1375 lines
54 KiB
TeX
1375 lines
54 KiB
TeX
\section{Built-in Types \label{types}}
|
|
|
|
The following sections describe the standard types that are built into
|
|
the interpreter. These are the numeric types, sequence types, and
|
|
several others, including types themselves. There is no explicit
|
|
Boolean type; use integers instead.
|
|
\indexii{built-in}{types}
|
|
\indexii{Boolean}{type}
|
|
|
|
Some operations are supported by several object types; in particular,
|
|
all objects can be compared, tested for truth value, and converted to
|
|
a string (with the \code{`\textrm{\ldots}`} notation). The latter
|
|
conversion is implicitly used when an object is written by the
|
|
\keyword{print}\stindex{print} statement.
|
|
|
|
|
|
\subsection{Truth Value Testing \label{truth}}
|
|
|
|
Any object can be tested for truth value, for use in an \keyword{if} or
|
|
\keyword{while} condition or as operand of the Boolean operations below.
|
|
The following values are considered false:
|
|
\stindex{if}
|
|
\stindex{while}
|
|
\indexii{truth}{value}
|
|
\indexii{Boolean}{operations}
|
|
\index{false}
|
|
|
|
\begin{itemize}
|
|
|
|
\item \code{None}
|
|
\withsubitem{(Built-in object)}{\ttindex{None}}
|
|
|
|
\item zero of any numeric type, for example, \code{0}, \code{0L},
|
|
\code{0.0}, \code{0j}.
|
|
|
|
\item any empty sequence, for example, \code{''}, \code{()}, \code{[]}.
|
|
|
|
\item any empty mapping, for example, \code{\{\}}.
|
|
|
|
\item instances of user-defined classes, if the class defines a
|
|
\method{__nonzero__()} or \method{__len__()} method, when that
|
|
method returns zero.\footnote{Additional information on these
|
|
special methods may be found in the \citetitle[../ref/ref.html]{Python
|
|
Reference Manual}.}
|
|
|
|
\end{itemize}
|
|
|
|
All other values are considered true --- so objects of many types are
|
|
always true.
|
|
\index{true}
|
|
|
|
Operations and built-in functions that have a Boolean result always
|
|
return \code{0} for false and \code{1} for true, unless otherwise
|
|
stated. (Important exception: the Boolean operations
|
|
\samp{or}\opindex{or} and \samp{and}\opindex{and} always return one of
|
|
their operands.)
|
|
|
|
|
|
\subsection{Boolean Operations \label{boolean}}
|
|
|
|
These are the Boolean operations, ordered by ascending priority:
|
|
\indexii{Boolean}{operations}
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{\var{x} or \var{y}}
|
|
{if \var{x} is false, then \var{y}, else \var{x}}{(1)}
|
|
\lineiii{\var{x} and \var{y}}
|
|
{if \var{x} is false, then \var{x}, else \var{y}}{(1)}
|
|
\hline
|
|
\lineiii{not \var{x}}
|
|
{if \var{x} is false, then \code{1}, else \code{0}}{(2)}
|
|
\end{tableiii}
|
|
\opindex{and}
|
|
\opindex{or}
|
|
\opindex{not}
|
|
|
|
\noindent
|
|
Notes:
|
|
|
|
\begin{description}
|
|
|
|
\item[(1)]
|
|
These only evaluate their second argument if needed for their outcome.
|
|
|
|
\item[(2)]
|
|
\samp{not} has a lower priority than non-Boolean operators, so
|
|
\code{not \var{a} == \var{b}} is interpreted as \code{not (\var{a} ==
|
|
\var{b})}, and \code{\var{a} == not \var{b}} is a syntax error.
|
|
|
|
\end{description}
|
|
|
|
|
|
\subsection{Comparisons \label{comparisons}}
|
|
|
|
Comparison operations are supported by all objects. They all have the
|
|
same priority (which is higher than that of the Boolean operations).
|
|
Comparisons can be chained arbitrarily; for example, \code{\var{x} <
|
|
\var{y} <= \var{z}} is equivalent to \code{\var{x} < \var{y} and
|
|
\var{y} <= \var{z}}, except that \var{y} is evaluated only once (but
|
|
in both cases \var{z} is not evaluated at all when \code{\var{x} <
|
|
\var{y}} is found to be false).
|
|
\indexii{chaining}{comparisons}
|
|
|
|
This table summarizes the comparison operations:
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Meaning}{Notes}
|
|
\lineiii{<}{strictly less than}{}
|
|
\lineiii{<=}{less than or equal}{}
|
|
\lineiii{>}{strictly greater than}{}
|
|
\lineiii{>=}{greater than or equal}{}
|
|
\lineiii{==}{equal}{}
|
|
\lineiii{!=}{not equal}{(1)}
|
|
\lineiii{<>}{not equal}{(1)}
|
|
\lineiii{is}{object identity}{}
|
|
\lineiii{is not}{negated object identity}{}
|
|
\end{tableiii}
|
|
\indexii{operator}{comparison}
|
|
\opindex{==} % XXX *All* others have funny characters < ! >
|
|
\opindex{is}
|
|
\opindex{is not}
|
|
|
|
\noindent
|
|
Notes:
|
|
|
|
\begin{description}
|
|
|
|
\item[(1)]
|
|
\code{<>} and \code{!=} are alternate spellings for the same operator.
|
|
(I couldn't choose between \ABC{} and C! :-)
|
|
\index{ABC language@\ABC{} language}
|
|
\index{language!ABC@\ABC{}}
|
|
\indexii{C}{language}
|
|
\code{!=} is the preferred spelling; \code{<>} is obsolescent.
|
|
|
|
\end{description}
|
|
|
|
Objects of different types, except different numeric types, never
|
|
compare equal; such objects are ordered consistently but arbitrarily
|
|
(so that sorting a heterogeneous array yields a consistent result).
|
|
Furthermore, some types (for example, file objects) support only a
|
|
degenerate notion of comparison where any two objects of that type are
|
|
unequal. Again, such objects are ordered arbitrarily but
|
|
consistently.
|
|
\indexii{object}{numeric}
|
|
\indexii{objects}{comparing}
|
|
|
|
Instances of a class normally compare as non-equal unless the class
|
|
\withsubitem{(instance method)}{\ttindex{__cmp__()}}
|
|
defines the \method{__cmp__()} method. Refer to the
|
|
\citetitle[../ref/customization.html]{Python Reference Manual} for
|
|
information on the use of this method to effect object comparisons.
|
|
|
|
\strong{Implementation note:} Objects of different types except
|
|
numbers are ordered by their type names; objects of the same types
|
|
that don't support proper comparison are ordered by their address.
|
|
|
|
Two more operations with the same syntactic priority,
|
|
\samp{in}\opindex{in} and \samp{not in}\opindex{not in}, are supported
|
|
only by sequence types (below).
|
|
|
|
|
|
\subsection{Numeric Types \label{typesnumeric}}
|
|
|
|
There are four numeric types: \dfn{plain integers}, \dfn{long integers},
|
|
\dfn{floating point numbers}, and \dfn{complex numbers}.
|
|
Plain integers (also just called \dfn{integers})
|
|
are implemented using \ctype{long} in C, which gives them at least 32
|
|
bits of precision. Long integers have unlimited precision. Floating
|
|
point numbers are implemented using \ctype{double} in C. All bets on
|
|
their precision are off unless you happen to know the machine you are
|
|
working with.
