3809 lines
115 KiB
C
3809 lines
115 KiB
C
|
|
/* Dictionary object implementation using a hash table */
|
|
|
|
/* The distribution includes a separate file, Objects/dictnotes.txt,
|
|
describing explorations into dictionary design and optimization.
|
|
It covers typical dictionary use patterns, the parameters for
|
|
tuning dictionaries, and several ideas for possible optimizations.
|
|
*/
|
|
|
|
|
|
/*
|
|
There are four kinds of slots in the table:
|
|
|
|
1. Unused. me_key == me_value == NULL
|
|
Does not hold an active (key, value) pair now and never did. Unused can
|
|
transition to Active upon key insertion. This is the only case in which
|
|
me_key is NULL, and is each slot's initial state.
|
|
|
|
2. Active. me_key != NULL and me_key != dummy and me_value != NULL
|
|
Holds an active (key, value) pair. Active can transition to Dummy or
|
|
Pending upon key deletion (for combined and split tables respectively).
|
|
This is the only case in which me_value != NULL.
|
|
|
|
3. Dummy. me_key == dummy and me_value == NULL
|
|
Previously held an active (key, value) pair, but that was deleted and an
|
|
active pair has not yet overwritten the slot. Dummy can transition to
|
|
Active upon key insertion. Dummy slots cannot be made Unused again
|
|
(cannot have me_key set to NULL), else the probe sequence in case of
|
|
collision would have no way to know they were once active.
|
|
|
|
4. Pending. Not yet inserted or deleted from a split-table.
|
|
key != NULL, key != dummy and value == NULL
|
|
|
|
The DictObject can be in one of two forms.
|
|
Either:
|
|
A combined table:
|
|
ma_values == NULL, dk_refcnt == 1.
|
|
Values are stored in the me_value field of the PyDictKeysObject.
|
|
Slot kind 4 is not allowed i.e.
|
|
key != NULL, key != dummy and value == NULL is illegal.
|
|
Or:
|
|
A split table:
|
|
ma_values != NULL, dk_refcnt >= 1
|
|
Values are stored in the ma_values array.
|
|
Only string (unicode) keys are allowed, no <dummy> keys are present.
|
|
|
|
Note: .popitem() abuses the me_hash field of an Unused or Dummy slot to
|
|
hold a search finger. The me_hash field of Unused or Dummy slots has no
|
|
meaning otherwise. As a consequence of this popitem always converts the dict
|
|
to the combined-table form.
|
|
*/
|
|
|
|
/* PyDict_MINSIZE_SPLIT is the minimum size of a split dictionary.
|
|
* It must be a power of 2, and at least 4.
|
|
* Resizing of split dictionaries is very rare, so the saving memory is more
|
|
* important than the cost of resizing.
|
|
*/
|
|
#define PyDict_MINSIZE_SPLIT 4
|
|
|
|
/* PyDict_MINSIZE_COMBINED is the starting size for any new, non-split dict.
|
|
* 8 allows dicts with no more than 5 active entries; experiments suggested
|
|
* this suffices for the majority of dicts (consisting mostly of usually-small
|
|
* dicts created to pass keyword arguments).
|
|
* Making this 8, rather than 4 reduces the number of resizes for most
|
|
* dictionaries, without any significant extra memory use.
|
|
*/
|
|
#define PyDict_MINSIZE_COMBINED 8
|
|
|
|
#include "Python.h"
|
|
#include "stringlib/eq.h"
|
|
|
|
typedef struct {
|
|
/* Cached hash code of me_key. */
|
|
Py_hash_t me_hash;
|
|
PyObject *me_key;
|
|
PyObject *me_value; /* This field is only meaningful for combined tables */
|
|
} PyDictKeyEntry;
|
|
|
|
typedef PyDictKeyEntry *(*dict_lookup_func)
|
|
(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject ***value_addr);
|
|
|
|
struct _dictkeysobject {
|
|
Py_ssize_t dk_refcnt;
|
|
Py_ssize_t dk_size;
|
|
dict_lookup_func dk_lookup;
|
|
Py_ssize_t dk_usable;
|
|
PyDictKeyEntry dk_entries[1];
|
|
};
|
|
|
|
|
|
/*
|
|
To ensure the lookup algorithm terminates, there must be at least one Unused
|
|
slot (NULL key) in the table.
|
|
To avoid slowing down lookups on a near-full table, we resize the table when
|
|
it's USABLE_FRACTION (currently two-thirds) full.
