4853 lines
147 KiB
C
4853 lines
147 KiB
C
|
|
/* Execute compiled code */
|
|
|
|
/* XXX TO DO:
|
|
XXX speed up searching for keywords by using a dictionary
|
|
XXX document it!
|
|
*/
|
|
|
|
/* enable more aggressive intra-module optimizations, where available */
|
|
#define PY_LOCAL_AGGRESSIVE
|
|
|
|
#include "Python.h"
|
|
|
|
#include "code.h"
|
|
#include "frameobject.h"
|
|
#include "opcode.h"
|
|
#include "structmember.h"
|
|
|
|
#include <ctype.h>
|
|
|
|
#ifndef WITH_TSC
|
|
|
|
#define READ_TIMESTAMP(var)
|
|
|
|
#else
|
|
|
|
typedef unsigned long long uint64;
|
|
|
|
/* PowerPC support.
|
|
"__ppc__" appears to be the preprocessor definition to detect on OS X, whereas
|
|
"__powerpc__" appears to be the correct one for Linux with GCC
|
|
*/
|
|
#if defined(__ppc__) || defined (__powerpc__)
|
|
|
|
#define READ_TIMESTAMP(var) ppc_getcounter(&var)
|
|
|
|
static void
|
|
ppc_getcounter(uint64 *v)
|
|
{
|
|
unsigned long tbu, tb, tbu2;
|
|
|
|
loop:
|
|
asm volatile ("mftbu %0" : "=r" (tbu) );
|
|
asm volatile ("mftb %0" : "=r" (tb) );
|
|
asm volatile ("mftbu %0" : "=r" (tbu2));
|
|
if (__builtin_expect(tbu != tbu2, 0)) goto loop;
|
|
|
|
/* The slightly peculiar way of writing the next lines is
|
|
compiled better by GCC than any other way I tried. */
|
|
((long*)(v))[0] = tbu;
|
|
((long*)(v))[1] = tb;
|
|
}
|
|
|
|
#elif defined(__i386__)
|
|
|
|
/* this is for linux/x86 (and probably any other GCC/x86 combo) */
|
|
|
|
#define READ_TIMESTAMP(val) \
|
|
__asm__ __volatile__("rdtsc" : "=A" (val))
|
|
|
|
#elif defined(__x86_64__)
|
|
|
|
/* for gcc/x86_64, the "A" constraint in DI mode means *either* rax *or* rdx;
|
|
not edx:eax as it does for i386. Since rdtsc puts its result in edx:eax
|
|
even in 64-bit mode, we need to use "a" and "d" for the lower and upper
|
|
32-bit pieces of the result. */
|
|
|
|
#define READ_TIMESTAMP(val) \
|
|
__asm__ __volatile__("rdtsc" : \
|
|
"=a" (((int*)&(val))[0]), "=d" (((int*)&(val))[1]));
|
|
|
|
|
|
#else
|
|
|
|
#error "Don't know how to implement timestamp counter for this architecture"
|
|
|
|
#endif
|
|
|
|
void dump_tsc(int opcode, int ticked, uint64 inst0, uint64 inst1,
|
|
uint64 loop0, uint64 loop1, uint64 intr0, uint64 intr1)
|
|
{
|
|
uint64 intr, inst, loop;
|
|
PyThreadState *tstate = PyThreadState_Get();
|
|
if (!tstate->interp->tscdump)
|
|
return;
|
|
intr = intr1 - intr0;
|
|
inst = inst1 - inst0 - intr;
|
|
loop = loop1 - loop0 - intr;
|
|
fprintf(stderr, "opcode=%03d t=%d inst=%06lld loop=%06lld\n",
|
|
opcode, ticked, inst, loop);
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Turn this on if your compiler chokes on the big switch: */
|
|
/* #define CASE_TOO_BIG 1 */
|
|
|
|
#ifdef Py_DEBUG
|
|
/* For debugging the interpreter: */
|
|
#define LLTRACE 1 /* Low-level trace feature */
|
|
#define CHECKEXC 1 /* Double-check exception checking */
|
|
#endif
|
|
|
|
typedef PyObject *(*callproc)(PyObject *, PyObject *, PyObject *);
|
|
|
|
/* Forward declarations */
|
|
#ifdef WITH_TSC
|
|
static PyObject * call_function(PyObject ***, int, uint64*, uint64*);
|
|
#else
|
|
static PyObject * call_function(PyObject ***, int);
|
|
#endif
|
|
static PyObject * fast_function(PyObject *, PyObject ***, int, int, int);
|
|
static PyObject * do_call(PyObject *, PyObject ***, int, int);
|
|
static PyObject * ext_do_call(PyObject *, PyObject ***, int, int, int);
|
|
static PyObject * update_keyword_args(PyObject *, int, PyObject ***,
|
|
PyObject *);
|
|
static PyObject * update_star_args(int, int, PyObject *, PyObject ***);
|
|
static PyObject * load_args(PyObject ***, int);
|
|
#define CALL_FLAG_VAR 1
|
|
#define CALL_FLAG_KW 2
|
|
|
|
#ifdef LLTRACE
|
|
static int lltrace;
|
|
static int prtrace(PyObject *, char *);
|
|
#endif
|
|
static int call_trace(Py_tracefunc, PyObject *, PyFrameObject *,
|
|
int, PyObject *);
|
|
static int call_trace_protected(Py_tracefunc, PyObject *,
|
|
PyFrameObject *, int, PyObject *);
|
|
static void call_exc_trace(Py_tracefunc, PyObject *, PyFrameObject *);
|
|
static int maybe_call_line_trace(Py_tracefunc, PyObject *,
|
|
PyFrameObject *, int *, int *, int *);
|
|
|
|
static PyObject * cmp_outcome(int, PyObject *, PyObject *);
|
|
static PyObject * import_from(PyObject *, PyObject *);
|
|
static int import_all_from(PyObject *, PyObject *);
|
|
static void format_exc_check_arg(PyObject *, const char *, PyObject *);
|
|
static void format_exc_unbound(PyCodeObject *co, int oparg);
|
|
static PyObject * unicode_concatenate(PyObject *, PyObject *,
|
|
PyFrameObject *, unsigned char *);
|
|
static PyObject * special_lookup(PyObject *, _Py_Identifier *);
|
|
|
|
#define NAME_ERROR_MSG \
|
|
"name '%.200s' is not defined"
|
|
#define UNBOUNDLOCAL_ERROR_MSG \
|
|
"local variable '%.200s' referenced before assignment"
|
|
#define UNBOUNDFREE_ERROR_MSG \
|
|
"free variable '%.200s' referenced before assignment" \
|
|
" in enclosing scope"
|
|
|
|
/* Dynamic execution profile */
|
|
#ifdef DYNAMIC_EXECUTION_PROFILE
|
|
#ifdef DXPAIRS
|
|
static long dxpairs[257][256];
|
|
#define dxp dxpairs[256]
|
|
#else
|
|
static long dxp[256];
|
|
#endif
|
|
#endif
|
|
|
|
/* Function call profile */
|
|
#ifdef CALL_PROFILE
|
|
#define PCALL_NUM 11
|
|
static int pcall[PCALL_NUM];
|
|
|
|
#define PCALL_ALL 0
|
|
#define PCALL_FUNCTION 1
|
|
#define PCALL_FAST_FUNCTION 2
|
|
#define PCALL_FASTER_FUNCTION 3
|
|
#define PCALL_METHOD 4
|
|
#define PCALL_BOUND_METHOD 5
|
|
#define PCALL_CFUNCTION 6
|
|
#define PCALL_TYPE 7
|
|
#define PCALL_GENERATOR 8
|
|
#define PCALL_OTHER 9
|
|
#define PCALL_POP 10
|
|
|
|
/* Notes about the statistics
|
|
|
|
PCALL_FAST stats
|
|
|
|
FAST_FUNCTION means no argument tuple needs to be created.
|
|
FASTER_FUNCTION means that the fast-path frame setup code is used.
|
|
|
|
If there is a method call where the call can be optimized by changing
|
|
the argument tuple and calling the function directly, it gets recorded
|
|
twice.
|
|
|
|
As a result, the relationship among the statistics appears to be
|
|
PCALL_ALL == PCALL_FUNCTION + PCALL_METHOD - PCALL_BOUND_METHOD +
|
|
PCALL_CFUNCTION + PCALL_TYPE + PCALL_GENERATOR + PCALL_OTHER
|
|
PCALL_FUNCTION > PCALL_FAST_FUNCTION > PCALL_FASTER_FUNCTION
|
|
PCALL_METHOD > PCALL_BOUND_METHOD
|
|
*/
|
|
|
|
#define PCALL(POS) pcall[POS]++
|
|
|
|
PyObject *
|
|
PyEval_GetCallStats(PyObject *self)
|
|
{
|
|
return Py_BuildValue("iiiiiiiiiii",
|
|
pcall[0], pcall[1], pcall[2], pcall[3],
|
|
pcall[4], pcall[5], pcall[6], pcall[7],
|
|
pcall[8], pcall[9], pcall[10]);
|
|
}
|
|
#else
|
|
#define PCALL(O)
|
|
|
|
PyObject *
|
|
PyEval_GetCallStats(PyObject *self)
|
|
{
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef WITH_THREAD
|
|
#define GIL_REQUEST _Py_atomic_load_relaxed(&gil_drop_request)
|
|
#else
|
|
#define GIL_REQUEST 0
|
|
#endif
|
|
|
|
/* This can set eval_breaker to 0 even though gil_drop_request became
|
|
1. We believe this is all right because the eval loop will release
|
|
the GIL eventually anyway. */
|
|
#define COMPUTE_EVAL_BREAKER() \
|
|
_Py_atomic_store_relaxed( \
|
|
&eval_breaker, \
|
|
GIL_REQUEST | \
|
|
_Py_atomic_load_relaxed(&pendingcalls_to_do) | \
|
|
pending_async_exc)
|
|
|
|
#ifdef WITH_THREAD
|
|
|
|
#define SET_GIL_DROP_REQUEST() \
|
|
do { \
|
|
_Py_atomic_store_relaxed(&gil_drop_request, 1); \
|
|
_Py_atomic_store_relaxed(&eval_breaker, 1); \
|
|
} while (0)
|
|
|
|
#define RESET_GIL_DROP_REQUEST() \
|
|
do { \
|
|
_Py_atomic_store_relaxed(&gil_drop_request, 0); \
|
|
COMPUTE_EVAL_BREAKER(); \
|
|
} while (0)
|
|
|
|
#endif
|
|
|
|
/* Pending calls are only modified under pending_lock */
|
|
#define SIGNAL_PENDING_CALLS() \
|
|
do { \
|
|
_Py_atomic_store_relaxed(&pendingcalls_to_do, 1); \
|
|
_Py_atomic_store_relaxed(&eval_breaker, 1); \
|
|
} while (0)
|
|
|
|
#define UNSIGNAL_PENDING_CALLS() \
|
|
do { \
|
|
_Py_atomic_store_relaxed(&pendingcalls_to_do, 0); \
|
|
COMPUTE_EVAL_BREAKER(); \
|
|
} while (0)
|
|
|
|
#define SIGNAL_ASYNC_EXC() \
|
|
do { \
|
|
pending_async_exc = 1; \
|
|
_Py_atomic_store_relaxed(&eval_breaker, 1); \
|
|
} while (0)
|
|
|
|
#define UNSIGNAL_ASYNC_EXC() \
|
|
do { pending_async_exc = 0; COMPUTE_EVAL_BREAKER(); } while (0)
|
|
|
|
|
|
#ifdef WITH_THREAD
|
|
|
|
#ifdef HAVE_ERRNO_H
|
|
#include <errno.h>
|
|
#endif
|
|
#include "pythread.h"
|
|
|
|
static PyThread_type_lock pending_lock = 0; /* for pending calls */
|
|
static long main_thread = 0;
|
|
/* This single variable consolidates all requests to break out of the fast path
|
|
in the eval loop. */
|
|
static _Py_atomic_int eval_breaker = {0};
|
|
/* Request for dropping the GIL */
|
|
static _Py_atomic_int gil_drop_request = {0};
|
|
/* Request for running pending calls. */
|
|
static _Py_atomic_int pendingcalls_to_do = {0};
|
|
/* Request for looking at the `async_exc` field of the current thread state.
|
|
Guarded by the GIL. */
|
|
static int pending_async_exc = 0;
|
|
|
|
#include "ceval_gil.h"
|
|
|
|
int
|
|
PyEval_ThreadsInitialized(void)
|
|
{
|
|
return gil_created();
|
|
}
|
|
|
|
void
|
|
PyEval_InitThreads(void)
|
|
{
|
|
if (gil_created())
|
|
return;
|
|
create_gil();
|
|
take_gil(PyThreadState_GET());
|
|
main_thread = PyThread_get_thread_ident();
|
|
if (!pending_lock)
|
|
pending_lock = PyThread_allocate_lock();
|
|
}
|
|
|
|
void
|
|
_PyEval_FiniThreads(void)
|
|
{
|
|
if (!gil_created())
|
|
return;
|
|
destroy_gil();
|
|
assert(!gil_created());
|
|
}
|
|
|
|
void
|
|
PyEval_AcquireLock(void)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
if (tstate == NULL)
|
|
Py_FatalError("PyEval_AcquireLock: current thread state is NULL");
|
|
take_gil(tstate);
|
|
}
|
|
|
|
void
|
|
PyEval_ReleaseLock(void)
|
|
{
|
|
/* This function must succeed when the current thread state is NULL.
|
|
We therefore avoid PyThreadState_GET() which dumps a fatal error
|
|
in debug mode.
|
|
*/
|
|
drop_gil((PyThreadState*)_Py_atomic_load_relaxed(
|
|
&_PyThreadState_Current));
|
|
}
|
|
|
|
void
|
|
PyEval_AcquireThread(PyThreadState *tstate)
|
|
{
|
|
if (tstate == NULL)
|
|
Py_FatalError("PyEval_AcquireThread: NULL new thread state");
|
|
/* Check someone has called PyEval_InitThreads() to create the lock */
|
|
assert(gil_created());
|
|
take_gil(tstate);
|
|
if (PyThreadState_Swap(tstate) != NULL)
|
|
Py_FatalError(
|
|
"PyEval_AcquireThread: non-NULL old thread state");
|
|
}
|
|
|
|
void
|
|
PyEval_ReleaseThread(PyThreadState *tstate)
|
|
{
|
|
if (tstate == NULL)
|
|
Py_FatalError("PyEval_ReleaseThread: NULL thread state");
|
|
if (PyThreadState_Swap(NULL) != tstate)
|
|
Py_FatalError("PyEval_ReleaseThread: wrong thread state");
|
|
drop_gil(tstate);
|
|
}
|
|
|
|
/* This function is called from PyOS_AfterFork to destroy all threads which are
|
|
* not running in the child process, and clear internal locks which might be
|
|
* held by those threads. (This could also be done using pthread_atfork
|
|
* mechanism, at least for the pthreads implementation.) */
|
|
|
|
void
|
|
PyEval_ReInitThreads(void)
|
|
{
|
|
_Py_IDENTIFIER(_after_fork);
|
|
PyObject *threading, *result;
|
|
PyThreadState *current_tstate = PyThreadState_GET();
|
|
|
|
if (!gil_created())
|
|
return;
|
|
recreate_gil();
|
|
pending_lock = PyThread_allocate_lock();
|
|
take_gil(current_tstate);
|
|
main_thread = PyThread_get_thread_ident();
|
|
|
|
/* Update the threading module with the new state.
|
|
*/
|
|
threading = PyMapping_GetItemString(current_tstate->interp->modules,
|
|
"threading");
|
|
if (threading == NULL) {
|
|
/* threading not imported */
|
|
PyErr_Clear();
|
|
return;
|
|
}
|
|
result = _PyObject_CallMethodId(threading, &PyId__after_fork, NULL);
|
|
if (result == NULL)
|
|
PyErr_WriteUnraisable(threading);
|
|
else
|
|
Py_DECREF(result);
|
|
Py_DECREF(threading);
|
|
|
|
/* Destroy all threads except the current one */
|
|
_PyThreadState_DeleteExcept(current_tstate);
|
|
}
|
|
|
|
#else
|
|
static _Py_atomic_int eval_breaker = {0};
|
|
static int pending_async_exc = 0;
|
|
#endif /* WITH_THREAD */
|
|
|
|
/* This function is used to signal that async exceptions are waiting to be
|
|
raised, therefore it is also useful in non-threaded builds. */
|
|
|
|
void
|
|
_PyEval_SignalAsyncExc(void)
|
|
{
|
|
SIGNAL_ASYNC_EXC();
|
|
}
|
|
|
|
/* Functions save_thread and restore_thread are always defined so
|
|
dynamically loaded modules needn't be compiled separately for use
|
|
with and without threads: */
|
|
|
|
PyThreadState *
|
|
PyEval_SaveThread(void)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_Swap(NULL);
|
|
if (tstate == NULL)
|
|
Py_FatalError("PyEval_SaveThread: NULL tstate");
|
|
#ifdef WITH_THREAD
|
|
if (gil_created())
|
|
drop_gil(tstate);
|
|
#endif
|
|
return tstate;
|
|
}
|
|
|
|
void
|
|
PyEval_RestoreThread(PyThreadState *tstate)
|
|
{
|
|
if (tstate == NULL)
|
|
Py_FatalError("PyEval_RestoreThread: NULL tstate");
|
|
#ifdef WITH_THREAD
|
|
if (gil_created()) {
|
|
int err = errno;
|
|
take_gil(tstate);
|
|
/* _Py_Finalizing is protected by the GIL */
|
|
if (_Py_Finalizing && tstate != _Py_Finalizing) {
|
|
drop_gil(tstate);
|
|
PyThread_exit_thread();
|
|
assert(0); /* unreachable */
|
|
}
|
|
errno = err;
|
|
}
|
|
#endif
|
|
PyThreadState_Swap(tstate);
|
|
}
|
|
|
|
|
|
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
|
|
signal handlers or Mac I/O completion routines) can schedule calls
|
|
to a function to be called synchronously.
|
|
The synchronous function is called with one void* argument.
|
|
It should return 0 for success or -1 for failure -- failure should
|
|
be accompanied by an exception.
|
|
|
|
If registry succeeds, the registry function returns 0; if it fails
|
|
(e.g. due to too many pending calls) it returns -1 (without setting
|
|
an exception condition).
|
|
|
|
Note that because registry may occur from within signal handlers,
|
|
or other asynchronous events, calling malloc() is unsafe!
|
|
|
|
#ifdef WITH_THREAD
|
|
Any thread can schedule pending calls, but only the main thread
|
|
will execute them.
|
|
There is no facility to schedule calls to a particular thread, but
|
|
that should be easy to change, should that ever be required. In
|
|
that case, the static variables here should go into the python
|
|
threadstate.
|
|
#endif
|
|
*/
|
|
|
|
#ifdef WITH_THREAD
|
|
|
|
/* The WITH_THREAD implementation is thread-safe. It allows
|
|
scheduling to be made from any thread, and even from an executing
|
|
callback.
|
|
*/
|
|
|
|
#define NPENDINGCALLS 32
|
|
static struct {
|
|
int (*func)(void *);
|
|
void *arg;
|
|
} pendingcalls[NPENDINGCALLS];
|
|
static int pendingfirst = 0;
|
|
static int pendinglast = 0;
|
|
|
|
int
|
|
Py_AddPendingCall(int (*func)(void *), void *arg)
|
|
{
|
|
int i, j, result=0;
|
|
PyThread_type_lock lock = pending_lock;
|
|
|
|
/* try a few times for the lock. Since this mechanism is used
|
|
* for signal handling (on the main thread), there is a (slim)
|
|
* chance that a signal is delivered on the same thread while we
|
|
* hold the lock during the Py_MakePendingCalls() function.
|
|
* This avoids a deadlock in that case.
|
|
* Note that signals can be delivered on any thread. In particular,
|
|
* on Windows, a SIGINT is delivered on a system-created worker
|
|
* thread.
|
|
* We also check for lock being NULL, in the unlikely case that
|
|
* this function is called before any bytecode evaluation takes place.