|
|
\obindex{numeric}
|
|
\obindex{integer}
|
|
\obindex{long integer}
|
|
\obindex{floating point}
|
|
\obindex{complex number}
|
|
\indexii{C}{language}
|
|
|
|
Complex numbers have a real and imaginary part, which are both
|
|
implemented using \ctype{double} in C. To extract these parts from
|
|
a complex number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.
|
|
|
|
Numbers are created by numeric literals or as the result of built-in
|
|
functions and operators. Unadorned integer literals (including hex
|
|
and octal numbers) yield plain integers. Integer literals with an
|
|
\character{L} or \character{l} suffix yield long integers
|
|
(\character{L} is preferred because \samp{1l} looks too much like
|
|
eleven!). Numeric literals containing a decimal point or an exponent
|
|
sign yield floating point numbers. Appending \character{j} or
|
|
\character{J} to a numeric literal yields a complex number.
|
|
\indexii{numeric}{literals}
|
|
\indexii{integer}{literals}
|
|
\indexiii{long}{integer}{literals}
|
|
\indexii{floating point}{literals}
|
|
\indexii{complex number}{literals}
|
|
\indexii{hexadecimal}{literals}
|
|
\indexii{octal}{literals}
|
|
|
|
Python fully supports mixed arithmetic: when a binary arithmetic
|
|
operator has operands of different numeric types, the operand with the
|
|
``smaller'' type is converted to that of the other, where plain
|
|
integer is smaller than long integer is smaller than floating point is
|
|
smaller than complex.
|
|
Comparisons between numbers of mixed type use the same rule.\footnote{
|
|
As a consequence, the list \code{[1, 2]} is considered equal
|
|
to \code{[1.0, 2.0]}, and similar for tuples.
|
|
} The functions \function{int()}, \function{long()}, \function{float()},
|
|
and \function{complex()} can be used
|
|
to coerce numbers to a specific type.
|
|
\index{arithmetic}
|
|
\bifuncindex{int}
|
|
\bifuncindex{long}
|
|
\bifuncindex{float}
|
|
\bifuncindex{complex}
|
|
|
|
All numeric types support the following operations, sorted by
|
|
ascending priority (operations in the same box have the same
|
|
priority; all numeric operations have a higher priority than
|
|
comparison operations):
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{}
|
|
\lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{}
|
|
\hline
|
|
\lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{}
|
|
\lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)}
|
|
\lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{}
|
|
\hline
|
|
\lineiii{-\var{x}}{\var{x} negated}{}
|
|
\lineiii{+\var{x}}{\var{x} unchanged}{}
|
|
\hline
|
|
\lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
|
|
\lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
|
|
\lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
|
|
\lineiii{float(\var{x})}{\var{x} converted to floating point}{}
|
|
\lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
|
|
\lineiii{\var{c}.conjugate()}{conjugate of the complex number \var{c}}{}
|
|
\lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)}
|
|
\lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
|
|
\lineiii{\var{x} ** \var{y}}{\var{x} to the power \var{y}}{}
|
|
\end{tableiii}
|
|
\indexiii{operations on}{numeric}{types}
|
|
\withsubitem{(complex number method)}{\ttindex{conjugate()}}
|
|
|
|
\noindent
|
|
Notes:
|
|
\begin{description}
|
|
|
|
\item[(1)]
|
|
For (plain or long) integer division, the result is an integer.
|
|
The result is always rounded towards minus infinity: 1/2 is 0,
|
|
(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result
|
|
is a long integer if either operand is a long integer, regardless of
|
|
the numeric value.
|
|
\indexii{integer}{division}
|
|
\indexiii{long}{integer}{division}
|
|
|
|
\item[(2)]
|
|
Conversion from floating point to (long or plain) integer may round or
|
|
truncate as in C; see functions \function{floor()} and
|
|
\function{ceil()} in the \refmodule{math}\refbimodindex{math} module
|
|
for well-defined conversions.
|
|
\withsubitem{(in module math)}{\ttindex{floor()}\ttindex{ceil()}}
|
|
\indexii{numeric}{conversions}
|
|
\indexii{C}{language}
|
|
|
|
\item[(3)]
|
|
See section \ref{built-in-funcs}, ``Built-in Functions,'' for a full
|
|
description.
|
|
|
|
\end{description}
|
|
% XXXJH exceptions: overflow (when? what operations?) zerodivision
|
|
|
|
\subsubsection{Bit-string Operations on Integer Types \label{bitstring-ops}}
|
|
\nodename{Bit-string Operations}
|
|
|
|
Plain and long integer types support additional operations that make
|
|
sense only for bit-strings. Negative numbers are treated as their 2's
|
|
complement value (for long integers, this assumes a sufficiently large
|
|
number of bits that no overflow occurs during the operation).
|
|
|
|
The priorities of the binary bit-wise operations are all lower than
|
|
the numeric operations and higher than the comparisons; the unary
|
|
operation \samp{\~} has the same priority as the other unary numeric
|
|
operations (\samp{+} and \samp{-}).
|
|
|
|
This table lists the bit-string operations sorted in ascending
|
|
priority (operations in the same box have the same priority):
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{}
|
|
\lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{}
|
|
\lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{}
|
|
\lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)}
|
|
\lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)}
|
|
\hline
|
|
\lineiii{\~\var{x}}{the bits of \var{x} inverted}{}
|
|
\end{tableiii}
|
|
\indexiii{operations on}{integer}{types}
|
|
\indexii{bit-string}{operations}
|
|
\indexii{shifting}{operations}
|
|
\indexii{masking}{operations}
|
|
|
|
\noindent
|
|
Notes:
|
|
\begin{description}
|
|
\item[(1)] Negative shift counts are illegal and cause a
|
|
\exception{ValueError} to be raised.
|
|
\item[(2)] A left shift by \var{n} bits is equivalent to
|
|
multiplication by \code{pow(2, \var{n})} without overflow check.
|
|
\item[(3)] A right shift by \var{n} bits is equivalent to
|
|
division by \code{pow(2, \var{n})} without overflow check.
|
|
\end{description}
|
|
|
|
|
|
\subsection{Iterator Types \label{typeiter}}
|
|
|
|
\versionadded{2.2}
|
|
\index{iterator protocol}
|
|
\index{protocol!iterator}
|
|
\index{sequence!iteration}
|
|
\index{container!iteration over}
|
|
|
|
Python supports a concept of iteration over containers. This is
|
|
implemented using two distinct methods; these are used to allow
|
|
user-defined classes to support iteration. Sequences, described below
|
|
in more detail, always support the iteration methods.
|
|
|
|
One method needs to be defined for container objects to provide
|
|
iteration support:
|
|
|
|
\begin{methoddesc}[container]{__iter__}{}
|
|
Return an iterator object. The object is required to support the
|
|
iterator protocol described below. If a container supports
|
|
different types of iteration, additional methods can be provided to
|
|
specifically request iterators for those iteration types. (An
|
|
example of an object supporting multiple forms of iteration would be
|
|
a tree structure which supports both breadth-first and depth-first
|
|
traversal.) This method corresponds to the \member{tp_iter} slot of
|
|
the type structure for Python objects in the Python/C API.
