The following are the verbatim comments from the original code:
|
|
|
|
A C-program for MT19937, with initialization improved 2002/1/26.
|
|
Coded by Takuji Nishimura and Makoto Matsumoto.
|
|
|
|
Before using, initialize the state by using init_genrand(seed)
|
|
or init_by_array(init_key, key_length).
|
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of its contributors may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
Any feedback is very welcome.
|
|
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
|
|
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
|
|
*/
|
|
|
|
/* ---------------------------------------------------------------*/
|
|
|
|
#include "Python.h"
|
|
#ifdef HAVE_PROCESS_H
|
|
# include <process.h> // getpid()
|
|
#endif
|
|
|
|
/* Period parameters -- These are all magic. Don't change. */
|
|
#define N 624
|
|
#define M 397
|
|
#define MATRIX_A 0x9908b0dfU /* constant vector a */
|
|
#define UPPER_MASK 0x80000000U /* most significant w-r bits */
|
|
#define LOWER_MASK 0x7fffffffU /* least significant r bits */
|
|
|
|
typedef struct {
|
|
PyObject *Random_Type;
|
|
PyObject *Long___abs__;
|
|
} _randomstate;
|
|
|
|
static inline _randomstate*
|
|
get_random_state(PyObject *module)
|
|
{
|
|
void *state = PyModule_GetState(module);
|
|
assert(state != NULL);
|
|
return (_randomstate *)state;
|
|
}
|
|
|
|
static struct PyModuleDef _randommodule;
|
|
|
|
#define _randomstate_type(type) \
|
|
(get_random_state(_PyType_GetModuleByDef(type, &_randommodule)))
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
int index;
|
|
uint32_t state[N];
|
|
} RandomObject;
|
|
|
|
|
|
#include "clinic/_randommodule.c.h"
|
|
|
|
/*[clinic input]
|
|
module _random
|
|
class _random.Random "RandomObject *" "_randomstate_type(type)->Random_Type"
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=70a2c99619474983]*/
|
|
|
|
/* Random methods */
|
|
|
|
|
|
/* generates a random number on [0,0xffffffff]-interval */
|
|
static uint32_t
|
|
genrand_uint32(RandomObject *self)
|
|
{
|
|
uint32_t y;
|
|
static const uint32_t mag01[2] = {0x0U, MATRIX_A};
|
|
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
|
uint32_t *mt;
|
|
|
|
mt = self->state;
|
|
if (self->index >= N) { /* generate N words at one time */
|
|
int kk;
|
|
|
|
for (kk=0;kk<N-M;kk++) {
|
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
|
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1U];
|
|
}
|
|
for (;kk<N-1;kk++) {
|
|
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
|
|
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1U];
|
|
}
|
|
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
|
|
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1U];
|
|
|
|
self->index = 0;
|
|
}
|
|
|
|
y = mt[self->index++];
|
|
y ^= (y >> 11);
|
|
y ^= (y << 7) & 0x9d2c5680U;
|
|
y ^= (y << 15) & 0xefc60000U;
|
|
y ^= (y >> 18);
|
|
return y;
|
|
}
|
|
|
|
/* random_random is the function named genrand_res53 in the original code;
|
|
* generates a random number on [0,1) with 53-bit resolution; note that
|
|
* 9007199254740992 == 2**53; I assume they're spelling "/2**53" as
|
|
* multiply-by-reciprocal in the (likely vain) hope that the compiler will
|
|
* optimize the division away at compile-time. 67108864 is 2**26. In
|
|
* effect, a contains 27 random bits shifted left 26, and b fills in the
|
|
* lower 26 bits of the 53-bit numerator.
|
|
* The original code credited Isaku Wada for this algorithm, 2002/01/09.
|
|
*/
|
|
|
|
/*[clinic input]
|
|
_random.Random.random
|
|
|
|
self: self(type="RandomObject *")
|
|
|
|
random() -> x in the interval [0, 1).