|
|
*/
|
|
if (lock != NULL) {
|
|
for (i = 0; i<100; i++) {
|
|
if (PyThread_acquire_lock(lock, NOWAIT_LOCK))
|
|
break;
|
|
}
|
|
if (i == 100)
|
|
return -1;
|
|
}
|
|
|
|
i = pendinglast;
|
|
j = (i + 1) % NPENDINGCALLS;
|
|
if (j == pendingfirst) {
|
|
result = -1; /* Queue full */
|
|
} else {
|
|
pendingcalls[i].func = func;
|
|
pendingcalls[i].arg = arg;
|
|
pendinglast = j;
|
|
}
|
|
/* signal main loop */
|
|
SIGNAL_PENDING_CALLS();
|
|
if (lock != NULL)
|
|
PyThread_release_lock(lock);
|
|
return result;
|
|
}
|
|
|
|
int
|
|
Py_MakePendingCalls(void)
|
|
{
|
|
static int busy = 0;
|
|
int i;
|
|
int r = 0;
|
|
|
|
if (!pending_lock) {
|
|
/* initial allocation of the lock */
|
|
pending_lock = PyThread_allocate_lock();
|
|
if (pending_lock == NULL)
|
|
return -1;
|
|
}
|
|
|
|
/* only service pending calls on main thread */
|
|
if (main_thread && PyThread_get_thread_ident() != main_thread)
|
|
return 0;
|
|
/* don't perform recursive pending calls */
|
|
if (busy)
|
|
return 0;
|
|
busy = 1;
|
|
/* perform a bounded number of calls, in case of recursion */
|
|
for (i=0; i<NPENDINGCALLS; i++) {
|
|
int j;
|
|
int (*func)(void *);
|
|
void *arg = NULL;
|
|
|
|
/* pop one item off the queue while holding the lock */
|
|
PyThread_acquire_lock(pending_lock, WAIT_LOCK);
|
|
j = pendingfirst;
|
|
if (j == pendinglast) {
|
|
func = NULL; /* Queue empty */
|
|
} else {
|
|
func = pendingcalls[j].func;
|
|
arg = pendingcalls[j].arg;
|
|
pendingfirst = (j + 1) % NPENDINGCALLS;
|
|
}
|
|
if (pendingfirst != pendinglast)
|
|
SIGNAL_PENDING_CALLS();
|
|
else
|
|
UNSIGNAL_PENDING_CALLS();
|
|
PyThread_release_lock(pending_lock);
|
|
/* having released the lock, perform the callback */
|
|
if (func == NULL)
|
|
break;
|
|
r = func(arg);
|
|
if (r)
|
|
break;
|
|
}
|
|
busy = 0;
|
|
return r;
|
|
}
|
|
|
|
#else /* if ! defined WITH_THREAD */
|
|
|
|
/*
|
|
WARNING! ASYNCHRONOUSLY EXECUTING CODE!
|
|
This code is used for signal handling in python that isn't built
|
|
with WITH_THREAD.
|
|
Don't use this implementation when Py_AddPendingCalls() can happen
|
|
on a different thread!
|
|
|
|
There are two possible race conditions:
|
|
(1) nested asynchronous calls to Py_AddPendingCall()
|
|
(2) AddPendingCall() calls made while pending calls are being processed.
|
|
|
|
(1) is very unlikely because typically signal delivery
|
|
is blocked during signal handling. So it should be impossible.
|
|
(2) is a real possibility.
|
|
The current code is safe against (2), but not against (1).
|
|
The safety against (2) is derived from the fact that only one
|
|
thread is present, interrupted by signals, and that the critical
|
|
section is protected with the "busy" variable. On Windows, which
|
|
delivers SIGINT on a system thread, this does not hold and therefore
|
|
Windows really shouldn't use this version.
|
|
The two threads could theoretically wiggle around the "busy" variable.
|
|
*/
|
|
|
|
#define NPENDINGCALLS 32
|
|
static struct {
|
|
int (*func)(void *);
|
|
void *arg;
|
|
} pendingcalls[NPENDINGCALLS];
|
|
static volatile int pendingfirst = 0;
|
|
static volatile int pendinglast = 0;
|
|
static _Py_atomic_int pendingcalls_to_do = {0};
|
|
|
|
int
|
|
Py_AddPendingCall(int (*func)(void *), void *arg)
|
|
{
|
|
static volatile int busy = 0;
|
|
int i, j;
|
|
/* XXX Begin critical section */
|
|
if (busy)
|
|
return -1;
|
|
busy = 1;
|
|
i = pendinglast;
|
|
j = (i + 1) % NPENDINGCALLS;
|
|
if (j == pendingfirst) {
|
|
busy = 0;
|
|
return -1; /* Queue full */
|
|
}
|
|
pendingcalls[i].func = func;
|
|
pendingcalls[i].arg = arg;
|
|
pendinglast = j;
|
|
|
|
SIGNAL_PENDING_CALLS();
|
|
busy = 0;
|
|
/* XXX End critical section */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
Py_MakePendingCalls(void)
|
|
{
|
|
static int busy = 0;
|
|
if (busy)
|
|
return 0;
|
|
busy = 1;
|
|
UNSIGNAL_PENDING_CALLS();
|
|
for (;;) {
|
|
int i;
|
|
int (*func)(void *);
|
|
void *arg;
|
|
i = pendingfirst;
|
|
if (i == pendinglast)
|
|
break; /* Queue empty */
|
|
func = pendingcalls[i].func;
|
|
arg = pendingcalls[i].arg;
|
|
pendingfirst = (i + 1) % NPENDINGCALLS;
|
|
if (func(arg) < 0) {
|
|
busy = 0;
|
|
SIGNAL_PENDING_CALLS(); /* We're not done yet */
|
|
return -1;
|
|
}
|
|
}
|
|
busy = 0;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* WITH_THREAD */
|
|
|
|
|
|
/* The interpreter's recursion limit */
|
|
|
|
#ifndef Py_DEFAULT_RECURSION_LIMIT
|
|
#define Py_DEFAULT_RECURSION_LIMIT 1000
|
|
#endif
|
|
static int recursion_limit = Py_DEFAULT_RECURSION_LIMIT;
|
|
int _Py_CheckRecursionLimit = Py_DEFAULT_RECURSION_LIMIT;
|
|
|
|
int
|
|
Py_GetRecursionLimit(void)
|
|
{
|
|
return recursion_limit;
|
|
}
|
|
|
|
void
|
|
Py_SetRecursionLimit(int new_limit)
|
|
{
|
|
recursion_limit = new_limit;
|
|
_Py_CheckRecursionLimit = recursion_limit;
|
|
}
|
|
|
|
/* the macro Py_EnterRecursiveCall() only calls _Py_CheckRecursiveCall()
|
|
if the recursion_depth reaches _Py_CheckRecursionLimit.
|
|
If USE_STACKCHECK, the macro decrements _Py_CheckRecursionLimit
|
|
to guarantee that _Py_CheckRecursiveCall() is regularly called.
|
|
Without USE_STACKCHECK, there is no need for this. */
|
|
int
|
|
_Py_CheckRecursiveCall(char *where)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
--tstate->recursion_depth;
|
|
PyErr_SetString(PyExc_MemoryError, "Stack overflow");
|
|
return -1;
|
|
}
|
|
#endif
|
|
_Py_CheckRecursionLimit = recursion_limit;
|
|
if (tstate->recursion_critical)
|
|
/* Somebody asked that we don't check for recursion. */
|
|
return 0;
|
|
if (tstate->overflowed) {
|
|
if (tstate->recursion_depth > recursion_limit + 50) {
|
|
/* Overflowing while handling an overflow. Give up. */
|
|
Py_FatalError("Cannot recover from stack overflow.");
|
|
}
|
|
return 0;
|
|
}
|
|
if (tstate->recursion_depth > recursion_limit) {
|
|
--tstate->recursion_depth;
|
|
tstate->overflowed = 1;
|
|
PyErr_Format(PyExc_RuntimeError,
|
|
"maximum recursion depth exceeded%s",
|
|
where);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Status code for main loop (reason for stack unwind) */
|
|
enum why_code {
|
|
WHY_NOT = 0x0001, /* No error */
|
|
WHY_EXCEPTION = 0x0002, /* Exception occurred */
|
|
WHY_RETURN = 0x0008, /* 'return' statement */
|
|
WHY_BREAK = 0x0010, /* 'break' statement */
|
|
WHY_CONTINUE = 0x0020, /* 'continue' statement */
|
|
WHY_YIELD = 0x0040, /* 'yield' operator */
|
|
WHY_SILENCED = 0x0080 /* Exception silenced by 'with' */
|
|
};
|
|
|
|
static void save_exc_state(PyThreadState *, PyFrameObject *);
|
|
static void swap_exc_state(PyThreadState *, PyFrameObject *);
|
|
static void restore_and_clear_exc_state(PyThreadState *, PyFrameObject *);
|
|
static int do_raise(PyObject *, PyObject *);
|
|
static int unpack_iterable(PyObject *, int, int, PyObject **);
|
|
|
|
/* Records whether tracing is on for any thread. Counts the number of
|
|
threads for which tstate->c_tracefunc is non-NULL, so if the value
|
|
is 0, we know we don't have to check this thread's c_tracefunc.
|
|
This speeds up the if statement in PyEval_EvalFrameEx() after
|
|
fast_next_opcode*/
|
|
static int _Py_TracingPossible = 0;
|
|
|
|
|
|
|
|
PyObject *
|
|
PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
|
|
{
|
|
return PyEval_EvalCodeEx(co,
|
|
globals, locals,
|
|
(PyObject **)NULL, 0,
|
|
(PyObject **)NULL, 0,
|
|
(PyObject **)NULL, 0,
|
|
NULL, NULL);
|
|
}
|
|
|
|
|
|
/* Interpreter main loop */
|
|
|
|
PyObject *
|
|
PyEval_EvalFrame(PyFrameObject *f) {
|
|
/* This is for backward compatibility with extension modules that
|
|
used this API; core interpreter code should call
|
|
PyEval_EvalFrameEx() */
|
|
return PyEval_EvalFrameEx(f, 0);
|
|
}
|
|
|
|
PyObject *
|
|
PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
|
|
{
|
|
#ifdef DXPAIRS
|
|
int lastopcode = 0;
|
|
#endif
|
|
PyObject **stack_pointer; /* Next free slot in value stack */
|
|
unsigned char *next_instr;
|
|
int opcode; /* Current opcode */
|
|
int oparg; /* Current opcode argument, if any */
|
|
enum why_code why; /* Reason for block stack unwind */
|
|
PyObject **fastlocals, **freevars;
|
|
PyObject *retval = NULL; /* Return value */
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyCodeObject *co;
|
|
|
|
/* when tracing we set things up so that
|
|
|
|
not (instr_lb <= current_bytecode_offset < instr_ub)
|
|
|
|
is true when the line being executed has changed. The
|
|
initial values are such as to make this false the first
|
|
time it is tested. */
|
|
int instr_ub = -1, instr_lb = 0, instr_prev = -1;
|
|
|
|
unsigned char *first_instr;
|
|
PyObject *names;
|
|
PyObject *consts;
|
|
|
|
#ifdef LLTRACE
|
|
_Py_IDENTIFIER(__ltrace__);
|
|
#endif
|
|
|
|
/* Computed GOTOs, or
|
|
the-optimization-commonly-but-improperly-known-as-"threaded code"
|
|
using gcc's labels-as-values extension
|
|
(http://gcc.gnu.org/onlinedocs/gcc/Labels-as-Values.html).
|
|
|
|
The traditional bytecode evaluation loop uses a "switch" statement, which
|
|
decent compilers will optimize as a single indirect branch instruction
|
|
combined with a lookup table of jump addresses. However, since the
|
|
indirect jump instruction is shared by all opcodes, the CPU will have a
|
|
hard time making the right prediction for where to jump next (actually,
|
|
it will be always wrong except in the uncommon case of a sequence of
|
|
several identical opcodes).
|
|
|
|
"Threaded code" in contrast, uses an explicit jump table and an explicit
|
|
indirect jump instruction at the end of each opcode. Since the jump
|
|
instruction is at a different address for each opcode, the CPU will make a
|
|
separate prediction for each of these instructions, which is equivalent to
|
|
predicting the second opcode of each opcode pair. These predictions have
|
|
a much better chance to turn out valid, especially in small bytecode loops.
|
|
|
|
A mispredicted branch on a modern CPU flushes the whole pipeline and
|
|
can cost several CPU cycles (depending on the pipeline depth),
|
|
and potentially many more instructions (depending on the pipeline width).
|
|
A correctly predicted branch, however, is nearly free.
|
|
|
|
At the time of this writing, the "threaded code" version is up to 15-20%
|
|
faster than the normal "switch" version, depending on the compiler and the
|
|
CPU architecture.
|
|
|
|
We disable the optimization if DYNAMIC_EXECUTION_PROFILE is defined,
|
|
because it would render the measurements invalid.
|
|
|
|
|
|
NOTE: care must be taken that the compiler doesn't try to "optimize" the
|
|
indirect jumps by sharing them between all opcodes. Such optimizations
|
|
can be disabled on gcc by using the -fno-gcse flag (or possibly
|
|
-fno-crossjumping).
|
|
*/
|
|
|
|
#ifdef DYNAMIC_EXECUTION_PROFILE
|
|
#undef USE_COMPUTED_GOTOS
|
|
#define USE_COMPUTED_GOTOS 0
|
|
#endif
|
|
|
|
#ifdef HAVE_COMPUTED_GOTOS
|
|
#ifndef USE_COMPUTED_GOTOS
|
|
#define USE_COMPUTED_GOTOS 1
|
|
#endif
|
|
#else
|
|
#if defined(USE_COMPUTED_GOTOS) && USE_COMPUTED_GOTOS
|
|
#error "Computed gotos are not supported on this compiler."
|
|
#endif
|
|
#undef USE_COMPUTED_GOTOS
|
|
#define USE_COMPUTED_GOTOS 0
|
|
#endif
|
|
|
|
#if USE_COMPUTED_GOTOS
|
|
/* Import the static jump table */
|
|
#include "opcode_targets.h"
|
|
|
|
/* This macro is used when several opcodes defer to the same implementation
|
|
(e.g. SETUP_LOOP, SETUP_FINALLY) */
|
|
#define TARGET_WITH_IMPL(op, impl) \
|
|
TARGET_##op: \
|
|
opcode = op; \
|
|
if (HAS_ARG(op)) \
|
|
oparg = NEXTARG(); \
|
|
case op: \
|
|
goto impl; \
|
|
|
|
#define TARGET(op) \
|
|
TARGET_##op: \
|
|
opcode = op; \
|
|
if (HAS_ARG(op)) \
|
|
oparg = NEXTARG(); \
|
|
case op:
|
|
|
|
|
|
#define DISPATCH() \
|
|
{ \
|
|
if (!_Py_atomic_load_relaxed(&eval_breaker)) { \
|
|
FAST_DISPATCH(); \
|
|
} \
|
|
continue; \
|
|
}
|
|
|
|
#ifdef LLTRACE
|
|
#define FAST_DISPATCH() \
|
|
{ \
|
|
if (!lltrace && !_Py_TracingPossible) { \
|
|
f->f_lasti = INSTR_OFFSET(); \
|
|
goto *opcode_targets[*next_instr++]; \
|
|
} \
|
|
goto fast_next_opcode; \
|
|
}
|
|
#else
|
|
#define FAST_DISPATCH() \
|
|
{ \
|
|
if (!_Py_TracingPossible) { \
|
|
f->f_lasti = INSTR_OFFSET(); \
|
|
goto *opcode_targets[*next_instr++]; \
|
|
} \
|
|
goto fast_next_opcode; \
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
#define TARGET(op) \
|
|
case op:
|
|
#define TARGET_WITH_IMPL(op, impl) \
|
|
/* silence compiler warnings about `impl` unused */ \
|
|
if (0) goto impl; \
|
|
case op:
|
|
#define DISPATCH() continue
|
|
#define FAST_DISPATCH() goto fast_next_opcode
|
|
#endif
|
|
|
|
|
|
/* Tuple access macros */
|
|
|
|
#ifndef Py_DEBUG
|
|
#define GETITEM(v, i) PyTuple_GET_ITEM((PyTupleObject *)(v), (i))
|
|
#else
|
|
#define GETITEM(v, i) PyTuple_GetItem((v), (i))
|
|
#endif
|
|
|
|
#ifdef WITH_TSC
|
|
/* Use Pentium timestamp counter to mark certain events:
|
|
inst0 -- beginning of switch statement for opcode dispatch
|
|
inst1 -- end of switch statement (may be skipped)
|
|
loop0 -- the top of the mainloop
|
|
loop1 -- place where control returns again to top of mainloop
|
|
(may be skipped)
|
|
intr1 -- beginning of long interruption
|
|
intr2 -- end of long interruption
|
|
|
|
Many opcodes call out to helper C functions. In some cases, the
|
|
time in those functions should be counted towards the time for the
|
|
opcode, but not in all cases. For example, a CALL_FUNCTION opcode
|
|
calls another Python function; there's no point in charge all the
|
|
bytecode executed by the called function to the caller.
|
|
|
|
It's hard to make a useful judgement statically. In the presence
|
|
of operator overloading, it's impossible to tell if a call will
|
|
execute new Python code or not.
|
|
|
|
It's a case-by-case judgement. I'll use intr1 for the following
|
|
cases:
|
|
|
|
IMPORT_STAR
|
|
IMPORT_FROM
|
|
CALL_FUNCTION (and friends)
|
|
|
|
*/
|
|
uint64 inst0, inst1, loop0, loop1, intr0 = 0, intr1 = 0;
|
|
int ticked = 0;
|
|
|
|
READ_TIMESTAMP(inst0);
|
|
READ_TIMESTAMP(inst1);
|
|
READ_TIMESTAMP(loop0);
|
|
READ_TIMESTAMP(loop1);
|
|
|
|
/* shut up the compiler */
|
|
opcode = 0;
|
|
#endif
|
|
|
|
/* Code access macros */
|
|
|
|
#define INSTR_OFFSET() ((int)(next_instr - first_instr))
|
|
#define NEXTOP() (*next_instr++)
|
|
#define NEXTARG() (next_instr += 2, (next_instr[-1]<<8) + next_instr[-2])
|
|
#define PEEKARG() ((next_instr[2]<<8) + next_instr[1])
|
|
#define JUMPTO(x) (next_instr = first_instr + (x))
|
|
#define JUMPBY(x) (next_instr += (x))
|
|
|
|
/* OpCode prediction macros
|
|
Some opcodes tend to come in pairs thus making it possible to
|
|
predict the second code when the first is run. For example,
|
|
COMPARE_OP is often followed by JUMP_IF_FALSE or JUMP_IF_TRUE. And,
|
|
those opcodes are often followed by a POP_TOP.
|
|
|
|
Verifying the prediction costs a single high-speed test of a register
|
|
variable against a constant. If the pairing was good, then the
|
|
processor's own internal branch predication has a high likelihood of
|
|
success, resulting in a nearly zero-overhead transition to the
|
|
next opcode. A successful prediction saves a trip through the eval-loop
|
|
including its two unpredictable branches, the HAS_ARG test and the
|
|
switch-case. Combined with the processor's internal branch prediction,
|
|
a successful PREDICT has the effect of making the two opcodes run as if
|
|
they were a single new opcode with the bodies combined.
|
|
|
|
If collecting opcode statistics, your choices are to either keep the
|
|
predictions turned-on and interpret the results as if some opcodes
|
|
had been combined or turn-off predictions so that the opcode frequency
|
|
counter updates for both opcodes.
|
|
|
|
Opcode prediction is disabled with threaded code, since the latter allows
|
|
the CPU to record separate branch prediction information for each
|
|
opcode.