|
|
\end{methoddesc}
|
|
|
|
The iterator objects themselves are required to support the following
|
|
two methods, which together form the \dfn{iterator protocol}:
|
|
|
|
\begin{methoddesc}[iterator]{__iter__}{}
|
|
Return the iterator object itself. This is required to allow both
|
|
containers and iterators to be used with the \keyword{for} and
|
|
\keyword{in} statements. This method corresponds to the
|
|
\member{tp_iter} slot of the type structure for Python objects in
|
|
the Python/C API.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[iterator]{next}{}
|
|
Return the next item from the container. If there are no further
|
|
items, raise the \exception{StopIteration} exception. This method
|
|
corresponds to the \member{tp_iternext} slot of the type structure
|
|
for Python objects in the Python/C API.
|
|
\end{methoddesc}
|
|
|
|
Python defines several iterator objects to support iteration over
|
|
general and specific sequence types, dictionaries, and other more
|
|
specialized forms. The specific types are not important beyond their
|
|
implementation of the iterator protocol.
|
|
|
|
|
|
\subsection{Sequence Types \label{typesseq}}
|
|
|
|
There are six sequence types: strings, Unicode strings, lists,
|
|
tuples, buffers, and xrange objects.
|
|
|
|
Strings literals are written in single or double quotes:
|
|
\code{'xyzzy'}, \code{"frobozz"}. See chapter 2 of the
|
|
\citetitle[../ref/strings.html]{Python Reference Manual} for more about
|
|
string literals. Unicode strings are much like strings, but are
|
|
specified in the syntax using a preceeding \character{u} character:
|
|
\code{u'abc'}, \code{u"def"}. Lists are constructed with square brackets,
|
|
separating items with commas: \code{[a, b, c]}. Tuples are
|
|
constructed by the comma operator (not within square brackets), with
|
|
or without enclosing parentheses, but an empty tuple must have the
|
|
enclosing parentheses, e.g., \code{a, b, c} or \code{()}. A single
|
|
item tuple must have a trailing comma, e.g., \code{(d,)}.
|
|
\obindex{sequence}
|
|
\obindex{string}
|
|
\obindex{Unicode}
|
|
\obindex{tuple}
|
|
\obindex{list}
|
|
|
|
Buffer objects are not directly supported by Python syntax, but can be
|
|
created by calling the builtin function
|
|
\function{buffer()}.\bifuncindex{buffer}. They don't support
|
|
concatenation or repetition.
|
|
\obindex{buffer}
|
|
|
|
Xrange objects are similar to buffers in that there is no specific
|
|
syntax to create them, but they are created using the \function{xrange()}
|
|
function.\bifuncindex{xrange} They don't support slicing,
|
|
concatenation or repetition, and using \code{in}, \code{not in},
|
|
\function{min()} or \function{max()} on them is inefficient.
|
|
\obindex{xrange}
|
|
|
|
Most sequence types support the following operations. The \samp{in} and
|
|
\samp{not in} operations have the same priorities as the comparison
|
|
operations. The \samp{+} and \samp{*} operations have the same
|
|
priority as the corresponding numeric operations.\footnote{They must
|
|
have since the parser can't tell the type of the operands.}
|
|
|
|
This table lists the sequence operations sorted in ascending priority
|
|
(operations in the same box have the same priority). In the table,
|
|
\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i}
|
|
and \var{j} are integers:
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{}
|
|
\lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is
|
|
equal to \var{x}, else \code{1}}{}
|
|
\hline
|
|
\lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{}
|
|
\lineiii{\var{s} * \var{n}\textrm{,} \var{n} * \var{s}}{\var{n} copies of \var{s} concatenated}{(1)}
|
|
\hline
|
|
\lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(2)}
|
|
\lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(2), (3)}
|
|
\hline
|
|
\lineiii{len(\var{s})}{length of \var{s}}{}
|
|
\lineiii{min(\var{s})}{smallest item of \var{s}}{}
|
|
\lineiii{max(\var{s})}{largest item of \var{s}}{}
|
|
\end{tableiii}
|
|
\indexiii{operations on}{sequence}{types}
|
|
\bifuncindex{len}
|
|
\bifuncindex{min}
|
|
\bifuncindex{max}
|
|
\indexii{concatenation}{operation}
|
|
\indexii{repetition}{operation}
|
|
\indexii{subscript}{operation}
|
|
\indexii{slice}{operation}
|
|
\opindex{in}
|
|
\opindex{not in}
|
|
|
|
\noindent
|
|
Notes:
|
|
|
|
\begin{description}
|
|
\item[(1)] Values of \var{n} less than \code{0} are treated as
|
|
\code{0} (which yields an empty sequence of the same type as
|
|
\var{s}).
|
|
|
|
\item[(2)] If \var{i} or \var{j} is negative, the index is relative to
|
|
the end of the string: \code{len(\var{s}) + \var{i}} or
|
|
\code{len(\var{s}) + \var{j}} is substituted. But note that \code{-0} is
|
|
still \code{0}.
|
|
|
|
\item[(3)] The slice of \var{s} from \var{i} to \var{j} is defined as
|
|
the sequence of items with index \var{k} such that \code{\var{i} <=
|
|
\var{k} < \var{j}}. If \var{i} or \var{j} is greater than
|
|
\code{len(\var{s})}, use \code{len(\var{s})}. If \var{i} is omitted,
|
|
use \code{0}. If \var{j} is omitted, use \code{len(\var{s})}. If
|
|
\var{i} is greater than or equal to \var{j}, the slice is empty.
|
|
\end{description}
|
|
|
|
|
|
\subsubsection{String Methods \label{string-methods}}
|
|
|
|
These are the string methods which both 8-bit strings and Unicode
|
|
objects support:
|
|
|
|
\begin{methoddesc}[string]{capitalize}{}
|
|
Return a copy of the string with only its first character capitalized.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{center}{width}
|
|
Return centered in a string of length \var{width}. Padding is done
|
|
using spaces.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{count}{sub\optional{, start\optional{, end}}}
|
|
Return the number of occurrences of substring \var{sub} in string
|
|
S\code{[\var{start}:\var{end}]}. Optional arguments \var{start} and
|
|
\var{end} are interpreted as in slice notation.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{encode}{\optional{encoding\optional{,errors}}}
|
|
Return an encoded version of the string. Default encoding is the current
|
|
default string encoding. \var{errors} may be given to set a different
|
|
error handling scheme. The default for \var{errors} is
|
|
\code{'strict'}, meaning that encoding errors raise a
|
|
\exception{ValueError}. Other possible values are \code{'ignore'} and
|
|
\code{'replace'}.