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
_random_Random_random_impl(RandomObject *self)
|
|
/*[clinic end generated code: output=117ff99ee53d755c input=afb2a59cbbb00349]*/
|
|
{
|
|
uint32_t a=genrand_uint32(self)>>5, b=genrand_uint32(self)>>6;
|
|
return PyFloat_FromDouble((a*67108864.0+b)*(1.0/9007199254740992.0));
|
|
}
|
|
|
|
/* initializes mt[N] with a seed */
|
|
static void
|
|
init_genrand(RandomObject *self, uint32_t s)
|
|
{
|
|
int mti;
|
|
uint32_t *mt;
|
|
|
|
mt = self->state;
|
|
mt[0]= s;
|
|
for (mti=1; mti<N; mti++) {
|
|
mt[mti] =
|
|
(1812433253U * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous versions, MSBs of the seed affect */
|
|
/* only MSBs of the array mt[]. */
|
|
/* 2002/01/09 modified by Makoto Matsumoto */
|
|
}
|
|
self->index = mti;
|
|
return;
|
|
}
|
|
|
|
/* initialize by an array with array-length */
|
|
/* init_key is the array for initializing keys */
|
|
/* key_length is its length */
|
|
static void
|
|
init_by_array(RandomObject *self, uint32_t init_key[], size_t key_length)
|
|
{
|
|
size_t i, j, k; /* was signed in the original code. RDH 12/16/2002 */
|
|
uint32_t *mt;
|
|
|
|
mt = self->state;
|
|
init_genrand(self, 19650218U);
|
|
i=1; j=0;
|
|
k = (N>key_length ? N : key_length);
|
|
for (; k; k--) {
|
|
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525U))
|
|
+ init_key[j] + (uint32_t)j; /* non linear */
|
|
i++; j++;
|
|
if (i>=N) { mt[0] = mt[N-1]; i=1; }
|
|
if (j>=key_length) j=0;
|
|
}
|
|
for (k=N-1; k; k--) {
|
|
mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941U))
|
|
- (uint32_t)i; /* non linear */
|
|
i++;
|
|
if (i>=N) { mt[0] = mt[N-1]; i=1; }
|
|
}
|
|
|
|
mt[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
|
|
}
|
|
|
|
/*
|
|
* The rest is Python-specific code, neither part of, nor derived from, the
|
|
* Twister download.
|
|
*/
|
|
|
|
static int
|
|
random_seed_urandom(RandomObject *self)
|
|
{
|
|
uint32_t key[N];
|
|
|
|
if (_PyOS_URandomNonblock(key, sizeof(key)) < 0) {
|
|
return -1;
|
|
}
|
|
init_by_array(self, key, Py_ARRAY_LENGTH(key));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
random_seed_time_pid(RandomObject *self)
|
|
{
|
|
_PyTime_t now;
|
|
uint32_t key[5];
|
|
|
|
now = _PyTime_GetSystemClock();
|
|
key[0] = (uint32_t)(now & 0xffffffffU);
|
|
key[1] = (uint32_t)(now >> 32);
|
|
|
|
key[2] = (uint32_t)getpid();
|
|
|
|
now = _PyTime_GetMonotonicClock();
|
|
key[3] = (uint32_t)(now & 0xffffffffU);
|
|
key[4] = (uint32_t)(now >> 32);
|
|
|
|
init_by_array(self, key, Py_ARRAY_LENGTH(key));
|
|
}
|
|
|
|
static PyObject *
|
|
random_seed(RandomObject *self, PyObject *arg)
|
|
{
|
|
PyObject *result = NULL; /* guilty until proved innocent */
|
|
PyObject *n = NULL;
|
|
uint32_t *key = NULL;
|
|
size_t bits, keyused;
|
|
int res;
|
|
|
|
if (arg == NULL || arg == Py_None) {
|
|
if (random_seed_urandom(self) < 0) {
|
|
PyErr_Clear();
|
|
|
|
/* Reading system entropy failed, fall back on the worst entropy:
|
|
use the current time and process identifier. */
|
|
random_seed_time_pid(self);
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* This algorithm relies on the number being unsigned.
|
|
* So: if the arg is a PyLong, use its absolute value.
|
|
* Otherwise use its hash value, cast to unsigned.
|
|
*/
|
|
if (PyLong_CheckExact(arg)) {
|
|
n = PyNumber_Absolute(arg);
|
|
} else if (PyLong_Check(arg)) {
|
|
/* Calling int.__abs__() prevents calling arg.__abs__(), which might
|
|
return an invalid value. See issue #31478. */
|
|
_randomstate *state = _randomstate_type(Py_TYPE(self));
|
|
n = PyObject_CallOneArg(state->Long___abs__, arg);
|
|
}
|
|
else {
|
|
Py_hash_t hash = PyObject_Hash(arg);
|
|
if (hash == -1)
|
|
goto Done;
|
|
n = PyLong_FromSize_t((size_t)hash);
|
|
}
|
|
if (n == NULL)
|
|
goto Done;
|
|
|
|
/* Now split n into 32-bit chunks, from the right. */
|
|
bits = _PyLong_NumBits(n);
|
|
if (bits == (size_t)-1 && PyErr_Occurred())
|
|
goto Done;
|
|
|
|
/* Figure out how many 32-bit chunks this gives us. */
|
|
keyused = bits == 0 ? 1 : (bits - 1) / 32 + 1;
|
|
|
|
/* Convert seed to byte sequence. */
|
|
key = (uint32_t *)PyMem_Malloc((size_t)4 * keyused);
|
|
if (key == NULL) {
|
|
PyErr_NoMemory();
|
|
goto Done;
|
|
}
|
|
res = _PyLong_AsByteArray((PyLongObject *)n,
|
|
(unsigned char *)key, keyused * 4,
|
|
PY_LITTLE_ENDIAN,
|
|
0); /* unsigned */
|
|
if (res == -1) {
|
|
goto Done;
|
|
}
|
|
|
|
#if PY_BIG_ENDIAN
|
|
{
|
|
size_t i, j;
|
|
/* Reverse an array. */
|
|
for (i = 0, j = keyused - 1; i < j; i++, j--) {
|
|
uint32_t tmp = key[i];
|
|
key[i] = key[j];
|
|
key[j] = tmp;
|
|
}
|
|
}
|
|
#endif
|
|
init_by_array(self, key, keyused);
|
|
|
|
Py_INCREF(Py_None);
|
|
result = Py_None;
|
|
|
|
Done:
|
|
Py_XDECREF(n);
|
|
PyMem_Free(key);
|
|
return result;
|
|
}
|
|
|
|
/*[clinic input]
|
|
_random.Random.seed
|
|
|
|
self: self(type="RandomObject *")
|
|
n: object = None
|
|
/
|
|
|
|
seed([n]) -> None.