|
|
|
|
*/
|
|
|
|
#if defined(DYNAMIC_EXECUTION_PROFILE) || USE_COMPUTED_GOTOS
|
|
#define PREDICT(op) if (0) goto PRED_##op
|
|
#define PREDICTED(op) PRED_##op:
|
|
#define PREDICTED_WITH_ARG(op) PRED_##op:
|
|
#else
|
|
#define PREDICT(op) if (*next_instr == op) goto PRED_##op
|
|
#define PREDICTED(op) PRED_##op: next_instr++
|
|
#define PREDICTED_WITH_ARG(op) PRED_##op: oparg = PEEKARG(); next_instr += 3
|
|
#endif
|
|
|
|
|
|
/* Stack manipulation macros */
|
|
|
|
/* The stack can grow at most MAXINT deep, as co_nlocals and
|
|
co_stacksize are ints. */
|
|
#define STACK_LEVEL() ((int)(stack_pointer - f->f_valuestack))
|
|
#define EMPTY() (STACK_LEVEL() == 0)
|
|
#define TOP() (stack_pointer[-1])
|
|
#define SECOND() (stack_pointer[-2])
|
|
#define THIRD() (stack_pointer[-3])
|
|
#define FOURTH() (stack_pointer[-4])
|
|
#define PEEK(n) (stack_pointer[-(n)])
|
|
#define SET_TOP(v) (stack_pointer[-1] = (v))
|
|
#define SET_SECOND(v) (stack_pointer[-2] = (v))
|
|
#define SET_THIRD(v) (stack_pointer[-3] = (v))
|
|
#define SET_FOURTH(v) (stack_pointer[-4] = (v))
|
|
#define SET_VALUE(n, v) (stack_pointer[-(n)] = (v))
|
|
#define BASIC_STACKADJ(n) (stack_pointer += n)
|
|
#define BASIC_PUSH(v) (*stack_pointer++ = (v))
|
|
#define BASIC_POP() (*--stack_pointer)
|
|
|
|
#ifdef LLTRACE
|
|
#define PUSH(v) { (void)(BASIC_PUSH(v), \
|
|
lltrace && prtrace(TOP(), "push")); \
|
|
assert(STACK_LEVEL() <= co->co_stacksize); }
|
|
#define POP() ((void)(lltrace && prtrace(TOP(), "pop")), \
|
|
BASIC_POP())
|
|
#define STACKADJ(n) { (void)(BASIC_STACKADJ(n), \
|
|
lltrace && prtrace(TOP(), "stackadj")); \
|
|
assert(STACK_LEVEL() <= co->co_stacksize); }
|
|
#define EXT_POP(STACK_POINTER) ((void)(lltrace && \
|
|
prtrace((STACK_POINTER)[-1], "ext_pop")), \
|
|
*--(STACK_POINTER))
|
|
#else
|
|
#define PUSH(v) BASIC_PUSH(v)
|
|
#define POP() BASIC_POP()
|
|
#define STACKADJ(n) BASIC_STACKADJ(n)
|
|
#define EXT_POP(STACK_POINTER) (*--(STACK_POINTER))
|
|
#endif
|
|
|
|
/* Local variable macros */
|
|
|
|
#define GETLOCAL(i) (fastlocals[i])
|
|
|
|
/* The SETLOCAL() macro must not DECREF the local variable in-place and
|
|
then store the new value; it must copy the old value to a temporary
|
|
value, then store the new value, and then DECREF the temporary value.
|
|
This is because it is possible that during the DECREF the frame is
|
|
accessed by other code (e.g. a __del__ method or gc.collect()) and the
|
|
variable would be pointing to already-freed memory. */
|
|
#define SETLOCAL(i, value) do { PyObject *tmp = GETLOCAL(i); \
|
|
GETLOCAL(i) = value; \
|
|
Py_XDECREF(tmp); } while (0)
|
|
|
|
|
|
#define UNWIND_BLOCK(b) \
|
|
while (STACK_LEVEL() > (b)->b_level) { \
|
|
PyObject *v = POP(); \
|
|
Py_XDECREF(v); \
|
|
}
|
|
|
|
#define UNWIND_EXCEPT_HANDLER(b) \
|
|
{ \
|
|
PyObject *type, *value, *traceback; \
|
|
assert(STACK_LEVEL() >= (b)->b_level + 3); \
|
|
while (STACK_LEVEL() > (b)->b_level + 3) { \
|
|
value = POP(); \
|
|
Py_XDECREF(value); \
|
|
} \
|
|
type = tstate->exc_type; \
|
|
value = tstate->exc_value; \
|
|
traceback = tstate->exc_traceback; \
|
|
tstate->exc_type = POP(); \
|
|
tstate->exc_value = POP(); \
|
|
tstate->exc_traceback = POP(); \
|
|
Py_XDECREF(type); \
|
|
Py_XDECREF(value); \
|
|
Py_XDECREF(traceback); \
|
|
}
|
|
|
|
/* Start of code */
|
|
|
|
/* push frame */
|
|
if (Py_EnterRecursiveCall(""))
|
|
return NULL;
|
|
|
|
tstate->frame = f;
|
|
|
|
if (tstate->use_tracing) {
|
|
if (tstate->c_tracefunc != NULL) {
|
|
/* tstate->c_tracefunc, if defined, is a
|
|
function that will be called on *every* entry
|
|
to a code block. Its return value, if not
|
|
None, is a function that will be called at
|
|
the start of each executed line of code.
|
|
(Actually, the function must return itself
|
|
in order to continue tracing.) The trace
|
|
functions are called with three arguments:
|
|
a pointer to the current frame, a string
|
|
indicating why the function is called, and
|
|
an argument which depends on the situation.
|
|
The global trace function is also called
|
|
whenever an exception is detected. */
|
|
if (call_trace_protected(tstate->c_tracefunc,
|
|
tstate->c_traceobj,
|
|
f, PyTrace_CALL, Py_None)) {
|
|
/* Trace function raised an error */
|
|
goto exit_eval_frame;
|
|
}
|
|
}
|
|
if (tstate->c_profilefunc != NULL) {
|
|
/* Similar for c_profilefunc, except it needn't
|
|
return itself and isn't called for "line" events */
|
|
if (call_trace_protected(tstate->c_profilefunc,
|
|
tstate->c_profileobj,
|
|
f, PyTrace_CALL, Py_None)) {
|
|
/* Profile function raised an error */
|
|
goto exit_eval_frame;
|
|
}
|
|
}
|
|
}
|
|
|
|
co = f->f_code;
|
|
names = co->co_names;
|
|
consts = co->co_consts;
|
|
fastlocals = f->f_localsplus;
|
|
freevars = f->f_localsplus + co->co_nlocals;
|
|
first_instr = (unsigned char*) PyBytes_AS_STRING(co->co_code);
|
|
/* An explanation is in order for the next line.
|
|
|
|
f->f_lasti now refers to the index of the last instruction
|
|
executed. You might think this was obvious from the name, but
|
|
this wasn't always true before 2.3! PyFrame_New now sets
|
|
f->f_lasti to -1 (i.e. the index *before* the first instruction)
|
|
and YIELD_VALUE doesn't fiddle with f_lasti any more. So this
|
|
does work. Promise.
|
|
YIELD_FROM sets f_lasti to itself, in order to repeated yield
|
|
multiple values.
|
|
|
|
When the PREDICT() macros are enabled, some opcode pairs follow in
|
|
direct succession without updating f->f_lasti. A successful
|
|
prediction effectively links the two codes together as if they
|
|
were a single new opcode; accordingly,f->f_lasti will point to
|
|
the first code in the pair (for instance, GET_ITER followed by
|
|
FOR_ITER is effectively a single opcode and f->f_lasti will point
|
|
at to the beginning of the combined pair.)
|
|
*/
|
|
next_instr = first_instr + f->f_lasti + 1;
|
|
stack_pointer = f->f_stacktop;
|
|
assert(stack_pointer != NULL);
|
|
f->f_stacktop = NULL; /* remains NULL unless yield suspends frame */
|
|
f->f_executing = 1;
|
|
|
|
if (co->co_flags & CO_GENERATOR && !throwflag) {
|
|
if (f->f_exc_type != NULL && f->f_exc_type != Py_None) {
|
|
/* We were in an except handler when we left,
|
|
restore the exception state which was put aside
|
|
(see YIELD_VALUE). */
|
|
swap_exc_state(tstate, f);
|
|
}
|
|
else
|
|
save_exc_state(tstate, f);
|
|
}
|
|
|
|
#ifdef LLTRACE
|
|
lltrace = _PyDict_GetItemId(f->f_globals, &PyId___ltrace__) != NULL;
|
|
#endif
|
|
|
|
why = WHY_NOT;
|
|
|
|
if (throwflag) /* support for generator.throw() */
|
|
goto error;
|
|
|
|
#ifdef Py_DEBUG
|
|
/* PyEval_EvalFrameEx() must not be called with an exception set,
|
|
because it may clear it (directly or indirectly) and so the
|
|
caller looses its exception */
|
|
assert(!PyErr_Occurred());
|
|
#endif
|
|
|
|
for (;;) {
|
|
#ifdef WITH_TSC
|
|
if (inst1 == 0) {
|
|
/* Almost surely, the opcode executed a break
|
|
or a continue, preventing inst1 from being set
|
|
on the way out of the loop.
|
|
*/
|
|
READ_TIMESTAMP(inst1);
|
|
loop1 = inst1;
|
|
}
|
|
dump_tsc(opcode, ticked, inst0, inst1, loop0, loop1,
|
|
intr0, intr1);
|
|
ticked = 0;
|
|
inst1 = 0;
|
|
intr0 = 0;
|
|
intr1 = 0;
|
|
READ_TIMESTAMP(loop0);
|
|
#endif
|
|
assert(stack_pointer >= f->f_valuestack); /* else underflow */
|
|
assert(STACK_LEVEL() <= co->co_stacksize); /* else overflow */
|
|
assert(!PyErr_Occurred());
|
|
|
|
/* Do periodic things. Doing this every time through
|
|
the loop would add too much overhead, so we do it
|
|
only every Nth instruction. We also do it if
|
|
``pendingcalls_to_do'' is set, i.e. when an asynchronous
|
|
event needs attention (e.g. a signal handler or
|
|
async I/O handler); see Py_AddPendingCall() and
|
|
Py_MakePendingCalls() above. */
|
|
|
|
if (_Py_atomic_load_relaxed(&eval_breaker)) {
|
|
if (*next_instr == SETUP_FINALLY) {
|
|
/* Make the last opcode before
|
|
a try: finally: block uninterruptible. */
|
|
goto fast_next_opcode;
|
|
}
|
|
#ifdef WITH_TSC
|
|
ticked = 1;
|
|
#endif
|
|
if (_Py_atomic_load_relaxed(&pendingcalls_to_do)) {
|
|
if (Py_MakePendingCalls() < 0)
|
|
goto error;
|
|
}
|
|
#ifdef WITH_THREAD
|
|
if (_Py_atomic_load_relaxed(&gil_drop_request)) {
|
|
/* Give another thread a chance */
|
|
if (PyThreadState_Swap(NULL) != tstate)
|
|
Py_FatalError("ceval: tstate mix-up");
|
|
drop_gil(tstate);
|
|
|
|
/* Other threads may run now */
|
|
|
|
take_gil(tstate);
|
|
if (PyThreadState_Swap(tstate) != NULL)
|
|
Py_FatalError("ceval: orphan tstate");
|
|
}
|
|
#endif
|
|
/* Check for asynchronous exceptions. */
|
|
if (tstate->async_exc != NULL) {
|
|
PyObject *exc = tstate->async_exc;
|
|
tstate->async_exc = NULL;
|
|
UNSIGNAL_ASYNC_EXC();
|
|
PyErr_SetNone(exc);
|
|
Py_DECREF(exc);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
fast_next_opcode:
|
|
f->f_lasti = INSTR_OFFSET();
|
|
|
|
/* line-by-line tracing support */
|
|
|
|
if (_Py_TracingPossible &&
|
|
tstate->c_tracefunc != NULL && !tstate->tracing) {
|
|
int err;
|
|
/* see maybe_call_line_trace
|
|
for expository comments */
|
|
f->f_stacktop = stack_pointer;
|
|
|
|
err = maybe_call_line_trace(tstate->c_tracefunc,
|
|
tstate->c_traceobj,
|
|
f, &instr_lb, &instr_ub,
|
|
&instr_prev);
|
|
/* Reload possibly changed frame fields */
|
|
JUMPTO(f->f_lasti);
|
|
if (f->f_stacktop != NULL) {
|
|
stack_pointer = f->f_stacktop;
|
|
f->f_stacktop = NULL;
|
|
}
|
|
if (err)
|
|
/* trace function raised an exception */
|
|
goto error;
|
|
}
|
|
|
|
/* Extract opcode and argument */
|
|
|
|
opcode = NEXTOP();
|
|
oparg = 0; /* allows oparg to be stored in a register because
|
|
it doesn't have to be remembered across a full loop */
|
|
if (HAS_ARG(opcode))
|
|
oparg = NEXTARG();
|
|
dispatch_opcode:
|
|
#ifdef DYNAMIC_EXECUTION_PROFILE
|
|
#ifdef DXPAIRS
|
|
dxpairs[lastopcode][opcode]++;
|
|
lastopcode = opcode;
|
|
#endif
|
|
dxp[opcode]++;
|
|
#endif
|
|
|
|
#ifdef LLTRACE
|
|
/* Instruction tracing */
|
|
|
|
if (lltrace) {
|
|
if (HAS_ARG(opcode)) {
|
|
printf("%d: %d, %d\n",
|
|
f->f_lasti, opcode, oparg);
|
|
}
|
|
else {
|
|
printf("%d: %d\n",
|
|
f->f_lasti, opcode);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Main switch on opcode */
|
|
READ_TIMESTAMP(inst0);
|
|
|
|
switch (opcode) {
|
|
|
|
/* BEWARE!
|
|
It is essential that any operation that fails sets either
|
|
x to NULL, err to nonzero, or why to anything but WHY_NOT,
|
|
and that no operation that succeeds does this! */
|
|
|
|
TARGET(NOP)
|
|
FAST_DISPATCH();
|
|
|
|
TARGET(LOAD_FAST) {
|
|
PyObject *value = GETLOCAL(oparg);
|
|
if (value == NULL) {
|
|
format_exc_check_arg(PyExc_UnboundLocalError,
|
|
UNBOUNDLOCAL_ERROR_MSG,
|
|
PyTuple_GetItem(co->co_varnames, oparg));
|
|
goto error;
|
|
}
|
|
Py_INCREF(value);
|
|
PUSH(value);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_CONST) {
|
|
PyObject *value = GETITEM(consts, oparg);
|
|
Py_INCREF(value);
|
|
PUSH(value);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(STORE_FAST);
|
|
TARGET(STORE_FAST) {
|
|
PyObject *value = POP();
|
|
SETLOCAL(oparg, value);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(POP_TOP) {
|
|
PyObject *value = POP();
|
|
Py_DECREF(value);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(ROT_TWO) {
|
|
PyObject *top = TOP();
|
|
PyObject *second = SECOND();
|
|
SET_TOP(second);
|
|
SET_SECOND(top);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(ROT_THREE) {
|
|
PyObject *top = TOP();
|
|
PyObject *second = SECOND();
|
|
PyObject *third = THIRD();
|
|
SET_TOP(second);
|
|
SET_SECOND(third);
|
|
SET_THIRD(top);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(DUP_TOP) {
|
|
PyObject *top = TOP();
|
|
Py_INCREF(top);
|
|
PUSH(top);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(DUP_TOP_TWO) {
|
|
PyObject *top = TOP();
|
|
PyObject *second = SECOND();
|
|
Py_INCREF(top);
|
|
Py_INCREF(second);
|
|
STACKADJ(2);
|
|
SET_TOP(top);
|
|
SET_SECOND(second);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
TARGET(UNARY_POSITIVE) {
|
|
PyObject *value = TOP();
|
|
PyObject *res = PyNumber_Positive(value);
|
|
Py_DECREF(value);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(UNARY_NEGATIVE) {
|
|
PyObject *value = TOP();
|
|
PyObject *res = PyNumber_Negative(value);
|
|
Py_DECREF(value);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(UNARY_NOT) {
|
|
PyObject *value = TOP();
|
|
int err = PyObject_IsTrue(value);
|
|
Py_DECREF(value);
|
|
if (err == 0) {
|
|
Py_INCREF(Py_True);
|
|
SET_TOP(Py_True);
|
|
DISPATCH();
|
|
}
|
|
else if (err > 0) {
|
|
Py_INCREF(Py_False);
|
|
SET_TOP(Py_False);
|
|
err = 0;
|
|
DISPATCH();
|
|
}
|
|
STACKADJ(-1);
|
|
goto error;
|
|
}
|
|
|
|
TARGET(UNARY_INVERT) {
|
|
PyObject *value = TOP();
|
|
PyObject *res = PyNumber_Invert(value);
|
|
Py_DECREF(value);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_POWER) {
|
|
PyObject *exp = POP();
|
|
PyObject *base = TOP();
|
|
PyObject *res = PyNumber_Power(base, exp, Py_None);
|
|
Py_DECREF(base);
|
|
Py_DECREF(exp);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_MULTIPLY) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_Multiply(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_TRUE_DIVIDE) {
|
|
PyObject *divisor = POP();
|
|
PyObject *dividend = TOP();
|
|
PyObject *quotient = PyNumber_TrueDivide(dividend, divisor);
|
|
Py_DECREF(dividend);
|
|
Py_DECREF(divisor);
|
|
SET_TOP(quotient);
|
|
if (quotient == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_FLOOR_DIVIDE) {
|
|
PyObject *divisor = POP();
|
|
PyObject *dividend = TOP();
|
|
PyObject *quotient = PyNumber_FloorDivide(dividend, divisor);
|
|
Py_DECREF(dividend);
|
|
Py_DECREF(divisor);
|
|
SET_TOP(quotient);
|
|
if (quotient == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_MODULO) {
|
|
PyObject *divisor = POP();
|
|
PyObject *dividend = TOP();
|
|
PyObject *res = PyUnicode_CheckExact(dividend) ?