|
|
\versionadded{2.0}
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{endswith}{suffix\optional{, start\optional{, end}}}
|
|
Return true if the string ends with the specified \var{suffix},
|
|
otherwise return false. With optional \var{start}, test beginning at
|
|
that position. With optional \var{end}, stop comparing at that position.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{expandtabs}{\optional{tabsize}}
|
|
Return a copy of the string where all tab characters are expanded
|
|
using spaces. If \var{tabsize} is not given, a tab size of \code{8}
|
|
characters is assumed.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{find}{sub\optional{, start\optional{, end}}}
|
|
Return the lowest index in the string where substring \var{sub} is
|
|
found, such that \var{sub} is contained in the range [\var{start},
|
|
\var{end}). Optional arguments \var{start} and \var{end} are
|
|
interpreted as in slice notation. Return \code{-1} if \var{sub} is
|
|
not found.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{index}{sub\optional{, start\optional{, end}}}
|
|
Like \method{find()}, but raise \exception{ValueError} when the
|
|
substring is not found.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{isalnum}{}
|
|
Return true if all characters in the string are alphanumeric and there
|
|
is at least one character, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{isalpha}{}
|
|
Return true if all characters in the string are alphabetic and there
|
|
is at least one character, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{isdigit}{}
|
|
Return true if there are only digit characters, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{islower}{}
|
|
Return true if all cased characters in the string are lowercase and
|
|
there is at least one cased character, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{isspace}{}
|
|
Return true if there are only whitespace characters in the string and
|
|
the string is not empty, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{istitle}{}
|
|
Return true if the string is a titlecased string: uppercase
|
|
characters may only follow uncased characters and lowercase characters
|
|
only cased ones. Return false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{isupper}{}
|
|
Return true if all cased characters in the string are uppercase and
|
|
there is at least one cased character, false otherwise.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{join}{seq}
|
|
Return a string which is the concatenation of the strings in the
|
|
sequence \var{seq}. The separator between elements is the string
|
|
providing this method.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{ljust}{width}
|
|
Return the string left justified in a string of length \var{width}.
|
|
Padding is done using spaces. The original string is returned if
|
|
\var{width} is less than \code{len(\var{s})}.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{lower}{}
|
|
Return a copy of the string converted to lowercase.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{lstrip}{}
|
|
Return a copy of the string with leading whitespace removed.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{replace}{old, new\optional{, maxsplit}}
|
|
Return a copy of the string with all occurrences of substring
|
|
\var{old} replaced by \var{new}. If the optional argument
|
|
\var{maxsplit} is given, only the first \var{maxsplit} occurrences are
|
|
replaced.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{rfind}{sub \optional{,start \optional{,end}}}
|
|
Return the highest index in the string where substring \var{sub} is
|
|
found, such that \var{sub} is contained within s[start,end]. Optional
|
|
arguments \var{start} and \var{end} are interpreted as in slice
|
|
notation. Return \code{-1} on failure.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{rindex}{sub\optional{, start\optional{, end}}}
|
|
Like \method{rfind()} but raises \exception{ValueError} when the
|
|
substring \var{sub} is not found.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{rjust}{width}
|
|
Return the string right justified in a string of length \var{width}.
|
|
Padding is done using spaces. The original string is returned if
|
|
\var{width} is less than \code{len(\var{s})}.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{rstrip}{}
|
|
Return a copy of the string with trailing whitespace removed.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{split}{\optional{sep \optional{,maxsplit}}}
|
|
Return a list of the words in the string, using \var{sep} as the
|
|
delimiter string. If \var{maxsplit} is given, at most \var{maxsplit}
|
|
splits are done. If \var{sep} is not specified or \code{None}, any
|
|
whitespace string is a separator.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{splitlines}{\optional{keepends}}
|
|
Return a list of the lines in the string, breaking at line
|
|
boundaries. Line breaks are not included in the resulting list unless
|
|
\var{keepends} is given and true.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{startswith}{prefix\optional{, start\optional{, end}}}
|
|
Return true if string starts with the \var{prefix}, otherwise
|
|
return false. With optional \var{start}, test string beginning at
|
|
that position. With optional \var{end}, stop comparing string at that
|
|
position.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{strip}{}
|
|
Return a copy of the string with leading and trailing whitespace
|
|
removed.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{swapcase}{}
|
|
Return a copy of the string with uppercase characters converted to
|
|
lowercase and vice versa.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{title}{}
|
|
Return a titlecased version of the string: words start with uppercase
|
|
characters, all remaining cased characters are lowercase.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{translate}{table\optional{, deletechars}}
|
|
Return a copy of the string where all characters occurring in the
|
|
optional argument \var{deletechars} are removed, and the remaining
|
|
characters have been mapped through the given translation table, which
|
|
must be a string of length 256.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[string]{upper}{}
|
|
Return a copy of the string converted to uppercase.
|
|
\end{methoddesc}
|
|
|
|
|
|
\subsubsection{String Formatting Operations \label{typesseq-strings}}
|
|
|
|
\index{formatting, string}
|
|
\index{string!formatting}
|
|
\index{printf-style formatting}
|
|
\index{sprintf-style formatting}
|
|
|
|
String and Unicode objects have one unique built-in operation: the
|
|
\code{\%} operator (modulo). Given \code{\var{format} \%
|
|
\var{values}} (where \var{format} is a string or Unicode object),
|
|
\code{\%} conversion specifications in \var{format} are replaced with
|
|
zero or more elements of \var{values}. The effect is similar to the
|
|
using \cfunction{sprintf()} in the C language. If \var{format} is a
|
|
Unicode object, or if any of the objects being converted using the
|
|
\code{\%s} conversion are Unicode objects, the result will be a
|
|
Unicode object as well.
|
|
|
|
If \var{format} requires a single argument, \var{values} may be a
|
|
single non-tuple object. \footnote{A tuple object in this case should
|
|
be a singleton.} Otherwise, \var{values} must be a tuple with
|
|
exactly the number of items specified by the format string, or a
|
|
single mapping object (for example, a dictionary).
|
|
|
|
A conversion specifier contains two or more characters and has the
|
|
following components, which must occur in this order:
|
|
|
|
\begin{enumerate}
|
|
\item The \character{\%} character, which marks the start of the
|
|
specifier.
|
|
\item Mapping key value (optional), consisting of an identifier in
|
|
parentheses (for example, \code{(somename)}).
|
|
\item Conversion flags (optional), which affect the result of some
|
|
conversion types.
|
|
\item Minimum field width (optional). If specified as an
|
|
\character{*} (asterisk), the actual width is read from the
|
|
next element of the tuple in \var{values}, and the object to
|
|
convert comes after the minimum field width and optional
|
|
precision.
|
|
\item Precision (optional), given as a \character{.} (dot) followed
|
|
by the precision. If specified as \character{*} (an
|
|
asterisk), the actual width is read from the next element of
|
|
the tuple in \var{values}, and the value to convert comes after
|
|
the precision.
|
|
\item Length modifier (optional).
|
|
\item Conversion type.
|
|
\end{enumerate}
|
|
|
|
If the right argument is a dictionary (or any kind of mapping), then
|
|
the formats in the string \emph{must} have a parenthesized key into
|
|
that dictionary inserted immediately after the \character{\%}
|
|
character, and each format formats the corresponding entry from the
|
|
mapping. For example:
|
|
|
|
\begin{verbatim}
|
|
>>> count = 2
|
|
>>> language = 'Python'
|
|
>>> print '%(language)s has %(count)03d quote types.' % vars()
|
|
Python has 002 quote types.
|
|
\end{verbatim}
|
|
|
|
In this case no \code{*} specifiers may occur in a format (since they
|
|
require a sequential parameter list).
|
|
|
|
The conversion flag characters are:
|
|
|
|
\begin{tableii}{c|l}{character}{Flag}{Meaning}
|
|
\lineii{\#}{The value conversion will use the ``alternate form''
|
|
(where defined below).}
|
|
\lineii{0}{The conversion will be zero padded.}
|
|
\lineii{-}{The converted value is left adjusted (overrides
|
|
\character{-}).}
|
|
\lineii{{~}}{(a space) A blank should be left before a positive number
|
|
(or empty string) produced by a signed conversion.}
|
|
\lineii{+}{A sign character (\character{+} or \character{-}) will
|
|
precede the conversion (overrides a "space" flag).}
|
|
\end{tableii}
|
|
|
|
The length modifier may be \code{h}, \code{l}, and \code{L} may be
|
|
present, but are ignored as they are not necessary for Python.