|
|
*/
|
|
|
|
/* Set a key error with the specified argument, wrapping it in a
|
|
* tuple automatically so that tuple keys are not unpacked as the
|
|
* exception arguments. */
|
|
static void
|
|
set_key_error(PyObject *arg)
|
|
{
|
|
PyObject *tup;
|
|
tup = PyTuple_Pack(1, arg);
|
|
if (!tup)
|
|
return; /* caller will expect error to be set anyway */
|
|
PyErr_SetObject(PyExc_KeyError, tup);
|
|
Py_DECREF(tup);
|
|
}
|
|
|
|
#define PERTURB_SHIFT 5
|
|
|
|
/*
|
|
Major subtleties ahead: Most hash schemes depend on having a "good" hash
|
|
function, in the sense of simulating randomness. Python doesn't: its most
|
|
important hash functions (for strings and ints) are very regular in common
|
|
cases:
|
|
|
|
>>> map(hash, (0, 1, 2, 3))
|
|
[0, 1, 2, 3]
|
|
>>> map(hash, ("namea", "nameb", "namec", "named"))
|
|
[-1658398457, -1658398460, -1658398459, -1658398462]
|
|
>>>
|
|
|
|
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
|
|
the low-order i bits as the initial table index is extremely fast, and there
|
|
are no collisions at all for dicts indexed by a contiguous range of ints.
|
|
The same is approximately true when keys are "consecutive" strings. So this
|
|
gives better-than-random behavior in common cases, and that's very desirable.
|
|
|
|
OTOH, when collisions occur, the tendency to fill contiguous slices of the
|
|
hash table makes a good collision resolution strategy crucial. Taking only
|
|
the last i bits of the hash code is also vulnerable: for example, consider
|
|
the list [i << 16 for i in range(20000)] as a set of keys. Since ints are
|
|
their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
|
|
of every hash code are all 0: they *all* map to the same table index.
|
|
|
|
But catering to unusual cases should not slow the usual ones, so we just take
|
|
the last i bits anyway. It's up to collision resolution to do the rest. If
|
|
we *usually* find the key we're looking for on the first try (and, it turns
|
|
out, we usually do -- the table load factor is kept under 2/3, so the odds
|
|
are solidly in our favor), then it makes best sense to keep the initial index
|
|
computation dirt cheap.
|
|
|
|
The first half of collision resolution is to visit table indices via this
|
|
recurrence:
|
|
|
|
j = ((5*j) + 1) mod 2**i
|
|
|
|
For any initial j in range(2**i), repeating that 2**i times generates each
|
|
int in range(2**i) exactly once (see any text on random-number generation for
|
|
proof). By itself, this doesn't help much: like linear probing (setting
|
|
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
|
|
order. This would be bad, except that's not the only thing we do, and it's
|
|
actually *good* in the common cases where hash keys are consecutive. In an
|
|
example that's really too small to make this entirely clear, for a table of
|
|
size 2**3 the order of indices is:
|
|
|
|
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
|
|
|
|
If two things come in at index 5, the first place we look after is index 2,
|
|
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
|
|
Linear probing is deadly in this case because there the fixed probe order
|
|
is the *same* as the order consecutive keys are likely to arrive. But it's
|
|
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
|
|
and certain that consecutive hash codes do not.
|
|
|
|
The other half of the strategy is to get the other bits of the hash code
|
|
into play. This is done by initializing a (unsigned) vrbl "perturb" to the
|
|
full hash code, and changing the recurrence to:
|
|
|
|
j = (5*j) + 1 + perturb;
|
|
perturb >>= PERTURB_SHIFT;
|
|
use j % 2**i as the next table index;
|
|
|
|
Now the probe sequence depends (eventually) on every bit in the hash code,
|
|
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
|
|
because it quickly magnifies small differences in the bits that didn't affect
|
|
the initial index. Note that because perturb is unsigned, if the recurrence
|
|
is executed often enough perturb eventually becomes and remains 0. At that
|
|
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
|
|
that's certain to find an empty slot eventually (since it generates every int
|
|
in range(2**i), and we make sure there's always at least one empty slot).
|
|
|
|
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
|
|
small so that the high bits of the hash code continue to affect the probe
|
|
sequence across iterations; but you want it large so that in really bad cases
|
|
the high-order hash bits have an effect on early iterations. 5 was "the
|
|
best" in minimizing total collisions across experiments Tim Peters ran (on
|
|
both normal and pathological cases), but 4 and 6 weren't significantly worse.
|
|
|
|
Historical: Reimer Behrends contributed the idea of using a polynomial-based
|
|
approach, using repeated multiplication by x in GF(2**n) where an irreducible
|
|
polynomial for each table size was chosen such that x was a primitive root.