|
|
PyUnicode_Format(dividend, divisor) :
|
|
PyNumber_Remainder(dividend, divisor);
|
|
Py_DECREF(divisor);
|
|
Py_DECREF(dividend);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_ADD) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *sum;
|
|
if (PyUnicode_CheckExact(left) &&
|
|
PyUnicode_CheckExact(right)) {
|
|
sum = unicode_concatenate(left, right, f, next_instr);
|
|
/* unicode_concatenate consumed the ref to v */
|
|
}
|
|
else {
|
|
sum = PyNumber_Add(left, right);
|
|
Py_DECREF(left);
|
|
}
|
|
Py_DECREF(right);
|
|
SET_TOP(sum);
|
|
if (sum == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_SUBTRACT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *diff = PyNumber_Subtract(left, right);
|
|
Py_DECREF(right);
|
|
Py_DECREF(left);
|
|
SET_TOP(diff);
|
|
if (diff == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_SUBSCR) {
|
|
PyObject *sub = POP();
|
|
PyObject *container = TOP();
|
|
PyObject *res = PyObject_GetItem(container, sub);
|
|
Py_DECREF(container);
|
|
Py_DECREF(sub);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_LSHIFT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_Lshift(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_RSHIFT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_Rshift(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_AND) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_And(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_XOR) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_Xor(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BINARY_OR) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_Or(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LIST_APPEND) {
|
|
PyObject *v = POP();
|
|
PyObject *list = PEEK(oparg);
|
|
int err;
|
|
err = PyList_Append(list, v);
|
|
Py_DECREF(v);
|
|
if (err != 0)
|
|
goto error;
|
|
PREDICT(JUMP_ABSOLUTE);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(SET_ADD) {
|
|
PyObject *v = POP();
|
|
PyObject *set = stack_pointer[-oparg];
|
|
int err;
|
|
err = PySet_Add(set, v);
|
|
Py_DECREF(v);
|
|
if (err != 0)
|
|
goto error;
|
|
PREDICT(JUMP_ABSOLUTE);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_POWER) {
|
|
PyObject *exp = POP();
|
|
PyObject *base = TOP();
|
|
PyObject *res = PyNumber_InPlacePower(base, exp, Py_None);
|
|
Py_DECREF(base);
|
|
Py_DECREF(exp);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_MULTIPLY) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceMultiply(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_TRUE_DIVIDE) {
|
|
PyObject *divisor = POP();
|
|
PyObject *dividend = TOP();
|
|
PyObject *quotient = PyNumber_InPlaceTrueDivide(dividend, divisor);
|
|
Py_DECREF(dividend);
|
|
Py_DECREF(divisor);
|
|
SET_TOP(quotient);
|
|
if (quotient == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_FLOOR_DIVIDE) {
|
|
PyObject *divisor = POP();
|
|
PyObject *dividend = TOP();
|
|
PyObject *quotient = PyNumber_InPlaceFloorDivide(dividend, divisor);
|
|
Py_DECREF(dividend);
|
|
Py_DECREF(divisor);
|
|
SET_TOP(quotient);
|
|
if (quotient == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_MODULO) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *mod = PyNumber_InPlaceRemainder(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(mod);
|
|
if (mod == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_ADD) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *sum;
|
|
if (PyUnicode_CheckExact(left) && PyUnicode_CheckExact(right)) {
|
|
sum = unicode_concatenate(left, right, f, next_instr);
|
|
/* unicode_concatenate consumed the ref to v */
|
|
}
|
|
else {
|
|
sum = PyNumber_InPlaceAdd(left, right);
|
|
Py_DECREF(left);
|
|
}
|
|
Py_DECREF(right);
|
|
SET_TOP(sum);
|
|
if (sum == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_SUBTRACT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *diff = PyNumber_InPlaceSubtract(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(diff);
|
|
if (diff == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_LSHIFT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceLshift(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_RSHIFT) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceRshift(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_AND) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceAnd(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_XOR) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceXor(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(INPLACE_OR) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = PyNumber_InPlaceOr(left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_SUBSCR) {
|
|
PyObject *sub = TOP();
|
|
PyObject *container = SECOND();
|
|
PyObject *v = THIRD();
|
|
int err;
|
|
STACKADJ(-3);
|
|
/* v[w] = u */
|
|
err = PyObject_SetItem(container, sub, v);
|
|
Py_DECREF(v);
|
|
Py_DECREF(container);
|
|
Py_DECREF(sub);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(DELETE_SUBSCR) {
|
|
PyObject *sub = TOP();
|
|
PyObject *container = SECOND();
|
|
int err;
|
|
STACKADJ(-2);
|
|
/* del v[w] */
|
|
err = PyObject_DelItem(container, sub);
|
|
Py_DECREF(container);
|
|
Py_DECREF(sub);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(PRINT_EXPR) {
|
|
_Py_IDENTIFIER(displayhook);
|
|
PyObject *value = POP();
|
|
PyObject *hook = _PySys_GetObjectId(&PyId_displayhook);
|
|
PyObject *res;
|
|
if (hook == NULL) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"lost sys.displayhook");
|
|
Py_DECREF(value);
|
|
goto error;
|
|
}
|
|
res = PyObject_CallFunctionObjArgs(hook, value, NULL);
|
|
Py_DECREF(value);
|
|
if (res == NULL)
|
|
goto error;
|
|
Py_DECREF(res);
|
|
DISPATCH();
|
|
}
|
|
|
|
#ifdef CASE_TOO_BIG
|
|
default: switch (opcode) {
|
|
#endif
|
|
TARGET(RAISE_VARARGS) {
|
|
PyObject *cause = NULL, *exc = NULL;
|
|
switch (oparg) {
|
|
case 2:
|
|
cause = POP(); /* cause */
|
|
case 1:
|
|
exc = POP(); /* exc */
|
|
case 0: /* Fallthrough */
|
|
if (do_raise(exc, cause)) {
|
|
why = WHY_EXCEPTION;
|
|
goto fast_block_end;
|
|
}
|
|
break;
|
|
default:
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"bad RAISE_VARARGS oparg");
|
|
break;
|
|
}
|
|
goto error;
|
|
}
|
|
|
|
TARGET(RETURN_VALUE) {
|
|
retval = POP();
|
|
why = WHY_RETURN;
|
|
goto fast_block_end;
|
|
}
|
|
|
|
TARGET(YIELD_FROM) {
|
|
PyObject *v = POP();
|
|
PyObject *reciever = TOP();
|
|
int err;
|
|
if (PyGen_CheckExact(reciever)) {
|
|
retval = _PyGen_Send((PyGenObject *)reciever, v);
|
|
} else {
|
|
_Py_IDENTIFIER(send);
|
|
if (v == Py_None)
|
|
retval = Py_TYPE(reciever)->tp_iternext(reciever);
|
|
else
|
|
retval = _PyObject_CallMethodId(reciever, &PyId_send, "O", v);
|
|
}
|
|
Py_DECREF(v);
|
|
if (retval == NULL) {
|
|
PyObject *val;
|
|
if (tstate->c_tracefunc != NULL
|
|
&& PyErr_ExceptionMatches(PyExc_StopIteration))
|
|
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, f);
|
|
err = _PyGen_FetchStopIterationValue(&val);
|
|
if (err < 0)
|
|
goto error;
|
|
Py_DECREF(reciever);
|
|
SET_TOP(val);
|
|
DISPATCH();
|
|
}
|
|
/* x remains on stack, retval is value to be yielded */
|
|
f->f_stacktop = stack_pointer;
|
|
why = WHY_YIELD;
|
|
/* and repeat... */
|
|
f->f_lasti--;
|
|
goto fast_yield;
|
|
}
|
|
|
|
TARGET(YIELD_VALUE) {
|
|
retval = POP();
|
|
f->f_stacktop = stack_pointer;
|
|
why = WHY_YIELD;
|
|
goto fast_yield;
|
|
}
|
|
|
|
TARGET(POP_EXCEPT) {
|
|
PyTryBlock *b = PyFrame_BlockPop(f);
|
|
if (b->b_type != EXCEPT_HANDLER) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"popped block is not an except handler");
|
|
goto error;
|
|
}
|
|
UNWIND_EXCEPT_HANDLER(b);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(POP_BLOCK) {
|
|
PyTryBlock *b = PyFrame_BlockPop(f);
|
|
UNWIND_BLOCK(b);
|
|
DISPATCH();
|
|
}
|
|
|
|
PREDICTED(END_FINALLY);
|
|
TARGET(END_FINALLY) {
|
|
PyObject *status = POP();
|
|
if (PyLong_Check(status)) {
|
|
why = (enum why_code) PyLong_AS_LONG(status);
|
|
assert(why != WHY_YIELD && why != WHY_EXCEPTION);
|
|
if (why == WHY_RETURN ||
|
|
why == WHY_CONTINUE)
|
|
retval = POP();
|
|
if (why == WHY_SILENCED) {
|
|
/* An exception was silenced by 'with', we must
|
|
manually unwind the EXCEPT_HANDLER block which was
|
|
created when the exception was caught, otherwise
|
|
the stack will be in an inconsistent state. */
|
|
PyTryBlock *b = PyFrame_BlockPop(f);
|
|
assert(b->b_type == EXCEPT_HANDLER);
|
|
UNWIND_EXCEPT_HANDLER(b);
|
|
why = WHY_NOT;
|
|
Py_DECREF(status);
|
|
DISPATCH();
|
|
}
|
|
Py_DECREF(status);
|
|
goto fast_block_end;
|
|
}
|
|
else if (PyExceptionClass_Check(status)) {
|
|
PyObject *exc = POP();
|
|
PyObject *tb = POP();
|
|
PyErr_Restore(status, exc, tb);
|
|
why = WHY_EXCEPTION;
|
|
goto fast_block_end;
|
|
}
|
|
else if (status != Py_None) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"'finally' pops bad exception");
|
|
Py_DECREF(status);
|
|
goto error;
|
|
}
|
|
Py_DECREF(status);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_BUILD_CLASS) {
|
|
_Py_IDENTIFIER(__build_class__);
|
|
|
|
PyObject *bc;
|
|
if (PyDict_CheckExact(f->f_builtins)) {
|
|
bc = _PyDict_GetItemId(f->f_builtins, &PyId___build_class__);
|
|
if (bc == NULL) {
|
|
PyErr_SetString(PyExc_NameError,
|
|
"__build_class__ not found");
|
|
goto error;
|
|
}
|
|
Py_INCREF(bc);
|
|
}
|
|
else {
|
|
PyObject *build_class_str = _PyUnicode_FromId(&PyId___build_class__);
|
|
if (build_class_str == NULL)
|
|
break;
|
|
bc = PyObject_GetItem(f->f_builtins, build_class_str);
|
|
if (bc == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_KeyError))
|
|
PyErr_SetString(PyExc_NameError,
|
|
"__build_class__ not found");
|
|
goto error;
|
|
}
|
|
}
|
|
PUSH(bc);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_NAME) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *v = POP();
|
|
PyObject *ns = f->f_locals;
|
|
int err;
|
|
if (ns == NULL) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"no locals found when storing %R", name);
|
|
Py_DECREF(v);
|
|
goto error;
|
|
}
|
|
if (PyDict_CheckExact(ns))
|
|
err = PyDict_SetItem(ns, name, v);
|
|
else
|
|
err = PyObject_SetItem(ns, name, v);
|
|
Py_DECREF(v);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(DELETE_NAME) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *ns = f->f_locals;
|
|
int err;
|
|
if (ns == NULL) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"no locals when deleting %R", name);
|
|
goto error;
|
|
}
|
|
err = PyObject_DelItem(ns, name);
|
|
if (err != 0) {
|
|
format_exc_check_arg(PyExc_NameError,
|
|
NAME_ERROR_MSG,
|
|
name);
|
|
goto error;
|
|
}
|
|
DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(UNPACK_SEQUENCE);
|
|
TARGET(UNPACK_SEQUENCE) {
|
|
PyObject *seq = POP(), *item, **items;
|
|
if (PyTuple_CheckExact(seq) &&
|
|
PyTuple_GET_SIZE(seq) == oparg) {
|
|
items = ((PyTupleObject *)seq)->ob_item;
|
|
while (oparg--) {
|
|
item = items[oparg];
|
|
Py_INCREF(item);
|
|
PUSH(item);
|
|
}
|
|
} else if (PyList_CheckExact(seq) &&
|
|
PyList_GET_SIZE(seq) == oparg) {
|
|
items = ((PyListObject *)seq)->ob_item;
|
|
while (oparg--) {
|
|
item = items[oparg];
|
|
Py_INCREF(item);
|
|
PUSH(item);
|
|
}
|
|
} else if (unpack_iterable(seq, oparg, -1,
|
|
stack_pointer + oparg)) {
|
|
STACKADJ(oparg);
|
|
} else {
|
|
/* unpack_iterable() raised an exception */
|
|
Py_DECREF(seq);
|
|
goto error;
|
|
}
|
|
Py_DECREF(seq);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(UNPACK_EX) {
|
|
int totalargs = 1 + (oparg & 0xFF) + (oparg >> 8);
|
|
PyObject *seq = POP();
|
|
|
|
if (unpack_iterable(seq, oparg & 0xFF, oparg >> 8,
|
|
stack_pointer + totalargs)) {
|
|
stack_pointer += totalargs;
|
|
} else {
|
|
Py_DECREF(seq);
|
|
goto error;
|
|
}
|
|
Py_DECREF(seq);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_ATTR) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *owner = TOP();
|
|
PyObject *v = SECOND();
|
|
int err;
|
|
STACKADJ(-2);
|
|
err = PyObject_SetAttr(owner, name, v);
|
|
Py_DECREF(v);
|
|
Py_DECREF(owner);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(DELETE_ATTR) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *owner = POP();
|
|
int err;
|
|
err = PyObject_SetAttr(owner, name, (PyObject *)NULL);
|
|
Py_DECREF(owner);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_GLOBAL) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *v = POP();
|
|
int err;
|
|
err = PyDict_SetItem(f->f_globals, name, v);
|
|
Py_DECREF(v);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(DELETE_GLOBAL) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
int err;
|
|
err = PyDict_DelItem(f->f_globals, name);
|
|
if (err != 0) {
|
|
format_exc_check_arg(
|
|
PyExc_NameError, NAME_ERROR_MSG, name);
|
|
goto error;
|
|
}
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_NAME) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *locals = f->f_locals;
|
|
PyObject *v;
|
|
if (locals == NULL) {
|
|
PyErr_Format(PyExc_SystemError,
|
|
"no locals when loading %R", name);
|
|
goto error;
|
|
}
|
|
if (PyDict_CheckExact(locals)) {
|
|
v = PyDict_GetItem(locals, name);
|
|
Py_XINCREF(v);
|
|
}
|
|
else {
|
|
v = PyObject_GetItem(locals, name);
|
|
if (v == NULL && _PyErr_OCCURRED()) {
|
|
if (!PyErr_ExceptionMatches(PyExc_KeyError))
|
|
goto error;
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
if (v == NULL) {
|
|
v = PyDict_GetItem(f->f_globals, name);
|
|
Py_XINCREF(v);
|
|
if (v == NULL) {
|
|
if (PyDict_CheckExact(f->f_builtins)) {
|
|
v = PyDict_GetItem(f->f_builtins, name);
|
|
if (v == NULL) {
|
|
format_exc_check_arg(
|
|
PyExc_NameError,
|
|
NAME_ERROR_MSG, name);
|
|
goto error;
|
|
}
|
|
Py_INCREF(v);
|
|
}
|
|
else {
|
|
v = PyObject_GetItem(f->f_builtins, name);
|
|
if (v == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_KeyError))
|
|
format_exc_check_arg(
|
|
PyExc_NameError,
|
|
NAME_ERROR_MSG, name);
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
PUSH(v);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_GLOBAL) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *v;
|
|
if (PyDict_CheckExact(f->f_globals)
|
|
&& PyDict_CheckExact(f->f_builtins)) {
|
|
v = _PyDict_LoadGlobal((PyDictObject *)f->f_globals,
|
|
(PyDictObject *)f->f_builtins,
|
|
name);
|
|
if (v == NULL) {
|
|
if (!_PyErr_OCCURRED())
|
|
format_exc_check_arg(PyExc_NameError,
|
|
NAME_ERROR_MSG, name);
|
|
goto error;
|
|
}
|
|
Py_INCREF(v);
|
|
}
|
|
else {
|
|
/* Slow-path if globals or builtins is not a dict */
|
|
v = PyObject_GetItem(f->f_globals, name);
|
|
if (v == NULL) {
|
|
v = PyObject_GetItem(f->f_builtins, name);
|
|
if (v == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_KeyError))
|
|
format_exc_check_arg(
|
|
PyExc_NameError,
|
|
NAME_ERROR_MSG, name);
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
PUSH(v);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(DELETE_FAST) {
|
|
PyObject *v = GETLOCAL(oparg);
|
|
if (v != NULL) {
|
|
SETLOCAL(oparg, NULL);
|
|
DISPATCH();
|
|
}
|
|
format_exc_check_arg(
|
|
PyExc_UnboundLocalError,
|
|
UNBOUNDLOCAL_ERROR_MSG,
|
|
PyTuple_GetItem(co->co_varnames, oparg)
|
|
);
|
|
goto error;
|
|
}
|
|
|
|
TARGET(DELETE_DEREF) {
|
|
PyObject *cell = freevars[oparg];
|
|
if (PyCell_GET(cell) != NULL) {
|
|
PyCell_Set(cell, NULL);
|
|
DISPATCH();
|
|
}
|
|
format_exc_unbound(co, oparg);
|
|
goto error;
|
|
}
|
|
|
|
TARGET(LOAD_CLOSURE) {
|
|
PyObject *cell = freevars[oparg];
|
|
Py_INCREF(cell);
|
|
PUSH(cell);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_CLASSDEREF) {
|
|
PyObject *name, *value, *locals = f->f_locals;
|
|
Py_ssize_t idx;
|
|
assert(locals);
|
|
assert(oparg >= PyTuple_GET_SIZE(co->co_cellvars));
|
|
idx = oparg - PyTuple_GET_SIZE(co->co_cellvars);
|
|
assert(idx >= 0 && idx < PyTuple_GET_SIZE(co->co_freevars));
|
|
name = PyTuple_GET_ITEM(co->co_freevars, idx);
|
|
if (PyDict_CheckExact(locals)) {
|
|
value = PyDict_GetItem(locals, name);
|
|
Py_XINCREF(value);
|
|
}
|
|
else {
|
|
value = PyObject_GetItem(locals, name);
|
|
if (value == NULL && PyErr_Occurred()) {
|
|
if (!PyErr_ExceptionMatches(PyExc_KeyError))
|
|
goto error;
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
if (!value) {
|
|
PyObject *cell = freevars[oparg];
|
|
value = PyCell_GET(cell);
|
|
if (value == NULL) {
|
|
format_exc_unbound(co, oparg);
|
|
goto error;
|
|
}
|
|
Py_INCREF(value);
|
|
}
|
|
PUSH(value);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_DEREF) {
|
|
PyObject *cell = freevars[oparg];
|
|
PyObject *value = PyCell_GET(cell);
|
|
if (value == NULL) {
|
|
format_exc_unbound(co, oparg);
|
|
goto error;
|
|
}
|
|
Py_INCREF(value);
|
|
PUSH(value);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_DEREF) {
|
|
PyObject *v = POP();
|
|
PyObject *cell = freevars[oparg];
|
|
PyCell_Set(cell, v);
|
|
Py_DECREF(v);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BUILD_TUPLE) {
|
|
PyObject *tup = PyTuple_New(oparg);
|
|
if (tup == NULL)
|
|
goto error;
|
|
while (--oparg >= 0) {
|
|
PyObject *item = POP();
|
|
PyTuple_SET_ITEM(tup, oparg, item);
|
|
}
|
|
PUSH(tup);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BUILD_LIST) {
|
|
PyObject *list = PyList_New(oparg);
|
|
if (list == NULL)
|
|
goto error;
|
|
while (--oparg >= 0) {
|
|
PyObject *item = POP();
|
|
PyList_SET_ITEM(list, oparg, item);
|
|
}
|
|
PUSH(list);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BUILD_SET) {
|
|
PyObject *set = PySet_New(NULL);
|
|
int err = 0;
|
|
if (set == NULL)
|
|
goto error;
|
|
while (--oparg >= 0) {
|
|
PyObject *item = POP();
|
|
if (err == 0)
|
|
err = PySet_Add(set, item);
|
|
Py_DECREF(item);
|
|
}
|
|
if (err != 0) {
|
|
Py_DECREF(set);
|
|
goto error;
|
|
}
|
|
PUSH(set);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BUILD_MAP) {
|
|
PyObject *map = _PyDict_NewPresized((Py_ssize_t)oparg);
|
|
if (map == NULL)
|
|
goto error;
|
|
PUSH(map);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(STORE_MAP) {
|
|
PyObject *key = TOP();
|
|
PyObject *value = SECOND();
|
|
PyObject *map = THIRD();
|
|
int err;
|
|
STACKADJ(-2);
|
|
assert(PyDict_CheckExact(map));
|
|
err = PyDict_SetItem(map, key, value);
|
|
Py_DECREF(value);
|
|
Py_DECREF(key);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(MAP_ADD) {
|
|
PyObject *key = TOP();
|
|
PyObject *value = SECOND();
|
|
PyObject *map;
|
|
int err;
|
|
STACKADJ(-2);
|
|
map = stack_pointer[-oparg]; /* dict */
|
|
assert(PyDict_CheckExact(map));
|
|
err = PyDict_SetItem(map, key, value); /* v[w] = u */
|
|
Py_DECREF(value);
|
|
Py_DECREF(key);
|
|
if (err != 0)
|
|
goto error;
|
|
PREDICT(JUMP_ABSOLUTE);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(LOAD_ATTR) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *owner = TOP();
|
|
PyObject *res = PyObject_GetAttr(owner, name);
|
|
Py_DECREF(owner);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(COMPARE_OP) {
|
|
PyObject *right = POP();
|
|
PyObject *left = TOP();
|
|
PyObject *res = cmp_outcome(oparg, left, right);
|
|
Py_DECREF(left);
|
|
Py_DECREF(right);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
PREDICT(POP_JUMP_IF_FALSE);
|
|
PREDICT(POP_JUMP_IF_TRUE);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(IMPORT_NAME) {
|
|
_Py_IDENTIFIER(__import__);
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *func = _PyDict_GetItemId(f->f_builtins, &PyId___import__);
|
|
PyObject *from, *level, *args, *res;
|
|
if (func == NULL) {
|
|
PyErr_SetString(PyExc_ImportError,
|
|
"__import__ not found");
|
|
goto error;
|
|
}
|
|
Py_INCREF(func);
|
|
from = POP();
|
|
level = TOP();
|
|
if (PyLong_AsLong(level) != -1 || PyErr_Occurred())
|
|
args = PyTuple_Pack(5,
|
|
name,
|
|
f->f_globals,
|
|
f->f_locals == NULL ?
|
|
Py_None : f->f_locals,
|
|
from,
|
|
level);
|
|
else
|
|
args = PyTuple_Pack(4,
|
|
name,
|
|
f->f_globals,
|
|
f->f_locals == NULL ?