|
|
|
|
The conversion types are:
|
|
|
|
\begin{tableii}{c|l}{character}{Conversion}{Meaning}
|
|
\lineii{d}{Signed integer decimal.}
|
|
\lineii{i}{Signed integer decimal.}
|
|
\lineii{o}{Unsigned octal.}
|
|
\lineii{u}{Unsigned decimal.}
|
|
\lineii{x}{Unsigned hexidecimal (lowercase).}
|
|
\lineii{X}{Unsigned hexidecimal (uppercase).}
|
|
\lineii{e}{Floating point exponential format (lowercase).}
|
|
\lineii{E}{Floating point exponential format (uppercase).}
|
|
\lineii{f}{Floating point decimal format.}
|
|
\lineii{F}{Floating point decimal format.}
|
|
\lineii{g}{Same as \character{e} if exponent is greater than -4 or
|
|
less than precision, \character{f} otherwise.}
|
|
\lineii{G}{Same as \character{E} if exponent is greater than -4 or
|
|
less than precision, \character{F} otherwise.}
|
|
\lineii{c}{Single character (accepts integer or single character
|
|
string).}
|
|
\lineii{r}{String (converts any python object using
|
|
\function{repr()}).}
|
|
\lineii{s}{String (converts any python object using
|
|
\function{str()}).}
|
|
\lineii{\%}{No argument is converted, results in a \character{\%}
|
|
character in the result. (The complete specification is
|
|
\code{\%\%}.)}
|
|
\end{tableii}
|
|
|
|
% XXX Examples?
|
|
|
|
|
|
Since Python strings have an explicit length, \code{\%s} conversions
|
|
do not assume that \code{'\e0'} is the end of the string.
|
|
|
|
For safety reasons, floating point precisions are clipped to 50;
|
|
\code{\%f} conversions for numbers whose absolute value is over 1e25
|
|
are replaced by \code{\%g} conversions.\footnote{
|
|
These numbers are fairly arbitrary. They are intended to
|
|
avoid printing endless strings of meaningless digits without hampering
|
|
correct use and without having to know the exact precision of floating
|
|
point values on a particular machine.
|
|
} All other errors raise exceptions.
|
|
|
|
Additional string operations are defined in standard module
|
|
\refmodule{string} and in built-in module \refmodule{re}.
|
|
\refstmodindex{string}
|
|
\refstmodindex{re}
|
|
|
|
|
|
\subsubsection{XRange Type \label{typesseq-xrange}}
|
|
|
|
The xrange\obindex{xrange} type is an immutable sequence which is
|
|
commonly used for looping. The advantage of the xrange type is that an
|
|
xrange object will always take the same amount of memory, no matter the
|
|
size of the range it represents. There are no consistent performance
|
|
advantages.
|
|
|
|
XRange objects have very little behavior: they only support indexing
|
|
and the \function{len()} function.
|
|
|
|
|
|
\subsubsection{Mutable Sequence Types \label{typesseq-mutable}}
|
|
|
|
List objects support additional operations that allow in-place
|
|
modification of the object.
|
|
These operations would be supported by other mutable sequence types
|
|
(when added to the language) as well.
|
|
Strings and tuples are immutable sequence types and such objects cannot
|
|
be modified once created.
|
|
The following operations are defined on mutable sequence types (where
|
|
\var{x} is an arbitrary object):
|
|
\indexiii{mutable}{sequence}{types}
|
|
\obindex{list}
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{\var{s}[\var{i}] = \var{x}}
|
|
{item \var{i} of \var{s} is replaced by \var{x}}{}
|
|
\lineiii{\var{s}[\var{i}:\var{j}] = \var{t}}
|
|
{slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{}
|
|
\lineiii{del \var{s}[\var{i}:\var{j}]}
|
|
{same as \code{\var{s}[\var{i}:\var{j}] = []}}{}
|
|
\lineiii{\var{s}.append(\var{x})}
|
|
{same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{(1)}
|
|
\lineiii{\var{s}.extend(\var{x})}
|
|
{same as \code{\var{s}[len(\var{s}):len(\var{s})] = \var{x}}}{(2)}
|
|
\lineiii{\var{s}.count(\var{x})}
|
|
{return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{}
|
|
\lineiii{\var{s}.index(\var{x})}
|
|
{return smallest \var{i} such that \code{\var{s}[\var{i}] == \var{x}}}{(3)}
|
|
\lineiii{\var{s}.insert(\var{i}, \var{x})}
|
|
{same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}
|
|
if \code{\var{i} >= 0}}{}
|
|
\lineiii{\var{s}.pop(\optional{\var{i}})}
|
|
{same as \code{\var{x} = \var{s}[\var{i}]; del \var{s}[\var{i}]; return \var{x}}}{(4)}
|
|
\lineiii{\var{s}.remove(\var{x})}
|
|
{same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(3)}
|
|
\lineiii{\var{s}.reverse()}
|
|
{reverses the items of \var{s} in place}{(5)}
|
|
\lineiii{\var{s}.sort(\optional{\var{cmpfunc}})}
|
|
{sort the items of \var{s} in place}{(5), (6)}
|
|
\end{tableiii}
|
|
\indexiv{operations on}{mutable}{sequence}{types}
|
|
\indexiii{operations on}{sequence}{types}
|
|
\indexiii{operations on}{list}{type}
|
|
\indexii{subscript}{assignment}
|
|
\indexii{slice}{assignment}
|
|
\stindex{del}
|
|
\withsubitem{(list method)}{
|
|
\ttindex{append()}\ttindex{extend()}\ttindex{count()}\ttindex{index()}
|
|
\ttindex{insert()}\ttindex{pop()}\ttindex{remove()}\ttindex{reverse()}
|
|
\ttindex{sort()}}
|
|
\noindent
|
|
Notes:
|
|
\begin{description}
|
|
\item[(1)] The C implementation of Python has historically accepted
|
|
multiple parameters and implicitly joined them into a tuple; this
|
|
no longer works in Python 2.0. Use of this misfeature has been
|
|
deprecated since Python 1.4.
|
|
|
|
\item[(2)] Raises an exception when \var{x} is not a list object. The
|
|
\method{extend()} method is experimental and not supported by
|
|
mutable sequence types other than lists.
|
|
|
|
\item[(3)] Raises \exception{ValueError} when \var{x} is not found in
|
|
\var{s}.
|
|
|
|
\item[(4)] The \method{pop()} method is only supported by the list and
|
|
array types. The optional argument \var{i} defaults to \code{-1},
|
|
so that by default the last item is removed and returned.
|
|
|
|
\item[(5)] The \method{sort()} and \method{reverse()} methods modify the
|
|
list in place for economy of space when sorting or reversing a large
|
|
list. To remind you that they operate by side effect, they don't return
|
|
the sorted or reversed list.
|
|
|
|
\item[(6)] The \method{sort()} method takes an optional argument
|
|
specifying a comparison function of two arguments (list items) which
|
|
should return \code{-1}, \code{0} or \code{1} depending on whether
|
|
the first argument is considered smaller than, equal to, or larger
|
|
than the second argument. Note that this slows the sorting process
|
|
down considerably; e.g. to sort a list in reverse order it is much
|
|
faster to use calls to the methods \method{sort()} and
|
|
\method{reverse()} than to use the built-in function
|
|
\function{sort()} with a comparison function that reverses the
|
|
ordering of the elements.