|
|
Christian Tismer later extended that to use division by x instead, as an
|
|
efficient way to get the high bits of the hash code into play. This scheme
|
|
also gave excellent collision statistics, but was more expensive: two
|
|
if-tests were required inside the loop; computing "the next" index took about
|
|
the same number of operations but without as much potential parallelism
|
|
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
|
|
above, and then shifting perturb can be done while the table index is being
|
|
masked); and the PyDictObject struct required a member to hold the table's
|
|
polynomial. In Tim's experiments the current scheme ran faster, produced
|
|
equally good collision statistics, needed less code & used less memory.
|
|
|
|
*/
|
|
|
|
/* Object used as dummy key to fill deleted entries
|
|
* This could be any unique object,
|
|
* use a custom type in order to minimise coupling.
|
|
*/
|
|
static PyObject _dummy_struct;
|
|
|
|
#define dummy (&_dummy_struct)
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
PyObject *
|
|
_PyDict_Dummy(void)
|
|
{
|
|
return dummy;
|
|
}
|
|
#endif
|
|
|
|
/* forward declarations */
|
|
static PyDictKeyEntry *lookdict(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr);
|
|
static PyDictKeyEntry *lookdict_unicode(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr);
|
|
static PyDictKeyEntry *
|
|
lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr);
|
|
static PyDictKeyEntry *lookdict_split(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr);
|
|
|
|
static int dictresize(PyDictObject *mp, Py_ssize_t minused);
|
|
|
|
/* Dictionary reuse scheme to save calls to malloc, free, and memset */
|
|
#ifndef PyDict_MAXFREELIST
|
|
#define PyDict_MAXFREELIST 80
|
|
#endif
|
|
static PyDictObject *free_list[PyDict_MAXFREELIST];
|
|
static int numfree = 0;
|
|
|
|
int
|
|
PyDict_ClearFreeList(void)
|
|
{
|
|
PyDictObject *op;
|
|
int ret = numfree;
|
|
while (numfree) {
|
|
op = free_list[--numfree];
|
|
assert(PyDict_CheckExact(op));
|
|
PyObject_GC_Del(op);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Print summary info about the state of the optimized allocator */
|
|
void
|
|
_PyDict_DebugMallocStats(FILE *out)
|
|
{
|
|
_PyDebugAllocatorStats(out,
|
|
"free PyDictObject", numfree, sizeof(PyDictObject));
|
|
}
|
|
|
|
|
|
void
|
|
PyDict_Fini(void)
|
|
{
|
|
PyDict_ClearFreeList();
|
|
}
|
|
|
|
#define DK_DEBUG_INCREF _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA
|
|
#define DK_DEBUG_DECREF _Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA
|
|
|
|
#define DK_INCREF(dk) (DK_DEBUG_INCREF ++(dk)->dk_refcnt)
|
|
#define DK_DECREF(dk) if (DK_DEBUG_DECREF (--(dk)->dk_refcnt) == 0) free_keys_object(dk)
|
|
#define DK_SIZE(dk) ((dk)->dk_size)
|
|
#define DK_MASK(dk) (((dk)->dk_size)-1)
|
|
#define IS_POWER_OF_2(x) (((x) & (x-1)) == 0)
|
|
|
|
/* USABLE_FRACTION is the maximum dictionary load.
|
|
* Currently set to (2n+1)/3. Increasing this ratio makes dictionaries more
|
|
* dense resulting in more collisions. Decreasing it improves sparseness
|
|
* at the expense of spreading entries over more cache lines and at the
|
|
* cost of total memory consumed.
|
|
*
|
|
* USABLE_FRACTION must obey the following:
|
|
* (0 < USABLE_FRACTION(n) < n) for all n >= 2
|
|
*
|
|
* USABLE_FRACTION should be very quick to calculate.
|
|
* Fractions around 5/8 to 2/3 seem to work well in practice.
|
|
*/
|
|
|
|
/* Use (2n+1)/3 rather than 2n+3 because: it makes no difference for
|
|
* combined tables (the two fractions round to the same number n < ),
|
|
* but 2*4/3 is 2 whereas (2*4+1)/3 is 3 which potentially saves quite
|
|
* a lot of space for small, split tables */
|
|
#define USABLE_FRACTION(n) ((((n) << 1)+1)/3)
|
|
|
|
/* Alternative fraction that is otherwise close enough to (2n+1)/3 to make
|
|
* little difference. 8 * 2/3 == 8 * 5/8 == 5. 16 * 2/3 == 16 * 5/8 == 10.
|
|
* 32 * 2/3 = 21, 32 * 5/8 = 20.
|
|
* Its advantage is that it is faster to compute on machines with slow division.