|
|
Py_None : f->f_locals,
|
|
from);
|
|
Py_DECREF(level);
|
|
Py_DECREF(from);
|
|
if (args == NULL) {
|
|
Py_DECREF(func);
|
|
STACKADJ(-1);
|
|
goto error;
|
|
}
|
|
READ_TIMESTAMP(intr0);
|
|
res = PyEval_CallObject(func, args);
|
|
READ_TIMESTAMP(intr1);
|
|
Py_DECREF(args);
|
|
Py_DECREF(func);
|
|
SET_TOP(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(IMPORT_STAR) {
|
|
PyObject *from = POP(), *locals;
|
|
int err;
|
|
if (PyFrame_FastToLocalsWithError(f) < 0)
|
|
goto error;
|
|
|
|
locals = f->f_locals;
|
|
if (locals == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"no locals found during 'import *'");
|
|
goto error;
|
|
}
|
|
READ_TIMESTAMP(intr0);
|
|
err = import_all_from(locals, from);
|
|
READ_TIMESTAMP(intr1);
|
|
PyFrame_LocalsToFast(f, 0);
|
|
Py_DECREF(from);
|
|
if (err != 0)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(IMPORT_FROM) {
|
|
PyObject *name = GETITEM(names, oparg);
|
|
PyObject *from = TOP();
|
|
PyObject *res;
|
|
READ_TIMESTAMP(intr0);
|
|
res = import_from(from, name);
|
|
READ_TIMESTAMP(intr1);
|
|
PUSH(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(JUMP_FORWARD) {
|
|
JUMPBY(oparg);
|
|
FAST_DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(POP_JUMP_IF_FALSE);
|
|
TARGET(POP_JUMP_IF_FALSE) {
|
|
PyObject *cond = POP();
|
|
int err;
|
|
if (cond == Py_True) {
|
|
Py_DECREF(cond);
|
|
FAST_DISPATCH();
|
|
}
|
|
if (cond == Py_False) {
|
|
Py_DECREF(cond);
|
|
JUMPTO(oparg);
|
|
FAST_DISPATCH();
|
|
}
|
|
err = PyObject_IsTrue(cond);
|
|
Py_DECREF(cond);
|
|
if (err > 0)
|
|
err = 0;
|
|
else if (err == 0)
|
|
JUMPTO(oparg);
|
|
else
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(POP_JUMP_IF_TRUE);
|
|
TARGET(POP_JUMP_IF_TRUE) {
|
|
PyObject *cond = POP();
|
|
int err;
|
|
if (cond == Py_False) {
|
|
Py_DECREF(cond);
|
|
FAST_DISPATCH();
|
|
}
|
|
if (cond == Py_True) {
|
|
Py_DECREF(cond);
|
|
JUMPTO(oparg);
|
|
FAST_DISPATCH();
|
|
}
|
|
err = PyObject_IsTrue(cond);
|
|
Py_DECREF(cond);
|
|
if (err > 0) {
|
|
err = 0;
|
|
JUMPTO(oparg);
|
|
}
|
|
else if (err == 0)
|
|
;
|
|
else
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(JUMP_IF_FALSE_OR_POP) {
|
|
PyObject *cond = TOP();
|
|
int err;
|
|
if (cond == Py_True) {
|
|
STACKADJ(-1);
|
|
Py_DECREF(cond);
|
|
FAST_DISPATCH();
|
|
}
|
|
if (cond == Py_False) {
|
|
JUMPTO(oparg);
|
|
FAST_DISPATCH();
|
|
}
|
|
err = PyObject_IsTrue(cond);
|
|
if (err > 0) {
|
|
STACKADJ(-1);
|
|
Py_DECREF(cond);
|
|
err = 0;
|
|
}
|
|
else if (err == 0)
|
|
JUMPTO(oparg);
|
|
else
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(JUMP_IF_TRUE_OR_POP) {
|
|
PyObject *cond = TOP();
|
|
int err;
|
|
if (cond == Py_False) {
|
|
STACKADJ(-1);
|
|
Py_DECREF(cond);
|
|
FAST_DISPATCH();
|
|
}
|
|
if (cond == Py_True) {
|
|
JUMPTO(oparg);
|
|
FAST_DISPATCH();
|
|
}
|
|
err = PyObject_IsTrue(cond);
|
|
if (err > 0) {
|
|
err = 0;
|
|
JUMPTO(oparg);
|
|
}
|
|
else if (err == 0) {
|
|
STACKADJ(-1);
|
|
Py_DECREF(cond);
|
|
}
|
|
else
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(JUMP_ABSOLUTE);
|
|
TARGET(JUMP_ABSOLUTE) {
|
|
JUMPTO(oparg);
|
|
#if FAST_LOOPS
|
|
/* Enabling this path speeds-up all while and for-loops by bypassing
|
|
the per-loop checks for signals. By default, this should be turned-off
|
|
because it prevents detection of a control-break in tight loops like
|
|
"while 1: pass". Compile with this option turned-on when you need
|
|
the speed-up and do not need break checking inside tight loops (ones
|
|
that contain only instructions ending with FAST_DISPATCH).
|
|
*/
|
|
FAST_DISPATCH();
|
|
#else
|
|
DISPATCH();
|
|
#endif
|
|
}
|
|
|
|
TARGET(GET_ITER) {
|
|
/* before: [obj]; after [getiter(obj)] */
|
|
PyObject *iterable = TOP();
|
|
PyObject *iter = PyObject_GetIter(iterable);
|
|
Py_DECREF(iterable);
|
|
SET_TOP(iter);
|
|
if (iter == NULL)
|
|
goto error;
|
|
PREDICT(FOR_ITER);
|
|
DISPATCH();
|
|
}
|
|
|
|
PREDICTED_WITH_ARG(FOR_ITER);
|
|
TARGET(FOR_ITER) {
|
|
/* before: [iter]; after: [iter, iter()] *or* [] */
|
|
PyObject *iter = TOP();
|
|
PyObject *next = (*iter->ob_type->tp_iternext)(iter);
|
|
if (next != NULL) {
|
|
PUSH(next);
|
|
PREDICT(STORE_FAST);
|
|
PREDICT(UNPACK_SEQUENCE);
|
|
DISPATCH();
|
|
}
|
|
if (PyErr_Occurred()) {
|
|
if (!PyErr_ExceptionMatches(PyExc_StopIteration))
|
|
goto error;
|
|
else if (tstate->c_tracefunc != NULL)
|
|
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, f);
|
|
PyErr_Clear();
|
|
}
|
|
/* iterator ended normally */
|
|
STACKADJ(-1);
|
|
Py_DECREF(iter);
|
|
JUMPBY(oparg);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BREAK_LOOP) {
|
|
why = WHY_BREAK;
|
|
goto fast_block_end;
|
|
}
|
|
|
|
TARGET(CONTINUE_LOOP) {
|
|
retval = PyLong_FromLong(oparg);
|
|
if (retval == NULL)
|
|
goto error;
|
|
why = WHY_CONTINUE;
|
|
goto fast_block_end;
|
|
}
|
|
|
|
TARGET_WITH_IMPL(SETUP_LOOP, _setup_finally)
|
|
TARGET_WITH_IMPL(SETUP_EXCEPT, _setup_finally)
|
|
TARGET(SETUP_FINALLY)
|
|
_setup_finally: {
|
|
/* NOTE: If you add any new block-setup opcodes that
|
|
are not try/except/finally handlers, you may need
|
|
to update the PyGen_NeedsFinalizing() function.
|
|
*/
|
|
|
|
PyFrame_BlockSetup(f, opcode, INSTR_OFFSET() + oparg,
|
|
STACK_LEVEL());
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(SETUP_WITH) {
|
|
_Py_IDENTIFIER(__exit__);
|
|
_Py_IDENTIFIER(__enter__);
|
|
PyObject *mgr = TOP();
|
|
PyObject *exit = special_lookup(mgr, &PyId___exit__), *enter;
|
|
PyObject *res;
|
|
if (exit == NULL)
|
|
goto error;
|
|
SET_TOP(exit);
|
|
enter = special_lookup(mgr, &PyId___enter__);
|
|
Py_DECREF(mgr);
|
|
if (enter == NULL)
|
|
goto error;
|
|
res = PyObject_CallFunctionObjArgs(enter, NULL);
|
|
Py_DECREF(enter);
|
|
if (res == NULL)
|
|
goto error;
|
|
/* Setup the finally block before pushing the result
|
|
of __enter__ on the stack. */
|
|
PyFrame_BlockSetup(f, SETUP_FINALLY, INSTR_OFFSET() + oparg,
|
|
STACK_LEVEL());
|
|
|
|
PUSH(res);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(WITH_CLEANUP) {
|
|
/* At the top of the stack are 1-6 values indicating
|
|
how/why we entered the finally clause:
|
|
- TOP = None
|
|
- (TOP, SECOND) = (WHY_{RETURN,CONTINUE}), retval
|
|
- TOP = WHY_*; no retval below it
|
|
- (TOP, SECOND, THIRD) = exc_info()
|
|
(FOURTH, FITH, SIXTH) = previous exception for EXCEPT_HANDLER
|
|
Below them is EXIT, the context.__exit__ bound method.
|
|
In the last case, we must call
|
|
EXIT(TOP, SECOND, THIRD)
|
|
otherwise we must call
|
|
EXIT(None, None, None)
|
|
|
|
In the first three cases, we remove EXIT from the
|
|
stack, leaving the rest in the same order. In the
|
|
fourth case, we shift the bottom 3 values of the
|
|
stack down, and replace the empty spot with NULL.
|
|
|
|
In addition, if the stack represents an exception,
|
|
*and* the function call returns a 'true' value, we
|
|
push WHY_SILENCED onto the stack. END_FINALLY will
|
|
then not re-raise the exception. (But non-local
|
|
gotos should still be resumed.)
|
|
*/
|
|
|
|
PyObject *exit_func;
|
|
PyObject *exc = TOP(), *val = Py_None, *tb = Py_None, *res;
|
|
int err;
|
|
if (exc == Py_None) {
|
|
(void)POP();
|
|
exit_func = TOP();
|
|
SET_TOP(exc);
|
|
}
|
|
else if (PyLong_Check(exc)) {
|
|
STACKADJ(-1);
|
|
switch (PyLong_AsLong(exc)) {
|
|
case WHY_RETURN:
|
|
case WHY_CONTINUE:
|
|
/* Retval in TOP. */
|
|
exit_func = SECOND();
|
|
SET_SECOND(TOP());
|
|
SET_TOP(exc);
|
|
break;
|
|
default:
|
|
exit_func = TOP();
|
|
SET_TOP(exc);
|
|
break;
|
|
}
|
|
exc = Py_None;
|
|
}
|
|
else {
|
|
PyObject *tp2, *exc2, *tb2;
|
|
PyTryBlock *block;
|
|
val = SECOND();
|
|
tb = THIRD();
|
|
tp2 = FOURTH();
|
|
exc2 = PEEK(5);
|
|
tb2 = PEEK(6);
|
|
exit_func = PEEK(7);
|
|
SET_VALUE(7, tb2);
|
|
SET_VALUE(6, exc2);
|
|
SET_VALUE(5, tp2);
|
|
/* UNWIND_EXCEPT_HANDLER will pop this off. */
|
|
SET_FOURTH(NULL);
|
|
/* We just shifted the stack down, so we have
|
|
to tell the except handler block that the
|
|
values are lower than it expects. */
|
|
block = &f->f_blockstack[f->f_iblock - 1];
|
|
assert(block->b_type == EXCEPT_HANDLER);
|
|
block->b_level--;
|
|
}
|
|
/* XXX Not the fastest way to call it... */
|
|
res = PyObject_CallFunctionObjArgs(exit_func, exc, val, tb, NULL);
|
|
Py_DECREF(exit_func);
|
|
if (res == NULL)
|
|
goto error;
|
|
|
|
if (exc != Py_None)
|
|
err = PyObject_IsTrue(res);
|
|
else
|
|
err = 0;
|
|
Py_DECREF(res);
|
|
|
|
if (err < 0)
|
|
goto error;
|
|
else if (err > 0) {
|
|
err = 0;
|
|
/* There was an exception and a True return */
|
|
PUSH(PyLong_FromLong((long) WHY_SILENCED));
|
|
}
|
|
PREDICT(END_FINALLY);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(CALL_FUNCTION) {
|
|
PyObject **sp, *res;
|
|
PCALL(PCALL_ALL);
|
|
sp = stack_pointer;
|
|
#ifdef WITH_TSC
|
|
res = call_function(&sp, oparg, &intr0, &intr1);
|
|
#else
|
|
res = call_function(&sp, oparg);
|
|
#endif
|
|
stack_pointer = sp;
|
|
PUSH(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET_WITH_IMPL(CALL_FUNCTION_VAR, _call_function_var_kw)
|
|
TARGET_WITH_IMPL(CALL_FUNCTION_KW, _call_function_var_kw)
|
|
TARGET(CALL_FUNCTION_VAR_KW)
|
|
_call_function_var_kw: {
|
|
int na = oparg & 0xff;
|
|
int nk = (oparg>>8) & 0xff;
|
|
int flags = (opcode - CALL_FUNCTION) & 3;
|
|
int n = na + 2 * nk;
|
|
PyObject **pfunc, *func, **sp, *res;
|
|
PCALL(PCALL_ALL);
|
|
if (flags & CALL_FLAG_VAR)
|
|
n++;
|
|
if (flags & CALL_FLAG_KW)
|
|
n++;
|
|
pfunc = stack_pointer - n - 1;
|
|
func = *pfunc;
|
|
|
|
if (PyMethod_Check(func)
|
|
&& PyMethod_GET_SELF(func) != NULL) {
|
|
PyObject *self = PyMethod_GET_SELF(func);
|
|
Py_INCREF(self);
|
|
func = PyMethod_GET_FUNCTION(func);
|
|
Py_INCREF(func);
|
|
Py_DECREF(*pfunc);
|
|
*pfunc = self;
|
|
na++;
|
|
/* n++; */
|
|
} else
|
|
Py_INCREF(func);
|
|
sp = stack_pointer;
|
|
READ_TIMESTAMP(intr0);
|
|
res = ext_do_call(func, &sp, flags, na, nk);
|
|
READ_TIMESTAMP(intr1);
|
|
stack_pointer = sp;
|
|
Py_DECREF(func);
|
|
|
|
while (stack_pointer > pfunc) {
|
|
PyObject *o = POP();
|
|
Py_DECREF(o);
|
|
}
|
|
PUSH(res);
|
|
if (res == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET_WITH_IMPL(MAKE_CLOSURE, _make_function)
|
|
TARGET(MAKE_FUNCTION)
|
|
_make_function: {
|
|
int posdefaults = oparg & 0xff;
|
|
int kwdefaults = (oparg>>8) & 0xff;
|
|
int num_annotations = (oparg >> 16) & 0x7fff;
|
|
|
|
PyObject *qualname = POP(); /* qualname */
|
|
PyObject *code = POP(); /* code object */
|
|
PyObject *func = PyFunction_NewWithQualName(code, f->f_globals, qualname);
|
|
Py_DECREF(code);
|
|
Py_DECREF(qualname);
|
|
|
|
if (func == NULL)
|
|
goto error;
|
|
|
|
if (opcode == MAKE_CLOSURE) {
|
|
PyObject *closure = POP();
|
|
if (PyFunction_SetClosure(func, closure) != 0) {
|
|
/* Can't happen unless bytecode is corrupt. */
|
|
Py_DECREF(func);
|
|
Py_DECREF(closure);
|
|
goto error;
|
|
}
|
|
Py_DECREF(closure);
|
|
}
|
|
|
|
if (num_annotations > 0) {
|
|
Py_ssize_t name_ix;
|
|
PyObject *names = POP(); /* names of args with annotations */
|
|
PyObject *anns = PyDict_New();
|
|
if (anns == NULL) {
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
name_ix = PyTuple_Size(names);
|
|
assert(num_annotations == name_ix+1);
|
|
while (name_ix > 0) {
|
|
PyObject *name, *value;
|
|
int err;
|
|
--name_ix;
|
|
name = PyTuple_GET_ITEM(names, name_ix);
|
|
value = POP();
|
|
err = PyDict_SetItem(anns, name, value);
|
|
Py_DECREF(value);
|
|
if (err != 0) {
|
|
Py_DECREF(anns);
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (PyFunction_SetAnnotations(func, anns) != 0) {
|
|
/* Can't happen unless
|
|
PyFunction_SetAnnotations changes. */
|
|
Py_DECREF(anns);
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
Py_DECREF(anns);
|
|
Py_DECREF(names);
|
|
}
|
|
|
|
/* XXX Maybe this should be a separate opcode? */
|
|
if (kwdefaults > 0) {
|
|
PyObject *defs = PyDict_New();
|
|
if (defs == NULL) {
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
while (--kwdefaults >= 0) {
|
|
PyObject *v = POP(); /* default value */
|
|
PyObject *key = POP(); /* kw only arg name */
|
|
int err = PyDict_SetItem(defs, key, v);
|
|
Py_DECREF(v);
|
|
Py_DECREF(key);
|
|
if (err != 0) {
|
|
Py_DECREF(defs);
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
}
|
|
if (PyFunction_SetKwDefaults(func, defs) != 0) {
|
|
/* Can't happen unless
|
|
PyFunction_SetKwDefaults changes. */
|
|
Py_DECREF(func);
|
|
Py_DECREF(defs);
|
|
goto error;
|
|
}
|
|
Py_DECREF(defs);
|
|
}
|
|
if (posdefaults > 0) {
|
|
PyObject *defs = PyTuple_New(posdefaults);
|
|
if (defs == NULL) {
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
while (--posdefaults >= 0)
|
|
PyTuple_SET_ITEM(defs, posdefaults, POP());
|
|
if (PyFunction_SetDefaults(func, defs) != 0) {
|
|
/* Can't happen unless
|
|
PyFunction_SetDefaults changes. */
|
|
Py_DECREF(defs);
|
|
Py_DECREF(func);
|
|
goto error;
|
|
}
|
|
Py_DECREF(defs);
|
|
}
|
|
PUSH(func);
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(BUILD_SLICE) {
|
|
PyObject *start, *stop, *step, *slice;
|
|
if (oparg == 3)
|
|
step = POP();
|
|
else
|
|
step = NULL;
|
|
stop = POP();
|
|
start = TOP();
|
|
slice = PySlice_New(start, stop, step);
|
|
Py_DECREF(start);
|
|
Py_DECREF(stop);
|
|
Py_XDECREF(step);
|
|
SET_TOP(slice);
|
|
if (slice == NULL)
|
|
goto error;
|
|
DISPATCH();
|
|
}
|
|
|
|
TARGET(EXTENDED_ARG) {
|
|
opcode = NEXTOP();
|
|
oparg = oparg<<16 | NEXTARG();
|
|
goto dispatch_opcode;
|
|
}
|
|
|
|
#if USE_COMPUTED_GOTOS
|
|
_unknown_opcode:
|
|
#endif
|
|
default:
|
|
fprintf(stderr,
|
|
"XXX lineno: %d, opcode: %d\n",
|
|
PyFrame_GetLineNumber(f),
|
|
opcode);
|
|
PyErr_SetString(PyExc_SystemError, "unknown opcode");
|
|
goto error;
|
|
|
|
#ifdef CASE_TOO_BIG
|
|
}
|
|
#endif
|
|
|
|
} /* switch */
|
|
|
|
/* This should never be reached. Every opcode should end with DISPATCH()
|
|
or goto error. */
|
|
assert(0);
|
|
|
|
error:
|
|
READ_TIMESTAMP(inst1);
|
|
|
|
assert(why == WHY_NOT);
|
|
why = WHY_EXCEPTION;
|
|
|
|
/* Double-check exception status. */
|
|
#ifdef NDEBUG
|
|
if (!PyErr_Occurred())
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"error return without exception set");
|
|
#else
|
|
assert(PyErr_Occurred());
|
|
#endif
|
|
|
|
/* Log traceback info. */
|
|
PyTraceBack_Here(f);
|
|
|
|
if (tstate->c_tracefunc != NULL)
|
|
call_exc_trace(tstate->c_tracefunc, tstate->c_traceobj, f);
|
|
|
|
fast_block_end:
|
|
assert(why != WHY_NOT);
|
|
|
|
/* Unwind stacks if a (pseudo) exception occurred */
|
|
while (why != WHY_NOT && f->f_iblock > 0) {
|
|
/* Peek at the current block. */
|
|
PyTryBlock *b = &f->f_blockstack[f->f_iblock - 1];
|
|
|
|
assert(why != WHY_YIELD);
|
|
if (b->b_type == SETUP_LOOP && why == WHY_CONTINUE) {
|
|
why = WHY_NOT;
|
|
JUMPTO(PyLong_AS_LONG(retval));
|
|
Py_DECREF(retval);
|
|
break;
|
|
}
|
|
/* Now we have to pop the block. */
|
|
f->f_iblock--;
|
|
|
|
if (b->b_type == EXCEPT_HANDLER) {
|
|
UNWIND_EXCEPT_HANDLER(b);
|
|
continue;
|
|
}
|
|
UNWIND_BLOCK(b);
|
|
if (b->b_type == SETUP_LOOP && why == WHY_BREAK) {
|
|
why = WHY_NOT;
|
|
JUMPTO(b->b_handler);
|
|
break;
|
|
}
|
|
if (why == WHY_EXCEPTION && (b->b_type == SETUP_EXCEPT
|
|
|| b->b_type == SETUP_FINALLY)) {
|
|
PyObject *exc, *val, *tb;
|
|
int handler = b->b_handler;
|
|
/* Beware, this invalidates all b->b_* fields */
|
|
PyFrame_BlockSetup(f, EXCEPT_HANDLER, -1, STACK_LEVEL());
|
|
PUSH(tstate->exc_traceback);
|
|
PUSH(tstate->exc_value);