|
|
\end{description}
|
|
|
|
|
|
\subsection{Mapping Types \label{typesmapping}}
|
|
\obindex{mapping}
|
|
\obindex{dictionary}
|
|
|
|
A \dfn{mapping} object maps values of one type (the key type) to
|
|
arbitrary objects. Mappings are mutable objects. There is currently
|
|
only one standard mapping type, the \dfn{dictionary}. A dictionary's keys are
|
|
almost arbitrary values. The only types of values not acceptable as
|
|
keys are values containing lists or dictionaries or other mutable
|
|
types that are compared by value rather than by object identity.
|
|
Numeric types used for keys obey the normal rules for numeric
|
|
comparison: if two numbers compare equal (e.g. \code{1} and
|
|
\code{1.0}) then they can be used interchangeably to index the same
|
|
dictionary entry.
|
|
|
|
Dictionaries are created by placing a comma-separated list of
|
|
\code{\var{key}: \var{value}} pairs within braces, for example:
|
|
\code{\{'jack': 4098, 'sjoerd': 4127\}} or
|
|
\code{\{4098: 'jack', 4127: 'sjoerd'\}}.
|
|
|
|
The following operations are defined on mappings (where \var{a} and
|
|
\var{b} are mappings, \var{k} is a key, and \var{v} and \var{x} are
|
|
arbitrary objects):
|
|
\indexiii{operations on}{mapping}{types}
|
|
\indexiii{operations on}{dictionary}{type}
|
|
\stindex{del}
|
|
\bifuncindex{len}
|
|
\withsubitem{(dictionary method)}{
|
|
\ttindex{clear()}
|
|
\ttindex{copy()}
|
|
\ttindex{has_key()}
|
|
\ttindex{items()}
|
|
\ttindex{keys()}
|
|
\ttindex{update()}
|
|
\ttindex{values()}
|
|
\ttindex{get()}}
|
|
|
|
\begin{tableiii}{c|l|c}{code}{Operation}{Result}{Notes}
|
|
\lineiii{len(\var{a})}{the number of items in \var{a}}{}
|
|
\lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
|
|
\lineiii{\var{a}[\var{k}] = \var{v}}
|
|
{set \code{\var{a}[\var{k}]} to \var{v}}
|
|
{}
|
|
\lineiii{del \var{a}[\var{k}]}
|
|
{remove \code{\var{a}[\var{k}]} from \var{a}}
|
|
{(1)}
|
|
\lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
|
|
\lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
|
|
\lineiii{\var{a}.has_key(\var{k})}
|
|
{\code{1} if \var{a} has a key \var{k}, else \code{0}}
|
|
{}
|
|
\lineiii{\var{k} \code{in} \var{a}}
|
|
{Equivalent to \var{a}.has_key(\var{k})}
|
|
{(2)}
|
|
\lineiii{\var{k} not in \var{a}}
|
|
{Equivalent to \code{not} \var{a}.has_key(\var{k})}
|
|
{(2)}
|
|
\lineiii{\var{a}.items()}
|
|
{a copy of \var{a}'s list of (\var{key}, \var{value}) pairs}
|
|
{(3)}
|
|
\lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(3)}
|
|
\lineiii{\var{a}.update(\var{b})}
|
|
{\code{for k in \var{b}.keys(): \var{a}[k] = \var{b}[k]}}
|
|
{}
|
|
\lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(3)}
|
|
\lineiii{\var{a}.get(\var{k}\optional{, \var{x}})}
|
|
{\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
|
|
else \var{x}}
|
|
{(4)}
|
|
\lineiii{\var{a}.setdefault(\var{k}\optional{, \var{x}})}
|
|
{\code{\var{a}[\var{k}]} if \code{\var{k} in \var{a}},
|
|
else \var{x} (also setting it)}
|
|
{(5)}
|
|
\lineiii{\var{a}.popitem()}
|
|
{remove and return an arbitrary (\var{key}, \var{value}) pair}
|
|
{(6)}
|
|
\lineiii{\var{a}.iteritems()}
|
|
{return an iterator over (\var{key}, \var{value}) pairs}
|
|
{(2)}
|
|
\lineiii{\var{a}.iterkeys()}
|
|
{return an iterator over the mapping's keys}
|
|
{(2)}
|
|
\lineiii{\var{a}.itervalues()}
|
|
{return an iterator over the mapping's values}
|
|
{(2)}
|
|
\end{tableiii}
|
|
|
|
\noindent
|
|
Notes:
|
|
\begin{description}
|
|
\item[(1)] Raises a \exception{KeyError} exception if \var{k} is not
|
|
in the map.
|
|
|
|
\item[(2)] \versionadded{2.2}
|
|
|
|
\item[(3)] Keys and values are listed in random order. If
|
|
\method{keys()} and \method{values()} are called with no intervening
|
|
modifications to the dictionary, the two lists will directly
|
|
correspond. This allows the creation of \code{(\var{value},
|
|
\var{key})} pairs using \function{zip()}: \samp{pairs =
|
|
zip(\var{a}.values(), \var{a}.keys())}.
|
|
|
|
\item[(4)] Never raises an exception if \var{k} is not in the map,
|
|
instead it returns \var{x}. \var{x} is optional; when \var{x} is not
|
|
provided and \var{k} is not in the map, \code{None} is returned.
|
|
|
|
\item[(5)] \function{setdefault()} is like \function{get()}, except
|
|
that if \var{k} is missing, \var{x} is both returned and inserted into
|
|
the dictionary as the value of \var{k}.
|
|
|
|
\item[(6)] \function{popitem()} is useful to destructively iterate
|
|
over a dictionary, as often used in set algorithms.
|
|
\end{description}
|
|
|
|
|
|
\subsection{Other Built-in Types \label{typesother}}
|
|
|
|
The interpreter supports several other kinds of objects.
|
|
Most of these support only one or two operations.
|
|
|
|
|
|
\subsubsection{Modules \label{typesmodules}}
|
|
|
|
The only special operation on a module is attribute access:
|
|
\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name}
|
|
accesses a name defined in \var{m}'s symbol table. Module attributes
|
|
can be assigned to. (Note that the \keyword{import} statement is not,
|
|
strictly speaking, an operation on a module object; \code{import
|
|
\var{foo}} does not require a module object named \var{foo} to exist,
|
|
rather it requires an (external) \emph{definition} for a module named
|
|
\var{foo} somewhere.)
|
|
|
|
A special member of every module is \member{__dict__}.
|
|
This is the dictionary containing the module's symbol table.
|
|
Modifying this dictionary will actually change the module's symbol
|
|
table, but direct assignment to the \member{__dict__} attribute is not
|
|
possible (you can write \code{\var{m}.__dict__['a'] = 1}, which
|
|
defines \code{\var{m}.a} to be \code{1}, but you can't write
|
|
\code{\var{m}.__dict__ = \{\}}.
|
|
|
|
Modules built into the interpreter are written like this:
|
|
\code{<module 'sys' (built-in)>}. If loaded from a file, they are
|
|
written as \code{<module 'os' from
|
|
'/usr/local/lib/python\shortversion/os.pyc'>}.
|
|
|
|
|
|
\subsubsection{Classes and Class Instances \label{typesobjects}}
|
|
\nodename{Classes and Instances}
|
|
|
|
See chapters 3 and 7 of the \citetitle[../ref/ref.html]{Python
|
|
Reference Manual} for these.