|
|
* #define USABLE_FRACTION(n) (((n) >> 1) + ((n) >> 2) - ((n) >> 3))
|
|
*/
|
|
|
|
/* GROWTH_RATE. Growth rate upon hitting maximum load. Currently set to *2.
|
|
* Raising this to *4 doubles memory consumption depending on the size of
|
|
* the dictionary, but results in half the number of resizes, less effort to
|
|
* resize and better sparseness for some (but not all dict sizes).
|
|
* Setting to *4 eliminates every other resize step.
|
|
* GROWTH_RATE was set to *4 up to version 3.2.
|
|
*/
|
|
#define GROWTH_RATE(x) ((x) * 2)
|
|
|
|
#define ENSURE_ALLOWS_DELETIONS(d) \
|
|
if ((d)->ma_keys->dk_lookup == lookdict_unicode_nodummy) { \
|
|
(d)->ma_keys->dk_lookup = lookdict_unicode; \
|
|
}
|
|
|
|
/* This immutable, empty PyDictKeysObject is used for PyDict_Clear()
|
|
* (which cannot fail and thus can do no allocation).
|
|
*/
|
|
static PyDictKeysObject empty_keys_struct = {
|
|
2, /* dk_refcnt 1 for this struct, 1 for dummy_struct */
|
|
1, /* dk_size */
|
|
lookdict_split, /* dk_lookup */
|
|
0, /* dk_usable (immutable) */
|
|
{
|
|
{ 0, 0, 0 } /* dk_entries (empty) */
|
|
}
|
|
};
|
|
|
|
static PyObject *empty_values[1] = { NULL };
|
|
|
|
#define Py_EMPTY_KEYS &empty_keys_struct
|
|
|
|
static PyDictKeysObject *new_keys_object(Py_ssize_t size)
|
|
{
|
|
PyDictKeysObject *dk;
|
|
Py_ssize_t i;
|
|
PyDictKeyEntry *ep0;
|
|
|
|
assert(size >= PyDict_MINSIZE_SPLIT);
|
|
assert(IS_POWER_OF_2(size));
|
|
dk = PyMem_MALLOC(sizeof(PyDictKeysObject) +
|
|
sizeof(PyDictKeyEntry) * (size-1));
|
|
if (dk == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
DK_DEBUG_INCREF dk->dk_refcnt = 1;
|
|
dk->dk_size = size;
|
|
dk->dk_usable = USABLE_FRACTION(size);
|
|
ep0 = &dk->dk_entries[0];
|
|
/* Hash value of slot 0 is used by popitem, so it must be initialized */
|
|
ep0->me_hash = 0;
|
|
for (i = 0; i < size; i++) {
|
|
ep0[i].me_key = NULL;
|
|
ep0[i].me_value = NULL;
|
|
}
|
|
dk->dk_lookup = lookdict_unicode_nodummy;
|
|
return dk;
|
|
}
|
|
|
|
static void
|
|
free_keys_object(PyDictKeysObject *keys)
|
|
{
|
|
PyDictKeyEntry *entries = &keys->dk_entries[0];
|
|
Py_ssize_t i, n;
|
|
for (i = 0, n = DK_SIZE(keys); i < n; i++) {
|
|
Py_XDECREF(entries[i].me_key);
|
|
Py_XDECREF(entries[i].me_value);
|
|
}
|
|
PyMem_FREE(keys);
|
|
}
|
|
|
|
#define new_values(size) PyMem_NEW(PyObject *, size)
|
|
|
|
#define free_values(values) PyMem_FREE(values)
|
|
|
|
/* Consumes a reference to the keys object */
|
|
static PyObject *
|
|
new_dict(PyDictKeysObject *keys, PyObject **values)
|
|
{
|
|
PyDictObject *mp;
|
|
if (numfree) {
|
|
mp = free_list[--numfree];
|
|
assert (mp != NULL);
|
|
assert (Py_TYPE(mp) == &PyDict_Type);
|
|
_Py_NewReference((PyObject *)mp);
|
|
}
|
|
else {
|
|
mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
|
|
if (mp == NULL) {
|
|
DK_DECREF(keys);
|
|
free_values(values);
|
|
return NULL;
|
|
}
|
|
}
|
|
mp->ma_keys = keys;
|
|
mp->ma_values = values;
|
|
mp->ma_used = 0;
|
|
return (PyObject *)mp;
|
|
}
|
|
|
|
/* Consumes a reference to the keys object */
|
|
static PyObject *
|
|
new_dict_with_shared_keys(PyDictKeysObject *keys)
|
|
{
|
|
PyObject **values;
|
|
Py_ssize_t i, size;
|
|
|
|
size = DK_SIZE(keys);
|
|
values = new_values(size);
|
|
if (values == NULL) {
|
|
DK_DECREF(keys);
|
|
return PyErr_NoMemory();
|
|
}
|
|
for (i = 0; i < size; i++) {
|
|
values[i] = NULL;
|
|
}
|
|
return new_dict(keys, values);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_New(void)
|
|
{
|
|
return new_dict(new_keys_object(PyDict_MINSIZE_COMBINED), NULL);
|
|
}
|
|
|
|
/*
|
|
The basic lookup function used by all operations.