|
|
if (tstate->exc_type != NULL) {
|
|
PUSH(tstate->exc_type);
|
|
}
|
|
else {
|
|
Py_INCREF(Py_None);
|
|
PUSH(Py_None);
|
|
}
|
|
PyErr_Fetch(&exc, &val, &tb);
|
|
/* Make the raw exception data
|
|
available to the handler,
|
|
so a program can emulate the
|
|
Python main loop. */
|
|
PyErr_NormalizeException(
|
|
&exc, &val, &tb);
|
|
if (tb != NULL)
|
|
PyException_SetTraceback(val, tb);
|
|
else
|
|
PyException_SetTraceback(val, Py_None);
|
|
Py_INCREF(exc);
|
|
tstate->exc_type = exc;
|
|
Py_INCREF(val);
|
|
tstate->exc_value = val;
|
|
tstate->exc_traceback = tb;
|
|
if (tb == NULL)
|
|
tb = Py_None;
|
|
Py_INCREF(tb);
|
|
PUSH(tb);
|
|
PUSH(val);
|
|
PUSH(exc);
|
|
why = WHY_NOT;
|
|
JUMPTO(handler);
|
|
break;
|
|
}
|
|
if (b->b_type == SETUP_FINALLY) {
|
|
if (why & (WHY_RETURN | WHY_CONTINUE))
|
|
PUSH(retval);
|
|
PUSH(PyLong_FromLong((long)why));
|
|
why = WHY_NOT;
|
|
JUMPTO(b->b_handler);
|
|
break;
|
|
}
|
|
} /* unwind stack */
|
|
|
|
/* End the loop if we still have an error (or return) */
|
|
|
|
if (why != WHY_NOT)
|
|
break;
|
|
READ_TIMESTAMP(loop1);
|
|
|
|
assert(!PyErr_Occurred());
|
|
|
|
} /* main loop */
|
|
|
|
assert(why != WHY_YIELD);
|
|
/* Pop remaining stack entries. */
|
|
while (!EMPTY()) {
|
|
PyObject *o = POP();
|
|
Py_XDECREF(o);
|
|
}
|
|
|
|
if (why != WHY_RETURN)
|
|
retval = NULL;
|
|
|
|
assert((retval != NULL && !PyErr_Occurred())
|
|
|| (retval == NULL && PyErr_Occurred()));
|
|
|
|
fast_yield:
|
|
if (co->co_flags & CO_GENERATOR && (why == WHY_YIELD || why == WHY_RETURN)) {
|
|
/* The purpose of this block is to put aside the generator's exception
|
|
state and restore that of the calling frame. If the current
|
|
exception state is from the caller, we clear the exception values
|
|
on the generator frame, so they are not swapped back in latter. The
|
|
origin of the current exception state is determined by checking for
|
|
except handler blocks, which we must be in iff a new exception
|
|
state came into existence in this frame. (An uncaught exception
|
|
would have why == WHY_EXCEPTION, and we wouldn't be here). */
|
|
int i;
|
|
for (i = 0; i < f->f_iblock; i++)
|
|
if (f->f_blockstack[i].b_type == EXCEPT_HANDLER)
|
|
break;
|
|
if (i == f->f_iblock)
|
|
/* We did not create this exception. */
|
|
restore_and_clear_exc_state(tstate, f);
|
|
else
|
|
swap_exc_state(tstate, f);
|
|
}
|
|
|
|
if (tstate->use_tracing) {
|
|
if (tstate->c_tracefunc) {
|
|
if (why == WHY_RETURN || why == WHY_YIELD) {
|
|
if (call_trace(tstate->c_tracefunc,
|
|
tstate->c_traceobj, f,
|
|
PyTrace_RETURN, retval)) {
|
|
Py_XDECREF(retval);
|
|
retval = NULL;
|
|
why = WHY_EXCEPTION;
|
|
}
|
|
}
|
|
else if (why == WHY_EXCEPTION) {
|
|
call_trace_protected(tstate->c_tracefunc,
|
|
tstate->c_traceobj, f,
|
|
PyTrace_RETURN, NULL);
|
|
}
|
|
}
|
|
if (tstate->c_profilefunc) {
|
|
if (why == WHY_EXCEPTION)
|
|
call_trace_protected(tstate->c_profilefunc,
|
|
tstate->c_profileobj, f,
|
|
PyTrace_RETURN, NULL);
|
|
else if (call_trace(tstate->c_profilefunc,
|
|
tstate->c_profileobj, f,
|
|
PyTrace_RETURN, retval)) {
|
|
Py_XDECREF(retval);
|
|
retval = NULL;
|
|
/* why = WHY_EXCEPTION; */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* pop frame */
|
|
exit_eval_frame:
|
|
Py_LeaveRecursiveCall();
|
|
f->f_executing = 0;
|
|
tstate->frame = f->f_back;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
format_missing(const char *kind, PyCodeObject *co, PyObject *names)
|
|
{
|
|
int err;
|
|
Py_ssize_t len = PyList_GET_SIZE(names);
|
|
PyObject *name_str, *comma, *tail, *tmp;
|
|
|
|
assert(PyList_CheckExact(names));
|
|
assert(len >= 1);
|
|
/* Deal with the joys of natural language. */
|
|
switch (len) {
|
|
case 1:
|
|
name_str = PyList_GET_ITEM(names, 0);
|
|
Py_INCREF(name_str);
|
|
break;
|
|
case 2:
|
|
name_str = PyUnicode_FromFormat("%U and %U",
|
|
PyList_GET_ITEM(names, len - 2),
|
|
PyList_GET_ITEM(names, len - 1));
|
|
break;
|
|
default:
|
|
tail = PyUnicode_FromFormat(", %U, and %U",
|
|
PyList_GET_ITEM(names, len - 2),
|
|
PyList_GET_ITEM(names, len - 1));
|
|
if (tail == NULL)
|
|
return;
|
|
/* Chop off the last two objects in the list. This shouldn't actually
|
|
fail, but we can't be too careful. */
|
|
err = PyList_SetSlice(names, len - 2, len, NULL);
|
|
if (err == -1) {
|
|
Py_DECREF(tail);
|
|
return;
|
|
}
|
|
/* Stitch everything up into a nice comma-separated list. */
|
|
comma = PyUnicode_FromString(", ");
|
|
if (comma == NULL) {
|
|
Py_DECREF(tail);
|
|
return;
|
|
}
|
|
tmp = PyUnicode_Join(comma, names);
|
|
Py_DECREF(comma);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(tail);
|
|
return;
|
|
}
|
|
name_str = PyUnicode_Concat(tmp, tail);
|
|
Py_DECREF(tmp);
|
|
Py_DECREF(tail);
|
|
break;
|
|
}
|
|
if (name_str == NULL)
|
|
return;
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%U() missing %i required %s argument%s: %U",
|
|
co->co_name,
|
|
len,
|
|
kind,
|
|
len == 1 ? "" : "s",
|
|
name_str);
|
|
Py_DECREF(name_str);
|
|
}
|
|
|
|
static void
|
|
missing_arguments(PyCodeObject *co, int missing, int defcount,
|
|
PyObject **fastlocals)
|
|
{
|
|
int i, j = 0;
|
|
int start, end;
|
|
int positional = defcount != -1;
|
|
const char *kind = positional ? "positional" : "keyword-only";
|
|
PyObject *missing_names;
|
|
|
|
/* Compute the names of the arguments that are missing. */
|
|
missing_names = PyList_New(missing);
|
|
if (missing_names == NULL)
|
|
return;
|
|
if (positional) {
|
|
start = 0;
|
|
end = co->co_argcount - defcount;
|
|
}
|
|
else {
|
|
start = co->co_argcount;
|
|
end = start + co->co_kwonlyargcount;
|
|
}
|
|
for (i = start; i < end; i++) {
|
|
if (GETLOCAL(i) == NULL) {
|
|
PyObject *raw = PyTuple_GET_ITEM(co->co_varnames, i);
|
|
PyObject *name = PyObject_Repr(raw);
|
|
if (name == NULL) {
|
|
Py_DECREF(missing_names);
|
|
return;
|
|
}
|
|
PyList_SET_ITEM(missing_names, j++, name);
|
|
}
|
|
}
|
|
assert(j == missing);
|
|
format_missing(kind, co, missing_names);
|
|
Py_DECREF(missing_names);
|
|
}
|
|
|
|
static void
|
|
too_many_positional(PyCodeObject *co, int given, int defcount, PyObject **fastlocals)
|
|
{
|
|
int plural;
|
|
int kwonly_given = 0;
|
|
int i;
|
|
PyObject *sig, *kwonly_sig;
|
|
|
|
assert((co->co_flags & CO_VARARGS) == 0);
|
|
/* Count missing keyword-only args. */
|
|
for (i = co->co_argcount; i < co->co_argcount + co->co_kwonlyargcount; i++)
|
|
if (GETLOCAL(i) != NULL)
|
|
kwonly_given++;
|
|
if (defcount) {
|
|
int atleast = co->co_argcount - defcount;
|
|
plural = 1;
|
|
sig = PyUnicode_FromFormat("from %d to %d", atleast, co->co_argcount);
|
|
}
|
|
else {
|
|
plural = co->co_argcount != 1;
|
|
sig = PyUnicode_FromFormat("%d", co->co_argcount);
|
|
}
|
|
if (sig == NULL)
|
|
return;
|
|
if (kwonly_given) {
|
|
const char *format = " positional argument%s (and %d keyword-only argument%s)";
|
|
kwonly_sig = PyUnicode_FromFormat(format, given != 1 ? "s" : "", kwonly_given,
|
|
kwonly_given != 1 ? "s" : "");
|
|
if (kwonly_sig == NULL) {
|
|
Py_DECREF(sig);
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
/* This will not fail. */
|
|
kwonly_sig = PyUnicode_FromString("");
|
|
assert(kwonly_sig != NULL);
|
|
}
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%U() takes %U positional argument%s but %d%U %s given",
|
|
co->co_name,
|
|
sig,
|
|
plural ? "s" : "",
|
|
given,
|
|
kwonly_sig,
|
|
given == 1 && !kwonly_given ? "was" : "were");
|
|
Py_DECREF(sig);
|
|
Py_DECREF(kwonly_sig);
|
|
}
|
|
|
|
/* This is gonna seem *real weird*, but if you put some other code between
|
|
PyEval_EvalFrame() and PyEval_EvalCodeEx() you will need to adjust
|
|
the test in the if statements in Misc/gdbinit (pystack and pystackv). */
|
|
|
|
PyObject *
|
|
PyEval_EvalCodeEx(PyObject *_co, PyObject *globals, PyObject *locals,
|
|
PyObject **args, int argcount, PyObject **kws, int kwcount,
|
|
PyObject **defs, int defcount, PyObject *kwdefs, PyObject *closure)
|
|
{
|
|
PyCodeObject* co = (PyCodeObject*)_co;
|
|
PyFrameObject *f;
|
|
PyObject *retval = NULL;
|
|
PyObject **fastlocals, **freevars;
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyObject *x, *u;
|
|
int total_args = co->co_argcount + co->co_kwonlyargcount;
|
|
int i;
|
|
int n = argcount;
|
|
PyObject *kwdict = NULL;
|
|
|
|
if (globals == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"PyEval_EvalCodeEx: NULL globals");
|
|
return NULL;
|
|
}
|
|
|
|
assert(tstate != NULL);
|
|
assert(globals != NULL);
|
|
f = PyFrame_New(tstate, co, globals, locals);
|
|
if (f == NULL)
|
|
return NULL;
|
|
|
|
fastlocals = f->f_localsplus;
|
|
freevars = f->f_localsplus + co->co_nlocals;
|
|
|
|
/* Parse arguments. */
|
|
if (co->co_flags & CO_VARKEYWORDS) {
|
|
kwdict = PyDict_New();
|
|
if (kwdict == NULL)
|
|
goto fail;
|
|
i = total_args;
|
|
if (co->co_flags & CO_VARARGS)
|
|
i++;
|
|
SETLOCAL(i, kwdict);
|
|
}
|
|
if (argcount > co->co_argcount)
|
|
n = co->co_argcount;
|
|
for (i = 0; i < n; i++) {
|
|
x = args[i];
|
|
Py_INCREF(x);
|
|
SETLOCAL(i, x);
|
|
}
|
|
if (co->co_flags & CO_VARARGS) {
|
|
u = PyTuple_New(argcount - n);
|
|
if (u == NULL)
|
|
goto fail;
|
|
SETLOCAL(total_args, u);
|
|
for (i = n; i < argcount; i++) {
|
|
x = args[i];
|
|
Py_INCREF(x);
|
|
PyTuple_SET_ITEM(u, i-n, x);
|
|
}
|
|
}
|
|
for (i = 0; i < kwcount; i++) {
|
|
PyObject **co_varnames;
|
|
PyObject *keyword = kws[2*i];
|
|
PyObject *value = kws[2*i + 1];
|
|
int j;
|
|
if (keyword == NULL || !PyUnicode_Check(keyword)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%U() keywords must be strings",
|
|
co->co_name);
|
|
goto fail;
|
|
}
|
|
/* Speed hack: do raw pointer compares. As names are
|
|
normally interned this should almost always hit. */
|
|
co_varnames = ((PyTupleObject *)(co->co_varnames))->ob_item;
|
|
for (j = 0; j < total_args; j++) {
|
|
PyObject *nm = co_varnames[j];
|
|
if (nm == keyword)
|
|
goto kw_found;
|
|
}
|
|
/* Slow fallback, just in case */
|
|
for (j = 0; j < total_args; j++) {
|
|
PyObject *nm = co_varnames[j];
|
|
int cmp = PyObject_RichCompareBool(
|
|
keyword, nm, Py_EQ);
|
|
if (cmp > 0)
|
|
goto kw_found;
|
|
else if (cmp < 0)
|
|
goto fail;
|
|
}
|
|
if (j >= total_args && kwdict == NULL) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%U() got an unexpected "
|
|
"keyword argument '%S'",
|
|
co->co_name,
|
|
keyword);
|
|
goto fail;
|
|
}
|
|
if (PyDict_SetItem(kwdict, keyword, value) == -1) {
|
|
goto fail;
|
|
}
|
|
continue;
|
|
kw_found:
|
|
if (GETLOCAL(j) != NULL) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%U() got multiple "
|
|
"values for argument '%S'",
|
|
co->co_name,
|
|
keyword);
|
|
goto fail;
|
|
}
|
|
Py_INCREF(value);
|
|
SETLOCAL(j, value);
|
|
}
|
|
if (argcount > co->co_argcount && !(co->co_flags & CO_VARARGS)) {
|
|
too_many_positional(co, argcount, defcount, fastlocals);
|
|
goto fail;
|
|
}
|
|
if (argcount < co->co_argcount) {
|
|
int m = co->co_argcount - defcount;
|
|
int missing = 0;
|
|
for (i = argcount; i < m; i++)
|
|
if (GETLOCAL(i) == NULL)
|
|
missing++;
|
|
if (missing) {
|
|
missing_arguments(co, missing, defcount, fastlocals);
|
|
goto fail;
|
|
}
|
|
if (n > m)
|
|
i = n - m;
|
|
else
|
|
i = 0;
|
|
for (; i < defcount; i++) {
|
|
if (GETLOCAL(m+i) == NULL) {
|
|
PyObject *def = defs[i];
|
|
Py_INCREF(def);
|
|
SETLOCAL(m+i, def);
|
|
}
|
|
}
|
|
}
|
|
if (co->co_kwonlyargcount > 0) {
|
|
int missing = 0;
|
|
for (i = co->co_argcount; i < total_args; i++) {
|
|
PyObject *name;
|
|
if (GETLOCAL(i) != NULL)
|
|
continue;
|
|
name = PyTuple_GET_ITEM(co->co_varnames, i);
|
|
if (kwdefs != NULL) {
|
|
PyObject *def = PyDict_GetItem(kwdefs, name);
|
|
if (def) {
|
|
Py_INCREF(def);
|
|
SETLOCAL(i, def);
|
|
continue;
|
|
}
|
|
}
|
|
missing++;
|
|
}
|
|
if (missing) {
|
|
missing_arguments(co, missing, -1, fastlocals);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Allocate and initialize storage for cell vars, and copy free
|
|
vars into frame. */
|
|
for (i = 0; i < PyTuple_GET_SIZE(co->co_cellvars); ++i) {
|
|
PyObject *c;
|
|
int arg;
|
|
/* Possibly account for the cell variable being an argument. */
|
|
if (co->co_cell2arg != NULL &&
|
|
(arg = co->co_cell2arg[i]) != CO_CELL_NOT_AN_ARG) {
|
|
c = PyCell_New(GETLOCAL(arg));
|
|
/* Clear the local copy. */
|
|
SETLOCAL(arg, NULL);
|
|
}
|
|
else {
|
|
c = PyCell_New(NULL);
|
|
}
|
|
if (c == NULL)
|
|
goto fail;
|
|
SETLOCAL(co->co_nlocals + i, c);
|
|
}
|
|
for (i = 0; i < PyTuple_GET_SIZE(co->co_freevars); ++i) {
|
|
PyObject *o = PyTuple_GET_ITEM(closure, i);
|
|
Py_INCREF(o);
|
|
freevars[PyTuple_GET_SIZE(co->co_cellvars) + i] = o;
|
|
}
|
|
|
|
if (co->co_flags & CO_GENERATOR) {
|
|
/* Don't need to keep the reference to f_back, it will be set
|
|
* when the generator is resumed. */
|
|
Py_XDECREF(f->f_back);
|
|
f->f_back = NULL;
|
|
|
|
PCALL(PCALL_GENERATOR);
|
|
|
|
/* Create a new generator that owns the ready to run frame
|
|
* and return that as the value. */
|
|
return PyGen_New(f);
|
|
}
|
|
|
|
retval = PyEval_EvalFrameEx(f,0);
|
|
|
|
fail: /* Jump here from prelude on failure */
|
|
|
|
/* decref'ing the frame can cause __del__ methods to get invoked,
|
|
which can call back into Python. While we're done with the
|
|
current Python frame (f), the associated C stack is still in use,
|
|
so recursion_depth must be boosted for the duration.
|
|
*/
|
|
assert(tstate != NULL);
|
|
++tstate->recursion_depth;
|
|
Py_DECREF(f);
|
|
--tstate->recursion_depth;
|
|
return retval;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
special_lookup(PyObject *o, _Py_Identifier *id)
|
|
{
|
|
PyObject *res;
|
|
res = _PyObject_LookupSpecial(o, id);
|
|
if (res == NULL && !PyErr_Occurred()) {
|
|
PyErr_SetObject(PyExc_AttributeError, id->object);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/* These 3 functions deal with the exception state of generators. */
|
|
|
|
static void
|
|
save_exc_state(PyThreadState *tstate, PyFrameObject *f)
|
|
{
|
|
PyObject *type, *value, *traceback;
|
|
Py_XINCREF(tstate->exc_type);
|
|
Py_XINCREF(tstate->exc_value);
|
|
Py_XINCREF(tstate->exc_traceback);
|
|
type = f->f_exc_type;
|
|
value = f->f_exc_value;
|
|
traceback = f->f_exc_traceback;
|
|
f->f_exc_type = tstate->exc_type;
|
|
f->f_exc_value = tstate->exc_value;
|
|
f->f_exc_traceback = tstate->exc_traceback;
|
|
Py_XDECREF(type);
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(traceback);
|
|
}
|
|
|
|
static void
|
|
swap_exc_state(PyThreadState *tstate, PyFrameObject *f)
|
|
{
|
|
PyObject *tmp;
|
|
tmp = tstate->exc_type;
|
|
tstate->exc_type = f->f_exc_type;
|
|
f->f_exc_type = tmp;
|
|
tmp = tstate->exc_value;
|
|
tstate->exc_value = f->f_exc_value;
|
|
f->f_exc_value = tmp;
|
|
tmp = tstate->exc_traceback;
|
|
tstate->exc_traceback = f->f_exc_traceback;
|
|
f->f_exc_traceback = tmp;
|
|
}
|
|
|
|
static void
|
|
restore_and_clear_exc_state(PyThreadState *tstate, PyFrameObject *f)
|
|
{
|
|
PyObject *type, *value, *tb;
|
|
type = tstate->exc_type;
|
|
value = tstate->exc_value;
|
|
tb = tstate->exc_traceback;
|
|
tstate->exc_type = f->f_exc_type;
|
|
tstate->exc_value = f->f_exc_value;
|
|
tstate->exc_traceback = f->f_exc_traceback;
|
|
f->f_exc_type = NULL;
|
|
f->f_exc_value = NULL;
|
|
f->f_exc_traceback = NULL;
|
|
Py_XDECREF(type);
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(tb);
|
|
}
|
|
|
|
|
|
/* Logic for the raise statement (too complicated for inlining).