|
|
|
|
|
|
\subsubsection{Functions \label{typesfunctions}}
|
|
|
|
Function objects are created by function definitions. The only
|
|
operation on a function object is to call it:
|
|
\code{\var{func}(\var{argument-list})}.
|
|
|
|
There are really two flavors of function objects: built-in functions
|
|
and user-defined functions. Both support the same operation (to call
|
|
the function), but the implementation is different, hence the
|
|
different object types.
|
|
|
|
The implementation adds two special read-only attributes:
|
|
\code{\var{f}.func_code} is a function's \dfn{code
|
|
object}\obindex{code} (see below) and \code{\var{f}.func_globals} is
|
|
the dictionary used as the function's global namespace (this is the
|
|
same as \code{\var{m}.__dict__} where \var{m} is the module in which
|
|
the function \var{f} was defined).
|
|
|
|
Function objects also support getting and setting arbitrary
|
|
attributes, which can be used to, e.g. attach metadata to functions.
|
|
Regular attribute dot-notation is used to get and set such
|
|
attributes. \emph{Note that the current implementation only supports
|
|
function attributes on user-defined functions. Function attributes on
|
|
built-in functions may be supported in the future.}
|
|
|
|
Functions have another special attribute \code{\var{f}.__dict__}
|
|
(a.k.a. \code{\var{f}.func_dict}) which contains the namespace used to
|
|
support function attributes. \code{__dict__} and \code{func_dict} can
|
|
be accessed directly or set to a dictionary object. A function's
|
|
dictionary cannot be deleted.
|
|
|
|
\subsubsection{Methods \label{typesmethods}}
|
|
\obindex{method}
|
|
|
|
Methods are functions that are called using the attribute notation.
|
|
There are two flavors: built-in methods (such as \method{append()} on
|
|
lists) and class instance methods. Built-in methods are described
|
|
with the types that support them.
|
|
|
|
The implementation adds two special read-only attributes to class
|
|
instance methods: \code{\var{m}.im_self} is the object on which the
|
|
method operates, and \code{\var{m}.im_func} is the function
|
|
implementing the method. Calling \code{\var{m}(\var{arg-1},
|
|
\var{arg-2}, \textrm{\ldots}, \var{arg-n})} is completely equivalent to
|
|
calling \code{\var{m}.im_func(\var{m}.im_self, \var{arg-1},
|
|
\var{arg-2}, \textrm{\ldots}, \var{arg-n})}.
|
|
|
|
Class instance methods are either \emph{bound} or \emph{unbound},
|
|
referring to whether the method was accessed through an instance or a
|
|
class, respectively. When a method is unbound, its \code{im_self}
|
|
attribute will be \code{None} and if called, an explicit \code{self}
|
|
object must be passed as the first argument. In this case,
|
|
\code{self} must be an instance of the unbound method's class (or a
|
|
subclass of that class), otherwise a \code{TypeError} is raised.
|
|
|
|
Like function objects, methods objects support getting
|
|
arbitrary attributes. However, since method attributes are actually
|
|
stored on the underlying function object (\code{meth.im_func}),
|
|
setting method attributes on either bound or unbound methods is
|
|
disallowed. Attempting to set a method attribute results in a
|
|
\code{TypeError} being raised. In order to set a method attribute,
|
|
you need to explicitly set it on the underlying function object:
|
|
|
|
\begin{verbatim}
|
|
class C:
|
|
def method(self):
|
|
pass
|
|
|
|
c = C()
|
|
c.method.im_func.whoami = 'my name is c'
|
|
\end{verbatim}
|
|
|
|
See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
|
|
information.
|
|
|
|
|
|
\subsubsection{Code Objects \label{bltin-code-objects}}
|
|
\obindex{code}
|
|
|
|
Code objects are used by the implementation to represent
|
|
``pseudo-compiled'' executable Python code such as a function body.
|
|
They differ from function objects because they don't contain a
|
|
reference to their global execution environment. Code objects are
|
|
returned by the built-in \function{compile()} function and can be
|
|
extracted from function objects through their \member{func_code}
|
|
attribute.
|
|
\bifuncindex{compile}
|
|
\withsubitem{(function object attribute)}{\ttindex{func_code}}
|
|
|
|
A code object can be executed or evaluated by passing it (instead of a
|
|
source string) to the \keyword{exec} statement or the built-in
|
|
\function{eval()} function.
|
|
\stindex{exec}
|
|
\bifuncindex{eval}
|
|
|
|
See the \citetitle[../ref/ref.html]{Python Reference Manual} for more
|
|
information.
|
|
|
|
|
|
\subsubsection{Type Objects \label{bltin-type-objects}}
|
|
|
|
Type objects represent the various object types. An object's type is
|
|
accessed by the built-in function \function{type()}. There are no special
|
|
operations on types. The standard module \module{types} defines names
|
|
for all standard built-in types.
|
|
\bifuncindex{type}
|
|
\refstmodindex{types}
|
|
|
|
Types are written like this: \code{<type 'int'>}.
|
|
|
|
|
|
\subsubsection{The Null Object \label{bltin-null-object}}
|
|
|
|
This object is returned by functions that don't explicitly return a
|
|
value. It supports no special operations. There is exactly one null
|
|
object, named \code{None} (a built-in name).
|
|
|
|
It is written as \code{None}.
|
|
|
|
|
|
\subsubsection{The Ellipsis Object \label{bltin-ellipsis-object}}
|
|
|
|
This object is used by extended slice notation (see the
|
|
\citetitle[../ref/ref.html]{Python Reference Manual}). It supports no
|
|
special operations. There is exactly one ellipsis object, named
|
|
\constant{Ellipsis} (a built-in name).
|
|
|
|
It is written as \code{Ellipsis}.
|
|
|
|
|
|
\subsubsection{File Objects\obindex{file}
|
|
\label{bltin-file-objects}}
|
|
|
|
File objects are implemented using C's \code{stdio} package and can be
|
|
created with the built-in function
|
|
\function{open()}\bifuncindex{open} described in section
|
|
\ref{built-in-funcs}, ``Built-in Functions.'' They are also returned
|
|
by some other built-in functions and methods, such as
|
|
\function{os.popen()} and \function{os.fdopen()} and the
|
|
\method{makefile()} method of socket objects.
|
|
\refstmodindex{os}
|
|
\refbimodindex{socket}
|
|
|
|
When a file operation fails for an I/O-related reason, the exception
|
|
\exception{IOError} is raised. This includes situations where the
|
|
operation is not defined for some reason, like \method{seek()} on a tty
|
|
device or writing a file opened for reading.
|
|
|
|
Files have the following methods:
|
|
|
|
|
|
\begin{methoddesc}[file]{close}{}
|
|
Close the file. A closed file cannot be read or written anymore.
|
|
Any operation which requires that the file be open will raise a
|
|
\exception{ValueError} after the file has been closed. Calling
|
|
\method{close()} more than once is allowed.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{flush}{}
|
|
Flush the internal buffer, like \code{stdio}'s
|
|
\cfunction{fflush()}. This may be a no-op on some file-like
|
|
objects.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{isatty}{}
|
|
Return true if the file is connected to a tty(-like) device, else
|
|
false. \strong{Note:} If a file-like object is not associated
|
|
with a real file, this method should \emph{not} be implemented.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{fileno}{}
|
|
\index{file descriptor}
|
|
\index{descriptor, file}
|
|
Return the integer ``file descriptor'' that is used by the
|
|
underlying implementation to request I/O operations from the
|
|
operating system. This can be useful for other, lower level
|
|
interfaces that use file descriptors, such as the
|
|
\refmodule{fcntl}\refbimodindex{fcntl} module or
|
|
\function{os.read()} and friends. \strong{Note:} File-like objects
|
|
which do not have a real file descriptor should \emph{not} provide
|
|
this method!