|
|
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
|
|
Open addressing is preferred over chaining since the link overhead for
|
|
chaining would be substantial (100% with typical malloc overhead).
|
|
|
|
The initial probe index is computed as hash mod the table size. Subsequent
|
|
probe indices are computed as explained earlier.
|
|
|
|
All arithmetic on hash should ignore overflow.
|
|
|
|
The details in this version are due to Tim Peters, building on many past
|
|
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
|
|
Christian Tismer.
|
|
|
|
lookdict() is general-purpose, and may return NULL if (and only if) a
|
|
comparison raises an exception (this was new in Python 2.5).
|
|
lookdict_unicode() below is specialized to string keys, comparison of which can
|
|
never raise an exception; that function can never return NULL.
|
|
lookdict_unicode_nodummy is further specialized for string keys that cannot be
|
|
the <dummy> value.
|
|
For both, when the key isn't found a PyDictEntry* is returned
|
|
where the key would have been found, *value_addr points to the matching value
|
|
slot.
|
|
*/
|
|
static PyDictKeyEntry *
|
|
lookdict(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register PyDictKeyEntry *freeslot;
|
|
register size_t mask;
|
|
PyDictKeyEntry *ep0;
|
|
register PyDictKeyEntry *ep;
|
|
register int cmp;
|
|
PyObject *startkey;
|
|
|
|
top:
|
|
mask = DK_MASK(mp->ma_keys);
|
|
ep0 = &mp->ma_keys->dk_entries[0];
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash) {
|
|
startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
if (ep0 == mp->ma_keys->dk_entries && ep->me_key == startkey) {
|
|
if (cmp > 0) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
goto top;
|
|
}
|
|
}
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL) {
|
|
if (freeslot == NULL) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
} else {
|
|
*value_addr = &freeslot->me_value;
|
|
return freeslot;
|
|
}
|
|
}
|
|
if (ep->me_key == key) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
if (ep->me_hash == hash && ep->me_key != dummy) {
|
|
startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0) {
|
|
*value_addr = NULL;
|
|
return NULL;
|
|
}
|
|
if (ep0 == mp->ma_keys->dk_entries && ep->me_key == startkey) {
|
|
if (cmp > 0) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
}
|
|
else {
|
|
/* The dict was mutated, restart */
|
|
goto top;
|
|
}
|
|
}
|
|
else if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
/* Specialized version for string-only keys */
|
|
static PyDictKeyEntry *
|
|
lookdict_unicode(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register PyDictKeyEntry *freeslot;
|
|
register size_t mask = DK_MASK(mp->ma_keys);
|
|
PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0];
|
|
register PyDictKeyEntry *ep;
|
|
|
|
/* Make sure this function doesn't have to handle non-unicode keys,
|
|
including subclasses of str; e.g., one reason to subclass
|
|
unicodes is to override __eq__, and for speed we don't cater to
|
|
that here. */
|
|
if (!PyUnicode_CheckExact(key)) {
|
|
mp->ma_keys->dk_lookup = lookdict;
|
|
return lookdict(mp, key, hash, value_addr);
|
|
}
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash && unicode_eq(ep->me_key, key)) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL) {
|
|
if (freeslot == NULL) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
} else {
|
|
*value_addr = &freeslot->me_value;
|
|
return freeslot;
|
|
}
|
|
}
|
|
if (ep->me_key == key
|
|
|| (ep->me_hash == hash
|
|
&& ep->me_key != dummy
|
|
&& unicode_eq(ep->me_key, key))) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
/* Faster version of lookdict_unicode when it is known that no <dummy> keys
|
|
* will be present. */
|
|
static PyDictKeyEntry *
|
|
lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register size_t mask = DK_MASK(mp->ma_keys);
|
|
PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0];
|
|
register PyDictKeyEntry *ep;
|
|
|
|
/* Make sure this function doesn't have to handle non-unicode keys,
|
|
including subclasses of str; e.g., one reason to subclass
|
|
unicodes is to override __eq__, and for speed we don't cater to
|
|
that here. */
|
|
if (!PyUnicode_CheckExact(key)) {
|
|
mp->ma_keys->dk_lookup = lookdict;
|
|
return lookdict(mp, key, hash, value_addr);
|
|
}
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key));
|
|
if (ep->me_key == NULL || ep->me_key == key ||
|
|
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key));
|
|
if (ep->me_key == NULL || ep->me_key == key ||
|
|
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
/* Version of lookdict for split tables.