|
|
This *consumes* a reference count to each of its arguments. */
|
|
static int
|
|
do_raise(PyObject *exc, PyObject *cause)
|
|
{
|
|
PyObject *type = NULL, *value = NULL;
|
|
|
|
if (exc == NULL) {
|
|
/* Reraise */
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyObject *tb;
|
|
type = tstate->exc_type;
|
|
value = tstate->exc_value;
|
|
tb = tstate->exc_traceback;
|
|
if (type == Py_None) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"No active exception to reraise");
|
|
return 0;
|
|
}
|
|
Py_XINCREF(type);
|
|
Py_XINCREF(value);
|
|
Py_XINCREF(tb);
|
|
PyErr_Restore(type, value, tb);
|
|
return 1;
|
|
}
|
|
|
|
/* We support the following forms of raise:
|
|
raise
|
|
raise <instance>
|
|
raise <type> */
|
|
|
|
if (PyExceptionClass_Check(exc)) {
|
|
type = exc;
|
|
value = PyObject_CallObject(exc, NULL);
|
|
if (value == NULL)
|
|
goto raise_error;
|
|
if (!PyExceptionInstance_Check(value)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"calling %R should have returned an instance of "
|
|
"BaseException, not %R",
|
|
type, Py_TYPE(value));
|
|
goto raise_error;
|
|
}
|
|
}
|
|
else if (PyExceptionInstance_Check(exc)) {
|
|
value = exc;
|
|
type = PyExceptionInstance_Class(exc);
|
|
Py_INCREF(type);
|
|
}
|
|
else {
|
|
/* Not something you can raise. You get an exception
|
|
anyway, just not what you specified :-) */
|
|
Py_DECREF(exc);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"exceptions must derive from BaseException");
|
|
goto raise_error;
|
|
}
|
|
|
|
if (cause) {
|
|
PyObject *fixed_cause;
|
|
if (PyExceptionClass_Check(cause)) {
|
|
fixed_cause = PyObject_CallObject(cause, NULL);
|
|
if (fixed_cause == NULL)
|
|
goto raise_error;
|
|
Py_DECREF(cause);
|
|
}
|
|
else if (PyExceptionInstance_Check(cause)) {
|
|
fixed_cause = cause;
|
|
}
|
|
else if (cause == Py_None) {
|
|
Py_DECREF(cause);
|
|
fixed_cause = NULL;
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"exception causes must derive from "
|
|
"BaseException");
|
|
goto raise_error;
|
|
}
|
|
PyException_SetCause(value, fixed_cause);
|
|
}
|
|
|
|
PyErr_SetObject(type, value);
|
|
/* PyErr_SetObject incref's its arguments */
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(type);
|
|
return 0;
|
|
|
|
raise_error:
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(type);
|
|
Py_XDECREF(cause);
|
|
return 0;
|
|
}
|
|
|
|
/* Iterate v argcnt times and store the results on the stack (via decreasing
|
|
sp). Return 1 for success, 0 if error.
|
|
|
|
If argcntafter == -1, do a simple unpack. If it is >= 0, do an unpack
|
|
with a variable target.
|
|
*/
|
|
|
|
static int
|
|
unpack_iterable(PyObject *v, int argcnt, int argcntafter, PyObject **sp)
|
|
{
|
|
int i = 0, j = 0;
|
|
Py_ssize_t ll = 0;
|
|
PyObject *it; /* iter(v) */
|
|
PyObject *w;
|
|
PyObject *l = NULL; /* variable list */
|
|
|
|
assert(v != NULL);
|
|
|
|
it = PyObject_GetIter(v);
|
|
if (it == NULL)
|
|
goto Error;
|
|
|
|
for (; i < argcnt; i++) {
|
|
w = PyIter_Next(it);
|
|
if (w == NULL) {
|
|
/* Iterator done, via error or exhaustion. */
|
|
if (!PyErr_Occurred()) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"need more than %d value%s to unpack",
|
|
i, i == 1 ? "" : "s");
|
|
}
|
|
goto Error;
|
|
}
|
|
*--sp = w;
|
|
}
|
|
|
|
if (argcntafter == -1) {
|
|
/* We better have exhausted the iterator now. */
|
|
w = PyIter_Next(it);
|
|
if (w == NULL) {
|
|
if (PyErr_Occurred())
|
|
goto Error;
|
|
Py_DECREF(it);
|
|
return 1;
|
|
}
|
|
Py_DECREF(w);
|
|
PyErr_Format(PyExc_ValueError, "too many values to unpack "
|
|
"(expected %d)", argcnt);
|
|
goto Error;
|
|
}
|
|
|
|
l = PySequence_List(it);
|
|
if (l == NULL)
|
|
goto Error;
|
|
*--sp = l;
|
|
i++;
|
|
|
|
ll = PyList_GET_SIZE(l);
|
|
if (ll < argcntafter) {
|
|
PyErr_Format(PyExc_ValueError, "need more than %zd values to unpack",
|
|
argcnt + ll);
|
|
goto Error;
|
|
}
|
|
|
|
/* Pop the "after-variable" args off the list. */
|
|
for (j = argcntafter; j > 0; j--, i++) {
|
|
*--sp = PyList_GET_ITEM(l, ll - j);
|
|
}
|
|
/* Resize the list. */
|
|
Py_SIZE(l) = ll - argcntafter;
|
|
Py_DECREF(it);
|
|
return 1;
|
|
|
|
Error:
|
|
for (; i > 0; i--, sp++)
|
|
Py_DECREF(*sp);
|
|
Py_XDECREF(it);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef LLTRACE
|
|
static int
|
|
prtrace(PyObject *v, char *str)
|
|
{
|
|
printf("%s ", str);
|
|
if (PyObject_Print(v, stdout, 0) != 0)
|
|
PyErr_Clear(); /* Don't know what else to do */
|
|
printf("\n");
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
call_exc_trace(Py_tracefunc func, PyObject *self, PyFrameObject *f)
|
|
{
|
|
PyObject *type, *value, *traceback, *orig_traceback, *arg;
|
|
int err;
|
|
PyErr_Fetch(&type, &value, &traceback);
|
|
if (value == NULL) {
|
|
value = Py_None;
|
|
Py_INCREF(value);
|
|
}
|
|
PyErr_NormalizeException(&type, &value, &traceback);
|
|
orig_traceback = traceback;
|
|
if (traceback == NULL) {
|
|
Py_INCREF(Py_None);
|
|
traceback = Py_None;
|
|
}
|
|
arg = PyTuple_Pack(3, type, value, traceback);
|
|
if (arg == NULL) {
|
|
PyErr_Restore(type, value, traceback);
|
|
return;
|
|
}
|
|
err = call_trace(func, self, f, PyTrace_EXCEPTION, arg);
|
|
Py_DECREF(arg);
|
|
if (err == 0)
|
|
PyErr_Restore(type, value, orig_traceback);
|
|
else {
|
|
Py_XDECREF(type);
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(orig_traceback);
|
|
}
|
|
}
|
|
|
|
static int
|
|
call_trace_protected(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
|
|
int what, PyObject *arg)
|
|
{
|
|
PyObject *type, *value, *traceback;
|
|
int err;
|
|
PyErr_Fetch(&type, &value, &traceback);
|
|
err = call_trace(func, obj, frame, what, arg);
|
|
if (err == 0)
|
|
{
|
|
PyErr_Restore(type, value, traceback);
|
|
return 0;
|
|
}
|
|
else {
|
|
Py_XDECREF(type);
|
|
Py_XDECREF(value);
|
|
Py_XDECREF(traceback);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
call_trace(Py_tracefunc func, PyObject *obj, PyFrameObject *frame,
|
|
int what, PyObject *arg)
|
|
{
|
|
PyThreadState *tstate = frame->f_tstate;
|
|
int result;
|
|
if (tstate->tracing)
|
|
return 0;
|
|
tstate->tracing++;
|
|
tstate->use_tracing = 0;
|
|
result = func(obj, frame, what, arg);
|
|
tstate->use_tracing = ((tstate->c_tracefunc != NULL)
|
|
|| (tstate->c_profilefunc != NULL));
|
|
tstate->tracing--;
|
|
return result;
|
|
}
|
|
|
|
PyObject *
|
|
_PyEval_CallTracing(PyObject *func, PyObject *args)
|
|
{
|
|
PyFrameObject *frame = PyEval_GetFrame();
|
|
PyThreadState *tstate = frame->f_tstate;
|
|
int save_tracing = tstate->tracing;
|
|
int save_use_tracing = tstate->use_tracing;
|
|
PyObject *result;
|
|
|
|
tstate->tracing = 0;
|
|
tstate->use_tracing = ((tstate->c_tracefunc != NULL)
|
|
|| (tstate->c_profilefunc != NULL));
|
|
result = PyObject_Call(func, args, NULL);
|
|
tstate->tracing = save_tracing;
|
|
tstate->use_tracing = save_use_tracing;
|
|
return result;
|
|
}
|
|
|
|
/* See Objects/lnotab_notes.txt for a description of how tracing works. */
|
|
static int
|
|
maybe_call_line_trace(Py_tracefunc func, PyObject *obj,
|
|
PyFrameObject *frame, int *instr_lb, int *instr_ub,
|
|
int *instr_prev)
|
|
{
|
|
int result = 0;
|
|
int line = frame->f_lineno;
|
|
|
|
/* If the last instruction executed isn't in the current
|
|
instruction window, reset the window.
|
|
*/
|
|
if (frame->f_lasti < *instr_lb || frame->f_lasti >= *instr_ub) {
|
|
PyAddrPair bounds;
|
|
line = _PyCode_CheckLineNumber(frame->f_code, frame->f_lasti,
|
|
&bounds);
|
|
*instr_lb = bounds.ap_lower;
|
|
*instr_ub = bounds.ap_upper;
|
|
}
|
|
/* If the last instruction falls at the start of a line or if
|
|
it represents a jump backwards, update the frame's line
|
|
number and call the trace function. */
|
|
if (frame->f_lasti == *instr_lb || frame->f_lasti < *instr_prev) {
|
|
frame->f_lineno = line;
|
|
result = call_trace(func, obj, frame, PyTrace_LINE, Py_None);
|
|
}
|
|
*instr_prev = frame->f_lasti;
|
|
return result;
|
|
}
|
|
|
|
void
|
|
PyEval_SetProfile(Py_tracefunc func, PyObject *arg)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyObject *temp = tstate->c_profileobj;
|
|
Py_XINCREF(arg);
|
|
tstate->c_profilefunc = NULL;
|
|
tstate->c_profileobj = NULL;
|
|
/* Must make sure that tracing is not ignored if 'temp' is freed */
|
|
tstate->use_tracing = tstate->c_tracefunc != NULL;
|
|
Py_XDECREF(temp);
|
|
tstate->c_profilefunc = func;
|
|
tstate->c_profileobj = arg;
|
|
/* Flag that tracing or profiling is turned on */
|
|
tstate->use_tracing = (func != NULL) || (tstate->c_tracefunc != NULL);
|
|
}
|
|
|
|
void
|
|
PyEval_SetTrace(Py_tracefunc func, PyObject *arg)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyObject *temp = tstate->c_traceobj;
|
|
_Py_TracingPossible += (func != NULL) - (tstate->c_tracefunc != NULL);
|
|
Py_XINCREF(arg);
|
|
tstate->c_tracefunc = NULL;
|
|
tstate->c_traceobj = NULL;
|
|
/* Must make sure that profiling is not ignored if 'temp' is freed */
|
|
tstate->use_tracing = tstate->c_profilefunc != NULL;
|
|
Py_XDECREF(temp);
|
|
tstate->c_tracefunc = func;
|
|
tstate->c_traceobj = arg;
|
|
/* Flag that tracing or profiling is turned on */
|
|
tstate->use_tracing = ((func != NULL)
|
|
|| (tstate->c_profilefunc != NULL));
|
|
}
|
|
|
|
PyObject *
|
|
PyEval_GetBuiltins(void)
|
|
{
|
|
PyFrameObject *current_frame = PyEval_GetFrame();
|
|
if (current_frame == NULL)
|
|
return PyThreadState_GET()->interp->builtins;
|
|
else
|
|
return current_frame->f_builtins;
|
|
}
|
|
|
|
PyObject *
|
|
PyEval_GetLocals(void)
|
|
{
|
|
PyFrameObject *current_frame = PyEval_GetFrame();
|
|
if (current_frame == NULL) {
|
|
PyErr_SetString(PyExc_SystemError, "frame does not exist");
|
|
return NULL;
|
|
}
|
|
|
|
if (PyFrame_FastToLocalsWithError(current_frame) < 0)
|
|
return NULL;
|
|
|
|
assert(current_frame->f_locals != NULL);
|
|
return current_frame->f_locals;
|
|
}
|
|
|
|
PyObject *
|
|
PyEval_GetGlobals(void)
|
|
{
|
|
PyFrameObject *current_frame = PyEval_GetFrame();
|
|
if (current_frame == NULL)
|
|
return NULL;
|
|
|
|
assert(current_frame->f_globals != NULL);
|
|
return current_frame->f_globals;
|
|
}
|
|
|
|
PyFrameObject *
|
|
PyEval_GetFrame(void)
|
|
{
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
return _PyThreadState_GetFrame(tstate);
|
|
}
|
|
|
|
int
|
|
PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
|
|
{
|
|
PyFrameObject *current_frame = PyEval_GetFrame();
|
|
int result = cf->cf_flags != 0;
|
|
|
|
if (current_frame != NULL) {
|
|
const int codeflags = current_frame->f_code->co_flags;
|
|
const int compilerflags = codeflags & PyCF_MASK;
|
|
if (compilerflags) {
|
|
result = 1;
|
|
cf->cf_flags |= compilerflags;
|
|
}
|
|
#if 0 /* future keyword */
|
|
if (codeflags & CO_GENERATOR_ALLOWED) {
|
|
result = 1;
|
|
cf->cf_flags |= CO_GENERATOR_ALLOWED;
|
|
}
|
|
#endif
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
/* External interface to call any callable object.
|
|
The arg must be a tuple or NULL. The kw must be a dict or NULL. */
|
|
|
|
PyObject *
|
|
PyEval_CallObjectWithKeywords(PyObject *func, PyObject *arg, PyObject *kw)
|
|
{
|
|
PyObject *result;
|
|
|
|
#ifdef Py_DEBUG
|
|
/* PyEval_CallObjectWithKeywords() must not be called with an exception
|
|
set, because it may clear it (directly or indirectly)
|
|
and so the caller looses its exception */
|
|
assert(!PyErr_Occurred());
|
|
#endif
|
|
|
|
if (arg == NULL) {
|
|
arg = PyTuple_New(0);
|
|
if (arg == NULL)
|
|
return NULL;
|
|
}
|
|
else if (!PyTuple_Check(arg)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"argument list must be a tuple");
|
|
return NULL;
|
|
}
|
|
else
|
|
Py_INCREF(arg);
|
|
|
|
if (kw != NULL && !PyDict_Check(kw)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"keyword list must be a dictionary");
|
|
Py_DECREF(arg);
|
|
return NULL;
|
|
}
|
|
|
|
result = PyObject_Call(func, arg, kw);
|
|
Py_DECREF(arg);
|
|
|
|
assert((result != NULL && !PyErr_Occurred())
|
|
|| (result == NULL && PyErr_Occurred()));
|
|
return result;
|
|
}
|
|
|
|
const char *
|
|
PyEval_GetFuncName(PyObject *func)
|
|
{
|
|
if (PyMethod_Check(func))
|
|
return PyEval_GetFuncName(PyMethod_GET_FUNCTION(func));
|
|
else if (PyFunction_Check(func))
|
|
return _PyUnicode_AsString(((PyFunctionObject*)func)->func_name);
|
|
else if (PyCFunction_Check(func))
|
|
return ((PyCFunctionObject*)func)->m_ml->ml_name;
|
|
else
|
|
return func->ob_type->tp_name;
|
|
}
|
|
|
|
const char *
|
|
PyEval_GetFuncDesc(PyObject *func)
|
|
{
|
|
if (PyMethod_Check(func))
|
|
return "()";
|
|
else if (PyFunction_Check(func))
|
|
return "()";
|
|
else if (PyCFunction_Check(func))
|
|
return "()";
|
|
else
|
|
return " object";
|
|
}
|
|
|
|
static void
|
|
err_args(PyObject *func, int flags, int nargs)
|
|
{
|
|
if (flags & METH_NOARGS)
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s() takes no arguments (%d given)",
|
|
((PyCFunctionObject *)func)->m_ml->ml_name,
|
|
nargs);
|
|
else
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s() takes exactly one argument (%d given)",
|
|
((PyCFunctionObject *)func)->m_ml->ml_name,
|
|
nargs);
|
|
}
|
|
|
|
#define C_TRACE(x, call) \
|
|
if (tstate->use_tracing && tstate->c_profilefunc) { \
|
|
if (call_trace(tstate->c_profilefunc, \
|
|
tstate->c_profileobj, \
|
|
tstate->frame, PyTrace_C_CALL, \
|
|
func)) { \
|
|
x = NULL; \
|
|
} \
|
|
else { \
|
|
x = call; \
|
|
if (tstate->c_profilefunc != NULL) { \
|
|
if (x == NULL) { \
|
|
call_trace_protected(tstate->c_profilefunc, \
|
|
tstate->c_profileobj, \
|
|
tstate->frame, PyTrace_C_EXCEPTION, \
|
|
func); \
|
|
/* XXX should pass (type, value, tb) */ \
|
|
} else { \
|
|
if (call_trace(tstate->c_profilefunc, \
|
|
tstate->c_profileobj, \
|
|
tstate->frame, PyTrace_C_RETURN, \
|
|
func)) { \
|
|
Py_DECREF(x); \
|
|
x = NULL; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
} else { \
|
|
x = call; \
|
|
}
|
|
|
|
static PyObject *
|
|
call_function(PyObject ***pp_stack, int oparg
|
|
#ifdef WITH_TSC
|
|
, uint64* pintr0, uint64* pintr1
|
|
#endif
|
|
)
|
|
{
|
|
int na = oparg & 0xff;
|
|
int nk = (oparg>>8) & 0xff;
|
|
int n = na + 2 * nk;
|
|
PyObject **pfunc = (*pp_stack) - n - 1;
|
|
PyObject *func = *pfunc;
|
|
PyObject *x, *w;
|
|
|
|
/* Always dispatch PyCFunction first, because these are
|
|
presumed to be the most frequent callable object.
|
|
*/
|
|
if (PyCFunction_Check(func) && nk == 0) {
|
|
int flags = PyCFunction_GET_FLAGS(func);
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
|
|
PCALL(PCALL_CFUNCTION);
|
|
if (flags & (METH_NOARGS | METH_O)) {
|
|
PyCFunction meth = PyCFunction_GET_FUNCTION(func);
|
|
PyObject *self = PyCFunction_GET_SELF(func);
|
|
if (flags & METH_NOARGS && na == 0) {
|
|
C_TRACE(x, (*meth)(self,NULL));
|
|
}
|
|
else if (flags & METH_O && na == 1) {
|
|
PyObject *arg = EXT_POP(*pp_stack);
|
|
C_TRACE(x, (*meth)(self,arg));
|
|
Py_DECREF(arg);
|
|
}
|
|
else {
|
|
err_args(func, flags, na);
|
|
x = NULL;
|
|
}
|
|
}
|
|
else {
|
|
PyObject *callargs;
|
|
callargs = load_args(pp_stack, na);
|
|
if (callargs != NULL) {
|
|
READ_TIMESTAMP(*pintr0);
|
|
C_TRACE(x, PyCFunction_Call(func,callargs,NULL));
|
|
READ_TIMESTAMP(*pintr1);
|
|
Py_XDECREF(callargs);
|
|
}
|
|
else {
|
|
x = NULL;
|
|
}
|
|
}
|
|
} else {
|
|
if (PyMethod_Check(func) && PyMethod_GET_SELF(func) != NULL) {
|
|
/* optimize access to bound methods */
|
|
PyObject *self = PyMethod_GET_SELF(func);
|
|
PCALL(PCALL_METHOD);
|
|
PCALL(PCALL_BOUND_METHOD);
|
|
Py_INCREF(self);
|
|
func = PyMethod_GET_FUNCTION(func);
|
|
Py_INCREF(func);
|
|
Py_DECREF(*pfunc);
|
|
*pfunc = self;
|
|
na++;
|
|
n++;
|
|
} else
|
|
Py_INCREF(func);
|
|
READ_TIMESTAMP(*pintr0);
|
|
if (PyFunction_Check(func))
|
|
x = fast_function(func, pp_stack, n, na, nk);
|
|
else
|
|
x = do_call(func, pp_stack, na, nk);
|
|
READ_TIMESTAMP(*pintr1);
|
|
Py_DECREF(func);
|
|
}
|
|
assert((x != NULL && !PyErr_Occurred())
|
|
|| (x == NULL && PyErr_Occurred()));
|
|
|
|
/* Clear the stack of the function object. Also removes
|
|
the arguments in case they weren't consumed already
|
|
(fast_function() and err_args() leave them on the stack).