|
|
|
|
Defaults to use urandom and falls back to a combination
|
|
of the current time and the process identifier.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
_random_Random_seed_impl(RandomObject *self, PyObject *n)
|
|
/*[clinic end generated code: output=0fad1e16ba883681 input=78d6ef0d52532a54]*/
|
|
{
|
|
return random_seed(self, n);
|
|
}
|
|
|
|
/*[clinic input]
|
|
_random.Random.getstate
|
|
|
|
self: self(type="RandomObject *")
|
|
|
|
getstate() -> tuple containing the current state.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
_random_Random_getstate_impl(RandomObject *self)
|
|
/*[clinic end generated code: output=bf6cef0c092c7180 input=b937a487928c0e89]*/
|
|
{
|
|
PyObject *state;
|
|
PyObject *element;
|
|
int i;
|
|
|
|
state = PyTuple_New(N+1);
|
|
if (state == NULL)
|
|
return NULL;
|
|
for (i=0; i<N ; i++) {
|
|
element = PyLong_FromUnsignedLong(self->state[i]);
|
|
if (element == NULL)
|
|
goto Fail;
|
|
PyTuple_SET_ITEM(state, i, element);
|
|
}
|
|
element = PyLong_FromLong((long)(self->index));
|
|
if (element == NULL)
|
|
goto Fail;
|
|
PyTuple_SET_ITEM(state, i, element);
|
|
return state;
|
|
|
|
Fail:
|
|
Py_DECREF(state);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
_random.Random.setstate
|
|
|
|
self: self(type="RandomObject *")
|
|
state: object
|
|
/
|
|
|
|
setstate(state) -> None. Restores generator state.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
_random_Random_setstate(RandomObject *self, PyObject *state)
|
|
/*[clinic end generated code: output=fd1c3cd0037b6681 input=b3b4efbb1bc66af8]*/
|
|
{
|
|
int i;
|
|
unsigned long element;
|
|
long index;
|
|
uint32_t new_state[N];
|
|
|
|
if (!PyTuple_Check(state)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"state vector must be a tuple");
|
|
return NULL;
|
|
}
|
|
if (PyTuple_Size(state) != N+1) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"state vector is the wrong size");
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0; i<N ; i++) {
|
|
element = PyLong_AsUnsignedLong(PyTuple_GET_ITEM(state, i));
|
|
if (element == (unsigned long)-1 && PyErr_Occurred())
|
|
return NULL;
|
|
new_state[i] = (uint32_t)element;
|
|
}
|
|
|
|
index = PyLong_AsLong(PyTuple_GET_ITEM(state, i));
|
|
if (index == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (index < 0 || index > N) {
|
|
PyErr_SetString(PyExc_ValueError, "invalid state");
|
|
return NULL;
|
|
}
|
|
self->index = (int)index;
|
|
for (i = 0; i < N; i++)
|
|
self->state[i] = new_state[i];
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/*[clinic input]
|
|
|
|
_random.Random.getrandbits
|
|
|
|
self: self(type="RandomObject *")
|
|
k: int
|
|
/
|
|
|
|
getrandbits(k) -> x. Generates an int with k random bits.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
_random_Random_getrandbits_impl(RandomObject *self, int k)
|
|
/*[clinic end generated code: output=b402f82a2158887f input=8c0e6396dd176fc0]*/
|
|
{
|
|
int i, words;
|
|
uint32_t r;
|
|
uint32_t *wordarray;
|
|
PyObject *result;
|
|
|
|
if (k < 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"number of bits must be non-negative");
|
|
return NULL;
|
|
}
|
|
|
|
if (k == 0)
|
|
return PyLong_FromLong(0);
|
|
|
|
if (k <= 32) /* Fast path */
|
|
return PyLong_FromUnsignedLong(genrand_uint32(self) >> (32 - k));
|
|
|
|
words = (k - 1) / 32 + 1;
|
|
wordarray = (uint32_t *)PyMem_Malloc(words * 4);
|
|
if (wordarray == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
|
|
/* Fill-out bits of long integer, by 32-bit words, from least significant
|
|
to most significant. */
|
|
#if PY_LITTLE_ENDIAN
|
|
for (i = 0; i < words; i++, k -= 32)
|
|
#else
|
|
for (i = words - 1; i >= 0; i--, k -= 32)