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{read}{\optional{size}}
|
|
Read at most \var{size} bytes from the file (less if the read hits
|
|
\EOF{} before obtaining \var{size} bytes). If the \var{size}
|
|
argument is negative or omitted, read all data until \EOF{} is
|
|
reached. The bytes are returned as a string object. An empty
|
|
string is returned when \EOF{} is encountered immediately. (For
|
|
certain files, like ttys, it makes sense to continue reading after
|
|
an \EOF{} is hit.) Note that this method may call the underlying
|
|
C function \cfunction{fread()} more than once in an effort to
|
|
acquire as close to \var{size} bytes as possible.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{readline}{\optional{size}}
|
|
Read one entire line from the file. A trailing newline character is
|
|
kept in the string\footnote{
|
|
The advantage of leaving the newline on is that an empty string
|
|
can be returned to mean \EOF{} without being ambiguous. Another
|
|
advantage is that (in cases where it might matter, for example. if you
|
|
want to make an exact copy of a file while scanning its lines)
|
|
you can tell whether the last line of a file ended in a newline
|
|
or not (yes this happens!).
|
|
} (but may be absent when a file ends with an
|
|
incomplete line). If the \var{size} argument is present and
|
|
non-negative, it is a maximum byte count (including the trailing
|
|
newline) and an incomplete line may be returned.
|
|
An empty string is returned when \EOF{} is hit
|
|
immediately. Note: Unlike \code{stdio}'s \cfunction{fgets()}, the
|
|
returned string contains null characters (\code{'\e 0'}) if they
|
|
occurred in the input.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{readlines}{\optional{sizehint}}
|
|
Read until \EOF{} using \method{readline()} and return a list containing
|
|
the lines thus read. If the optional \var{sizehint} argument is
|
|
present, instead of reading up to \EOF{}, whole lines totalling
|
|
approximately \var{sizehint} bytes (possibly after rounding up to an
|
|
internal buffer size) are read. Objects implementing a file-like
|
|
interface may choose to ignore \var{sizehint} if it cannot be
|
|
implemented, or cannot be implemented efficiently.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{xreadlines}{}
|
|
Equivalent to
|
|
\function{xreadlines.xreadlines(\var{file})}.\refstmodindex{xreadlines}
|
|
(See the \refmodule{xreadlines} module for more information.)
|
|
\versionadded{2.1}
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{seek}{offset\optional{, whence}}
|
|
Set the file's current position, like \code{stdio}'s \cfunction{fseek()}.
|
|
The \var{whence} argument is optional and defaults to \code{0}
|
|
(absolute file positioning); other values are \code{1} (seek
|
|
relative to the current position) and \code{2} (seek relative to the
|
|
file's end). There is no return value. Note that if the file is
|
|
opened for appending (mode \code{'a'} or \code{'a+'}), any
|
|
\method{seek()} operations will be undone at the next write. If the
|
|
file is only opened for writing in append mode (mode \code{'a'}),
|
|
this method is essentially a no-op, but it remains useful for files
|
|
opened in append mode with reading enabled (mode \code{'a+'}).
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{tell}{}
|
|
Return the file's current position, like \code{stdio}'s
|
|
\cfunction{ftell()}.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{truncate}{\optional{size}}
|
|
Truncate the file's size. If the optional \var{size} argument
|
|
present, the file is truncated to (at most) that size. The size
|
|
defaults to the current position. Availability of this function
|
|
depends on the operating system version (for example, not all
|
|
\UNIX{} versions support this operation).
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{write}{str}
|
|
Write a string to the file. There is no return value. Note: Due to
|
|
buffering, the string may not actually show up in the file until
|
|
the \method{flush()} or \method{close()} method is called.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}[file]{writelines}{list}
|
|
Write a list of strings to the file. There is no return value.
|
|
(The name is intended to match \method{readlines()};
|
|
\method{writelines()} does not add line separators.)
|
|
\end{methoddesc}
|
|
|
|
|
|
File objects also offer a number of other interesting attributes.
|
|
These are not required for file-like objects, but should be
|
|
implemented if they make sense for the particular object.
|
|
|
|
\begin{memberdesc}[file]{closed}
|
|
Boolean indicating the current state of the file object. This is a
|
|
read-only attribute; the \method{close()} method changes the value.
|
|
It may not be available on all file-like objects.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[file]{mode}
|
|
The I/O mode for the file. If the file was created using the
|
|
\function{open()} built-in function, this will be the value of the
|
|
\var{mode} parameter. This is a read-only attribute and may not be
|
|
present on all file-like objects.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[file]{name}
|
|
If the file object was created using \function{open()}, the name of
|
|
the file. Otherwise, some string that indicates the source of the
|
|
file object, of the form \samp{<\mbox{\ldots}>}. This is a read-only
|
|
attribute and may not be present on all file-like objects.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[file]{softspace}
|
|
Boolean that indicates whether a space character needs to be printed
|
|
before another value when using the \keyword{print} statement.
|
|
Classes that are trying to simulate a file object should also have a
|
|
writable \member{softspace} attribute, which should be initialized to
|
|
zero. This will be automatic for most classes implemented in Python
|
|
(care may be needed for objects that override attribute access); types
|
|
implemented in C will have to provide a writable
|
|
\member{softspace} attribute.
|
|
\strong{Note:} This attribute is not used to control the
|
|
\keyword{print} statement, but to allow the implementation of
|
|
\keyword{print} to keep track of its internal state.
|
|
\end{memberdesc}
|
|
|
|
|
|
\subsubsection{Internal Objects \label{typesinternal}}
|
|
|
|
See the \citetitle[../ref/ref.html]{Python Reference Manual} for this
|
|
information. It describes stack frame objects, traceback objects, and
|
|
slice objects.
|
|
|
|
|
|
\subsection{Special Attributes \label{specialattrs}}
|
|
|
|
The implementation adds a few special read-only attributes to several
|
|
object types, where they are relevant:
|
|
|
|
\begin{memberdesc}[object]{__dict__}
|
|
A dictionary or other mapping object used to store an
|
|
object's (writable) attributes.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[object]{__methods__}
|
|
List of the methods of many built-in object types. For example,
|
|
\code{[].__methods__} yields \code{['append', 'count', 'index',
|
|
'insert', 'pop', 'remove', 'reverse', 'sort']}. This usually does not
|
|
need to be explicitly provided by the object.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[object]{__members__}
|
|
Similar to \member{__methods__}, but lists data attributes. This
|
|
usually does not need to be explicitly provided by the object, and
|
|
need not include the names of the attributes defined in this section.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[instance]{__class__}
|
|
The class to which a class instance belongs.
|
|
\end{memberdesc}
|
|
|
|
\begin{memberdesc}[class]{__bases__}
|
|
The tuple of base classes of a class object. If there are no base
|
|
classes, this will be an empty tuple.
|
|
\end{memberdesc}
|