|
|
*/
|
|
while ((*pp_stack) > pfunc) {
|
|
w = EXT_POP(*pp_stack);
|
|
Py_DECREF(w);
|
|
PCALL(PCALL_POP);
|
|
}
|
|
|
|
assert((x != NULL && !PyErr_Occurred())
|
|
|| (x == NULL && PyErr_Occurred()));
|
|
return x;
|
|
}
|
|
|
|
/* The fast_function() function optimize calls for which no argument
|
|
tuple is necessary; the objects are passed directly from the stack.
|
|
For the simplest case -- a function that takes only positional
|
|
arguments and is called with only positional arguments -- it
|
|
inlines the most primitive frame setup code from
|
|
PyEval_EvalCodeEx(), which vastly reduces the checks that must be
|
|
done before evaluating the frame.
|
|
*/
|
|
|
|
static PyObject *
|
|
fast_function(PyObject *func, PyObject ***pp_stack, int n, int na, int nk)
|
|
{
|
|
PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
|
|
PyObject *globals = PyFunction_GET_GLOBALS(func);
|
|
PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
|
|
PyObject *kwdefs = PyFunction_GET_KW_DEFAULTS(func);
|
|
PyObject **d = NULL;
|
|
int nd = 0;
|
|
|
|
PCALL(PCALL_FUNCTION);
|
|
PCALL(PCALL_FAST_FUNCTION);
|
|
if (argdefs == NULL && co->co_argcount == n &&
|
|
co->co_kwonlyargcount == 0 && nk==0 &&
|
|
co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) {
|
|
PyFrameObject *f;
|
|
PyObject *retval = NULL;
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
PyObject **fastlocals, **stack;
|
|
int i;
|
|
|
|
PCALL(PCALL_FASTER_FUNCTION);
|
|
assert(globals != NULL);
|
|
/* XXX Perhaps we should create a specialized
|
|
PyFrame_New() that doesn't take locals, but does
|
|
take builtins without sanity checking them.
|
|
*/
|
|
assert(tstate != NULL);
|
|
f = PyFrame_New(tstate, co, globals, NULL);
|
|
if (f == NULL)
|
|
return NULL;
|
|
|
|
fastlocals = f->f_localsplus;
|
|
stack = (*pp_stack) - n;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
Py_INCREF(*stack);
|
|
fastlocals[i] = *stack++;
|
|
}
|
|
retval = PyEval_EvalFrameEx(f,0);
|
|
++tstate->recursion_depth;
|
|
Py_DECREF(f);
|
|
--tstate->recursion_depth;
|
|
return retval;
|
|
}
|
|
if (argdefs != NULL) {
|
|
d = &PyTuple_GET_ITEM(argdefs, 0);
|
|
nd = Py_SIZE(argdefs);
|
|
}
|
|
return PyEval_EvalCodeEx((PyObject*)co, globals,
|
|
(PyObject *)NULL, (*pp_stack)-n, na,
|
|
(*pp_stack)-2*nk, nk, d, nd, kwdefs,
|
|
PyFunction_GET_CLOSURE(func));
|
|
}
|
|
|
|
static PyObject *
|
|
update_keyword_args(PyObject *orig_kwdict, int nk, PyObject ***pp_stack,
|
|
PyObject *func)
|
|
{
|
|
PyObject *kwdict = NULL;
|
|
if (orig_kwdict == NULL)
|
|
kwdict = PyDict_New();
|
|
else {
|
|
kwdict = PyDict_Copy(orig_kwdict);
|
|
Py_DECREF(orig_kwdict);
|
|
}
|
|
if (kwdict == NULL)
|
|
return NULL;
|
|
while (--nk >= 0) {
|
|
int err;
|
|
PyObject *value = EXT_POP(*pp_stack);
|
|
PyObject *key = EXT_POP(*pp_stack);
|
|
if (PyDict_GetItem(kwdict, key) != NULL) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s%s got multiple values "
|
|
"for keyword argument '%U'",
|
|
PyEval_GetFuncName(func),
|
|
PyEval_GetFuncDesc(func),
|
|
key);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
Py_DECREF(kwdict);
|
|
return NULL;
|
|
}
|
|
err = PyDict_SetItem(kwdict, key, value);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (err) {
|
|
Py_DECREF(kwdict);
|
|
return NULL;
|
|
}
|
|
}
|
|
return kwdict;
|
|
}
|
|
|
|
static PyObject *
|
|
update_star_args(int nstack, int nstar, PyObject *stararg,
|
|
PyObject ***pp_stack)
|
|
{
|
|
PyObject *callargs, *w;
|
|
|
|
callargs = PyTuple_New(nstack + nstar);
|
|
if (callargs == NULL) {
|
|
return NULL;
|
|
}
|
|
if (nstar) {
|
|
int i;
|
|
for (i = 0; i < nstar; i++) {
|
|
PyObject *a = PyTuple_GET_ITEM(stararg, i);
|
|
Py_INCREF(a);
|
|
PyTuple_SET_ITEM(callargs, nstack + i, a);
|
|
}
|
|
}
|
|
while (--nstack >= 0) {
|
|
w = EXT_POP(*pp_stack);
|
|
PyTuple_SET_ITEM(callargs, nstack, w);
|
|
}
|
|
return callargs;
|
|
}
|
|
|
|
static PyObject *
|
|
load_args(PyObject ***pp_stack, int na)
|
|
{
|
|
PyObject *args = PyTuple_New(na);
|
|
PyObject *w;
|
|
|
|
if (args == NULL)
|
|
return NULL;
|
|
while (--na >= 0) {
|
|
w = EXT_POP(*pp_stack);
|
|
PyTuple_SET_ITEM(args, na, w);
|
|
}
|
|
return args;
|
|
}
|
|
|
|
static PyObject *
|
|
do_call(PyObject *func, PyObject ***pp_stack, int na, int nk)
|
|
{
|
|
PyObject *callargs = NULL;
|
|
PyObject *kwdict = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
if (nk > 0) {
|
|
kwdict = update_keyword_args(NULL, nk, pp_stack, func);
|
|
if (kwdict == NULL)
|
|
goto call_fail;
|
|
}
|
|
callargs = load_args(pp_stack, na);
|
|
if (callargs == NULL)
|
|
goto call_fail;
|
|
#ifdef CALL_PROFILE
|
|
/* At this point, we have to look at the type of func to
|
|
update the call stats properly. Do it here so as to avoid
|
|
exposing the call stats machinery outside ceval.c
|
|
*/
|
|
if (PyFunction_Check(func))
|
|
PCALL(PCALL_FUNCTION);
|
|
else if (PyMethod_Check(func))
|
|
PCALL(PCALL_METHOD);
|
|
else if (PyType_Check(func))
|
|
PCALL(PCALL_TYPE);
|
|
else if (PyCFunction_Check(func))
|
|
PCALL(PCALL_CFUNCTION);
|
|
else
|
|
PCALL(PCALL_OTHER);
|
|
#endif
|
|
if (PyCFunction_Check(func)) {
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
|
|
}
|
|
else
|
|
result = PyObject_Call(func, callargs, kwdict);
|
|
call_fail:
|
|
Py_XDECREF(callargs);
|
|
Py_XDECREF(kwdict);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
ext_do_call(PyObject *func, PyObject ***pp_stack, int flags, int na, int nk)
|
|
{
|
|
int nstar = 0;
|
|
PyObject *callargs = NULL;
|
|
PyObject *stararg = NULL;
|
|
PyObject *kwdict = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
if (flags & CALL_FLAG_KW) {
|
|
kwdict = EXT_POP(*pp_stack);
|
|
if (!PyDict_Check(kwdict)) {
|
|
PyObject *d;
|
|
d = PyDict_New();
|
|
if (d == NULL)
|
|
goto ext_call_fail;
|
|
if (PyDict_Update(d, kwdict) != 0) {
|
|
Py_DECREF(d);
|
|
/* PyDict_Update raises attribute
|
|
* error (percolated from an attempt
|
|
* to get 'keys' attribute) instead of
|
|
* a type error if its second argument
|
|
* is not a mapping.
|
|
*/
|
|
if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s%.200s argument after ** "
|
|
"must be a mapping, not %.200s",
|
|
PyEval_GetFuncName(func),
|
|
PyEval_GetFuncDesc(func),
|
|
kwdict->ob_type->tp_name);
|
|
}
|
|
goto ext_call_fail;
|
|
}
|
|
Py_DECREF(kwdict);
|
|
kwdict = d;
|
|
}
|
|
}
|
|
if (flags & CALL_FLAG_VAR) {
|
|
stararg = EXT_POP(*pp_stack);
|
|
if (!PyTuple_Check(stararg)) {
|
|
PyObject *t = NULL;
|
|
t = PySequence_Tuple(stararg);
|
|
if (t == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_TypeError)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s%.200s argument after * "
|
|
"must be a sequence, not %.200s",
|
|
PyEval_GetFuncName(func),
|
|
PyEval_GetFuncDesc(func),
|
|
stararg->ob_type->tp_name);
|
|
}
|
|
goto ext_call_fail;
|
|
}
|
|
Py_DECREF(stararg);
|
|
stararg = t;
|
|
}
|
|
nstar = PyTuple_GET_SIZE(stararg);
|
|
}
|
|
if (nk > 0) {
|
|
kwdict = update_keyword_args(kwdict, nk, pp_stack, func);
|
|
if (kwdict == NULL)
|
|
goto ext_call_fail;
|
|
}
|
|
callargs = update_star_args(na, nstar, stararg, pp_stack);
|
|
if (callargs == NULL)
|
|
goto ext_call_fail;
|
|
#ifdef CALL_PROFILE
|
|
/* At this point, we have to look at the type of func to
|
|
update the call stats properly. Do it here so as to avoid
|
|
exposing the call stats machinery outside ceval.c
|
|
*/
|
|
if (PyFunction_Check(func))
|
|
PCALL(PCALL_FUNCTION);
|
|
else if (PyMethod_Check(func))
|
|
PCALL(PCALL_METHOD);
|
|
else if (PyType_Check(func))
|
|
PCALL(PCALL_TYPE);
|
|
else if (PyCFunction_Check(func))
|
|
PCALL(PCALL_CFUNCTION);
|
|
else
|
|
PCALL(PCALL_OTHER);
|
|
#endif
|
|
if (PyCFunction_Check(func)) {
|
|
PyThreadState *tstate = PyThreadState_GET();
|
|
C_TRACE(result, PyCFunction_Call(func, callargs, kwdict));
|
|
}
|
|
else
|
|
result = PyObject_Call(func, callargs, kwdict);
|
|
ext_call_fail:
|
|
Py_XDECREF(callargs);
|
|
Py_XDECREF(kwdict);
|
|
Py_XDECREF(stararg);
|
|
assert((result != NULL && !PyErr_Occurred())
|
|
|| (result == NULL && PyErr_Occurred()));
|
|
return result;
|
|
}
|
|
|
|
/* Extract a slice index from a PyInt or PyLong or an object with the
|
|
nb_index slot defined, and store in *pi.
|
|
Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX,
|
|
and silently boost values less than -PY_SSIZE_T_MAX-1 to -PY_SSIZE_T_MAX-1.
|
|
Return 0 on error, 1 on success.
|
|
*/
|
|
/* Note: If v is NULL, return success without storing into *pi. This
|
|
is because_PyEval_SliceIndex() is called by apply_slice(), which can be
|
|
called by the SLICE opcode with v and/or w equal to NULL.
|
|
*/
|
|
int
|
|
_PyEval_SliceIndex(PyObject *v, Py_ssize_t *pi)
|
|
{
|
|
if (v != NULL) {
|
|
Py_ssize_t x;
|
|
if (PyIndex_Check(v)) {
|
|
x = PyNumber_AsSsize_t(v, NULL);
|
|
if (x == -1 && PyErr_Occurred())
|
|
return 0;
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"slice indices must be integers or "
|
|
"None or have an __index__ method");
|
|
return 0;
|
|
}
|
|
*pi = x;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#define CANNOT_CATCH_MSG "catching classes that do not inherit from "\
|
|
"BaseException is not allowed"
|
|
|
|
static PyObject *
|
|
cmp_outcome(int op, PyObject *v, PyObject *w)
|
|
{
|
|
int res = 0;
|
|
switch (op) {
|
|
case PyCmp_IS:
|
|
res = (v == w);
|
|
break;
|
|
case PyCmp_IS_NOT:
|
|
res = (v != w);
|
|
break;
|
|
case PyCmp_IN:
|
|
res = PySequence_Contains(w, v);
|
|
if (res < 0)
|
|
return NULL;
|
|
break;
|
|
case PyCmp_NOT_IN:
|
|
res = PySequence_Contains(w, v);
|
|
if (res < 0)
|
|
return NULL;
|
|
res = !res;
|
|
break;
|
|
case PyCmp_EXC_MATCH:
|
|
if (PyTuple_Check(w)) {
|
|
Py_ssize_t i, length;
|
|
length = PyTuple_Size(w);
|
|
for (i = 0; i < length; i += 1) {
|
|
PyObject *exc = PyTuple_GET_ITEM(w, i);
|
|
if (!PyExceptionClass_Check(exc)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
CANNOT_CATCH_MSG);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (!PyExceptionClass_Check(w)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
CANNOT_CATCH_MSG);
|
|
return NULL;
|
|
}
|
|
}
|
|
res = PyErr_GivenExceptionMatches(v, w);
|
|
break;
|
|
default:
|
|
return PyObject_RichCompare(v, w, op);
|
|
}
|
|
v = res ? Py_True : Py_False;
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
import_from(PyObject *v, PyObject *name)
|
|
{
|
|
PyObject *x;
|
|
|
|
x = PyObject_GetAttr(v, name);
|
|
if (x == NULL && PyErr_ExceptionMatches(PyExc_AttributeError)) {
|
|
PyErr_Format(PyExc_ImportError, "cannot import name %R", name);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int
|
|
import_all_from(PyObject *locals, PyObject *v)
|
|
{
|
|
_Py_IDENTIFIER(__all__);
|
|
_Py_IDENTIFIER(__dict__);
|
|
PyObject *all = _PyObject_GetAttrId(v, &PyId___all__);
|
|
PyObject *dict, *name, *value;
|
|
int skip_leading_underscores = 0;
|
|
int pos, err;
|
|
|
|
if (all == NULL) {
|
|
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
|
|
return -1; /* Unexpected error */
|
|
PyErr_Clear();
|
|
dict = _PyObject_GetAttrId(v, &PyId___dict__);
|
|
if (dict == NULL) {
|
|
if (!PyErr_ExceptionMatches(PyExc_AttributeError))
|
|
return -1;
|
|
PyErr_SetString(PyExc_ImportError,
|
|
"from-import-* object has no __dict__ and no __all__");
|
|
return -1;
|
|
}
|
|
all = PyMapping_Keys(dict);
|
|
Py_DECREF(dict);
|
|
if (all == NULL)
|
|
return -1;
|
|
skip_leading_underscores = 1;
|
|
}
|
|
|
|
for (pos = 0, err = 0; ; pos++) {
|
|
name = PySequence_GetItem(all, pos);
|
|
if (name == NULL) {
|
|
if (!PyErr_ExceptionMatches(PyExc_IndexError))
|
|
err = -1;
|
|
else
|
|
PyErr_Clear();
|
|
break;
|
|
}
|
|
if (skip_leading_underscores &&
|
|
PyUnicode_Check(name) &&
|
|
PyUnicode_READY(name) != -1 &&
|
|
PyUnicode_READ_CHAR(name, 0) == '_')
|
|
{
|
|
Py_DECREF(name);
|
|
continue;
|
|
}
|
|
value = PyObject_GetAttr(v, name);
|
|
if (value == NULL)
|
|
err = -1;
|
|
else if (PyDict_CheckExact(locals))
|
|
err = PyDict_SetItem(locals, name, value);
|
|
else
|
|
err = PyObject_SetItem(locals, name, value);
|
|
Py_DECREF(name);
|
|
Py_XDECREF(value);
|
|
if (err != 0)
|
|
break;
|
|
}
|
|
Py_DECREF(all);
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
format_exc_check_arg(PyObject *exc, const char *format_str, PyObject *obj)
|
|
{
|
|
const char *obj_str;
|
|
|
|
if (!obj)
|
|
return;
|
|
|
|
obj_str = _PyUnicode_AsString(obj);
|
|
if (!obj_str)
|
|
return;
|
|
|
|
PyErr_Format(exc, format_str, obj_str);
|
|
}
|
|
|
|
static void
|
|
format_exc_unbound(PyCodeObject *co, int oparg)
|
|
{
|
|
PyObject *name;
|
|
/* Don't stomp existing exception */
|
|
if (PyErr_Occurred())
|
|
return;
|
|
if (oparg < PyTuple_GET_SIZE(co->co_cellvars)) {
|
|
name = PyTuple_GET_ITEM(co->co_cellvars,
|
|
oparg);
|
|
format_exc_check_arg(
|
|
PyExc_UnboundLocalError,
|
|
UNBOUNDLOCAL_ERROR_MSG,
|
|
name);
|
|
} else {
|
|
name = PyTuple_GET_ITEM(co->co_freevars, oparg -
|
|
PyTuple_GET_SIZE(co->co_cellvars));
|
|
format_exc_check_arg(PyExc_NameError,
|
|
UNBOUNDFREE_ERROR_MSG, name);
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
unicode_concatenate(PyObject *v, PyObject *w,
|
|
PyFrameObject *f, unsigned char *next_instr)
|
|
{
|
|
PyObject *res;
|
|
if (Py_REFCNT(v) == 2) {
|
|
/* In the common case, there are 2 references to the value
|
|
* stored in 'variable' when the += is performed: one on the
|
|
* value stack (in 'v') and one still stored in the
|
|
* 'variable'. We try to delete the variable now to reduce
|
|
* the refcnt to 1.
|
|
*/
|
|
switch (*next_instr) {
|
|
case STORE_FAST:
|
|
{
|
|
int oparg = PEEKARG();
|
|
PyObject **fastlocals = f->f_localsplus;
|
|
if (GETLOCAL(oparg) == v)
|
|
SETLOCAL(oparg, NULL);
|
|
break;
|
|
}
|
|
case STORE_DEREF:
|
|
{
|
|
PyObject **freevars = (f->f_localsplus +
|
|
f->f_code->co_nlocals);
|
|
PyObject *c = freevars[PEEKARG()];
|
|
if (PyCell_GET(c) == v)
|
|
PyCell_Set(c, NULL);
|
|
break;
|
|
}
|
|
case STORE_NAME:
|
|
{
|
|
PyObject *names = f->f_code->co_names;
|
|
PyObject *name = GETITEM(names, PEEKARG());
|
|
PyObject *locals = f->f_locals;
|
|
if (PyDict_CheckExact(locals) &&
|
|
PyDict_GetItem(locals, name) == v) {
|
|
if (PyDict_DelItem(locals, name) != 0) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
res = v;
|
|
PyUnicode_Append(&res, w);
|
|
return res;
|
|
}
|
|
|
|
#ifdef DYNAMIC_EXECUTION_PROFILE
|
|
|
|
static PyObject *
|
|
getarray(long a[256])
|
|
{
|
|
int i;
|
|
PyObject *l = PyList_New(256);
|
|
if (l == NULL) return NULL;
|
|
for (i = 0; i < 256; i++) {
|
|
PyObject *x = PyLong_FromLong(a[i]);
|
|
if (x == NULL) {
|
|
Py_DECREF(l);
|
|
return NULL;
|
|
}
|
|
PyList_SetItem(l, i, x);
|
|
}
|
|
for (i = 0; i < 256; i++)
|
|
a[i] = 0;
|
|
return l;
|
|
}
|
|
|
|
PyObject *
|
|
_Py_GetDXProfile(PyObject *self, PyObject *args)
|
|
{
|
|
#ifndef DXPAIRS
|
|
return getarray(dxp);
|
|
#else
|
|
int i;
|
|
PyObject *l = PyList_New(257);
|
|
if (l == NULL) return NULL;
|
|
for (i = 0; i < 257; i++) {
|
|
PyObject *x = getarray(dxpairs[i]);
|
|
if (x == NULL) {
|
|
Py_DECREF(l);
|
|
return NULL;
|
|
}
|
|
PyList_SetItem(l, i, x);
|
|
}
|
|
return l;
|
|
#endif
|
|
}
|
|
|
|
#endif
|