|
|
* All split tables and only split tables use this lookup function.
|
|
* Split tables only contain unicode keys and no dummy keys,
|
|
* so algorithm is the same as lookdict_unicode_nodummy.
|
|
*/
|
|
static PyDictKeyEntry *
|
|
lookdict_split(PyDictObject *mp, PyObject *key,
|
|
Py_hash_t hash, PyObject ***value_addr)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register size_t mask = DK_MASK(mp->ma_keys);
|
|
PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0];
|
|
register PyDictKeyEntry *ep;
|
|
|
|
if (!PyUnicode_CheckExact(key)) {
|
|
ep = lookdict(mp, key, hash, value_addr);
|
|
/* lookdict expects a combined-table, so fix value_addr */
|
|
i = ep - ep0;
|
|
*value_addr = &mp->ma_values[i];
|
|
return ep;
|
|
}
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key));
|
|
if (ep->me_key == NULL || ep->me_key == key ||
|
|
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
|
|
*value_addr = &mp->ma_values[i];
|
|
return ep;
|
|
}
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key));
|
|
if (ep->me_key == NULL || ep->me_key == key ||
|
|
(ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
|
|
*value_addr = &mp->ma_values[i & mask];
|
|
return ep;
|
|
}
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyDict_HasOnlyStringKeys(PyObject *dict)
|
|
{
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key, *value;
|
|
assert(PyDict_Check(dict));
|
|
/* Shortcut */
|
|
if (((PyDictObject *)dict)->ma_keys->dk_lookup != lookdict)
|
|
return 1;
|
|
while (PyDict_Next(dict, &pos, &key, &value))
|
|
if (!PyUnicode_Check(key))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
#define MAINTAIN_TRACKING(mp, key, value) \
|
|
do { \
|
|
if (!_PyObject_GC_IS_TRACKED(mp)) { \
|
|
if (_PyObject_GC_MAY_BE_TRACKED(key) || \
|
|
_PyObject_GC_MAY_BE_TRACKED(value)) { \
|
|
_PyObject_GC_TRACK(mp); \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
void
|
|
_PyDict_MaybeUntrack(PyObject *op)
|
|
{
|
|
PyDictObject *mp;
|
|
PyObject *value;
|
|
Py_ssize_t i, size;
|
|
|
|
if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
|
|
return;
|
|
|
|
mp = (PyDictObject *) op;
|
|
size = DK_SIZE(mp->ma_keys);
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
for (i = 0; i < size; i++) {
|
|
if ((value = mp->ma_values[i]) == NULL)
|
|
continue;
|
|
if (_PyObject_GC_MAY_BE_TRACKED(value)) {
|
|
assert(!_PyObject_GC_MAY_BE_TRACKED(
|
|
mp->ma_keys->dk_entries[i].me_key));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0];
|
|
for (i = 0; i < size; i++) {
|
|
if ((value = ep0[i].me_value) == NULL)
|
|
continue;
|
|
if (_PyObject_GC_MAY_BE_TRACKED(value) ||
|
|
_PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key))
|
|
return;
|
|
}
|
|
}
|
|
_PyObject_GC_UNTRACK(op);
|
|
}
|
|
|
|
/* Internal function to find slot for an item from its hash
|
|
* when it is known that the key is not present in the dict.
|
|
*/
|
|
static PyDictKeyEntry *
|
|
find_empty_slot(PyDictObject *mp, PyObject *key, Py_hash_t hash,
|
|
PyObject ***value_addr)
|
|
{
|
|
size_t i;
|
|
size_t perturb;
|
|
size_t mask = DK_MASK(mp->ma_keys);
|
|
PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0];
|
|
PyDictKeyEntry *ep;
|
|
|
|
assert(key != NULL);
|
|
if (!PyUnicode_CheckExact(key))
|
|
mp->ma_keys->dk_lookup = lookdict;
|
|
i = hash & mask;
|
|
ep = &ep0[i];
|
|
for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
}
|
|
assert(ep->me_value == NULL);
|
|
if (mp->ma_values)
|
|
*value_addr = &mp->ma_values[i & mask];
|
|
else
|
|
*value_addr = &ep->me_value;
|
|
return ep;
|
|
}
|
|
|
|
static int
|
|
insertion_resize(PyDictObject *mp)
|
|
{
|
|
return dictresize(mp, GROWTH_RATE(mp->ma_used));
|
|
}
|
|
|
|
/*
|
|
Internal routine to insert a new item into the table.