|
|
#endif
|
|
{
|
|
r = genrand_uint32(self);
|
|
if (k < 32)
|
|
r >>= (32 - k); /* Drop least significant bits */
|
|
wordarray[i] = r;
|
|
}
|
|
|
|
result = _PyLong_FromByteArray((unsigned char *)wordarray, words * 4,
|
|
PY_LITTLE_ENDIAN, 0 /* unsigned */);
|
|
PyMem_Free(wordarray);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
random_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
RandomObject *self;
|
|
PyObject *tmp;
|
|
_randomstate *state = _randomstate_type(type);
|
|
|
|
if (type == (PyTypeObject*)state->Random_Type &&
|
|
!_PyArg_NoKeywords("Random()", kwds)) {
|
|
return NULL;
|
|
}
|
|
|
|
self = (RandomObject *)PyType_GenericAlloc(type, 0);
|
|
if (self == NULL)
|
|
return NULL;
|
|
tmp = random_seed(self, args);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(self);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(tmp);
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
|
|
static PyMethodDef random_methods[] = {
|
|
_RANDOM_RANDOM_RANDOM_METHODDEF
|
|
_RANDOM_RANDOM_SEED_METHODDEF
|
|
_RANDOM_RANDOM_GETSTATE_METHODDEF
|
|
_RANDOM_RANDOM_SETSTATE_METHODDEF
|
|
_RANDOM_RANDOM_GETRANDBITS_METHODDEF
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyDoc_STRVAR(random_doc,
|
|
"Random() -> create a random number generator with its own internal state.");
|
|
|
|
static PyType_Slot Random_Type_slots[] = {
|
|
{Py_tp_doc, (void *)random_doc},
|
|
{Py_tp_methods, random_methods},
|
|
{Py_tp_new, random_new},
|
|
{Py_tp_free, PyObject_Free},
|
|
{0, 0},
|
|
};
|
|
|
|
static PyType_Spec Random_Type_spec = {
|
|
"_random.Random",
|
|
sizeof(RandomObject),
|
|
0,
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
|
|
Random_Type_slots
|
|
};
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"Module implements the Mersenne Twister random number generator.");
|
|
|
|
static int
|
|
_random_exec(PyObject *module)
|
|
{
|
|
_randomstate *state = get_random_state(module);
|
|
|
|
state->Random_Type = PyType_FromModuleAndSpec(
|
|
module, &Random_Type_spec, NULL);
|
|
if (state->Random_Type == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddType(module, (PyTypeObject *)state->Random_Type) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* Look up and save int.__abs__, which is needed in random_seed(). */
|
|
PyObject *longval = longval = PyLong_FromLong(0);
|
|
if (longval == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
PyObject *longtype = PyObject_Type(longval);
|
|
Py_DECREF(longval);
|
|
if (longtype == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
state->Long___abs__ = PyObject_GetAttrString(longtype, "__abs__");
|
|
Py_DECREF(longtype);
|
|
if (state->Long___abs__ == NULL) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyModuleDef_Slot _random_slots[] = {
|
|
{Py_mod_exec, _random_exec},
|
|
{0, NULL}
|
|
};
|
|
|
|
static int
|
|
_random_traverse(PyObject *module, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(get_random_state(module)->Random_Type);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
_random_clear(PyObject *module)
|
|
{
|
|
Py_CLEAR(get_random_state(module)->Random_Type);
|
|
Py_CLEAR(get_random_state(module)->Long___abs__);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
_random_free(void *module)
|
|
{
|
|
_random_clear((PyObject *)module);
|
|
}
|
|
|
|
static struct PyModuleDef _randommodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"_random",
|
|
module_doc,
|
|
sizeof(_randomstate),
|
|
NULL,
|
|
_random_slots,
|
|
_random_traverse,
|
|
_random_clear,
|
|
_random_free,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__random(void)
|
|
{
|
|
return PyModuleDef_Init(&_randommodule);
|
|
}
|