|
|
Used both by the internal resize routine and by the public insert routine.
|
|
Returns -1 if an error occurred, or 0 on success.
|
|
*/
|
|
static int
|
|
insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value)
|
|
{
|
|
PyObject *old_value;
|
|
PyObject **value_addr;
|
|
PyDictKeyEntry *ep;
|
|
assert(key != dummy);
|
|
|
|
if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) {
|
|
if (insertion_resize(mp) < 0)
|
|
return -1;
|
|
}
|
|
|
|
ep = mp->ma_keys->dk_lookup(mp, key, hash, &value_addr);
|
|
if (ep == NULL) {
|
|
return -1;
|
|
}
|
|
Py_INCREF(value);
|
|
MAINTAIN_TRACKING(mp, key, value);
|
|
old_value = *value_addr;
|
|
if (old_value != NULL) {
|
|
assert(ep->me_key != NULL && ep->me_key != dummy);
|
|
*value_addr = value;
|
|
Py_DECREF(old_value); /* which **CAN** re-enter */
|
|
}
|
|
else {
|
|
if (ep->me_key == NULL) {
|
|
Py_INCREF(key);
|
|
if (mp->ma_keys->dk_usable <= 0) {
|
|
/* Need to resize. */
|
|
if (insertion_resize(mp) < 0) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
return -1;
|
|
}
|
|
ep = find_empty_slot(mp, key, hash, &value_addr);
|
|
}
|
|
mp->ma_keys->dk_usable--;
|
|
assert(mp->ma_keys->dk_usable >= 0);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
}
|
|
else {
|
|
if (ep->me_key == dummy) {
|
|
Py_INCREF(key);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
Py_DECREF(dummy);
|
|
} else {
|
|
assert(_PyDict_HasSplitTable(mp));
|
|
}
|
|
}
|
|
mp->ma_used++;
|
|
*value_addr = value;
|
|
}
|
|
assert(ep->me_key != NULL && ep->me_key != dummy);
|
|
assert(PyUnicode_CheckExact(key) || mp->ma_keys->dk_lookup == lookdict);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Internal routine used by dictresize() to insert an item which is
|
|
known to be absent from the dict. This routine also assumes that
|
|
the dict contains no deleted entries. Besides the performance benefit,
|
|
using insertdict() in dictresize() is dangerous (SF bug #1456209).
|
|
Note that no refcounts are changed by this routine; if needed, the caller
|
|
is responsible for incref'ing `key` and `value`.
|
|
Neither mp->ma_used nor k->dk_usable are modified by this routine; the caller
|
|
must set them correctly
|
|
*/
|
|
static void
|
|
insertdict_clean(PyDictObject *mp, PyObject *key, Py_hash_t hash,
|
|
PyObject *value)
|
|
{
|
|
size_t i;
|
|
size_t perturb;
|
|
PyDictKeysObject *k = mp->ma_keys;
|
|
size_t mask = (size_t)DK_SIZE(k)-1;
|
|
PyDictKeyEntry *ep0 = &k->dk_entries[0];
|
|
PyDictKeyEntry *ep;
|
|
|
|
assert(k->dk_lookup != NULL);
|
|
assert(value != NULL);
|
|
assert(key != NULL);
|
|
assert(key != dummy);
|
|
assert(PyUnicode_CheckExact(key) || k->dk_lookup == lookdict);
|
|
i = hash & mask;
|
|
ep = &ep0[i];
|
|
for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
}
|
|
assert(ep->me_value == NULL);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
ep->me_value = value;
|
|
}
|
|
|
|
/*
|
|
Restructure the table by allocating a new table and reinserting all
|
|
items again. When entries have been deleted, the new table may
|
|
actually be smaller than the old one.
|
|
If a table is split (its keys and hashes are shared, its values are not),
|
|
then the values are temporarily copied into the table, it is resized as
|
|
a combined table, then the me_value slots in the old table are NULLed out.
|
|
After resizing a table is always combined,
|
|
but can be resplit by make_keys_shared().
|
|
*/
|
|
static int
|
|
dictresize(PyDictObject *mp, Py_ssize_t minused)
|
|
{
|
|
Py_ssize_t newsize;
|
|
PyDictKeysObject *oldkeys;
|
|
PyObject **oldvalues;
|
|
Py_ssize_t i, oldsize;
|
|
|
|
/* Find the smallest table size > minused. */
|
|
for (newsize = PyDict_MINSIZE_COMBINED;
|
|
newsize <= minused && newsize > 0;
|
|
newsize <<= 1)
|
|
;
|
|
if (newsize <= 0) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
oldkeys = mp->ma_keys;
|
|
oldvalues = mp->ma_values;
|
|
/* Allocate a new table. */
|
|
mp->ma_keys = new_keys_object(newsize);
|
|
if (mp->ma_keys == NULL) {
|
|
mp->ma_keys = oldkeys;
|
|
return -1;
|
|
}
|
|
if (oldkeys->dk_lookup == lookdict)
|
|
mp->ma_keys->dk_lookup = lookdict;
|
|
oldsize = DK_SIZE(oldkeys);
|
|
mp->ma_values = NULL;
|
|
/* If empty then nothing to copy so just return */
|
|
if (oldsize == 1) {
|
|
assert(oldkeys == Py_EMPTY_KEYS);
|
|
DK_DECREF(oldkeys);
|
|
return 0;
|
|
}
|
|
/* Main loop below assumes we can transfer refcount to new keys
|
|
* and that value is stored in me_value.
|
|
* Increment ref-counts and copy values here to compensate
|
|
* This (resizing a split table) should be relatively rare */
|
|
if (oldvalues != NULL) {
|
|
for (i = 0; i < oldsize; i++) {
|
|
if (oldvalues[i] != NULL) {
|
|
Py_INCREF(oldkeys->dk_entries[i].me_key);
|
|
oldkeys->dk_entries[i].me_value = oldvalues[i];
|
|
}
|
|
}
|
|
}
|
|
/* Main loop */
|
|
for (i = 0; i < oldsize; i++) {
|
|
PyDictKeyEntry *ep = &oldkeys->dk_entries[i];
|
|
if (ep->me_value != NULL) {
|
|
assert(ep->me_key != dummy);
|
|
insertdict_clean(mp, ep->me_key, ep->me_hash, ep->me_value);
|
|
}
|
|
}
|
|
mp->ma_keys->dk_usable -= mp->ma_used;
|
|
if (oldvalues != NULL) {
|
|
/* NULL out me_value slot in oldkeys, in case it was shared */
|
|
for (i = 0; i < oldsize; i++)
|
|
oldkeys->dk_entries[i].me_value = NULL;
|
|
assert(oldvalues != empty_values);
|
|
free_values(oldvalues);
|
|
DK_DECREF(oldkeys);
|
|
}
|
|
else {
|
|
assert(oldkeys->dk_lookup != lookdict_split);
|
|
if (oldkeys->dk_lookup != lookdict_unicode_nodummy) {
|
|
PyDictKeyEntry *ep0 = &oldkeys->dk_entries[0];
|
|
for (i = 0; i < oldsize; i++) {
|
|
if (ep0[i].me_key == dummy)
|
|
Py_DECREF(dummy);
|
|
}
|
|
}
|
|
assert(oldkeys->dk_refcnt == 1);
|
|
DK_DEBUG_DECREF PyMem_FREE(oldkeys);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Returns NULL if unable to split table.
|
|
* A NULL return does not necessarily indicate an error */
|
|
static PyDictKeysObject *
|
|
make_keys_shared(PyObject *op)
|
|
{
|
|
Py_ssize_t i;
|
|
Py_ssize_t size;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
|
|
if (!PyDict_CheckExact(op))
|
|
return NULL;
|
|
if (!_PyDict_HasSplitTable(mp)) {
|
|
PyDictKeyEntry *ep0;
|
|
PyObject **values;
|
|
assert(mp->ma_keys->dk_refcnt == 1);
|
|
if (mp->ma_keys->dk_lookup == lookdict) {
|
|
return NULL;
|
|
}
|
|
else if (mp->ma_keys->dk_lookup == lookdict_unicode) {
|
|
/* Remove dummy keys */
|
|
if (dictresize(mp, DK_SIZE(mp->ma_keys)))
|
|
return NULL;
|
|
}
|
|
assert(mp->ma_keys->dk_lookup == lookdict_unicode_nodummy);
|
|
/* Copy values into a new array */
|
|
ep0 = &mp->ma_keys->dk_entries[0];
|
|
size = DK_SIZE(mp->ma_keys);
|
|
values = new_values(size);
|
|
if (values == NULL) {
|
|
PyErr_SetString(PyExc_MemoryError,
|
|
"Not enough memory to allocate new values array");
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < size; i++) {
|
|
values[i] = ep0[i].me_value;
|
|
ep0[i].me_value = NULL;
|
|
}
|
|
mp->ma_keys->dk_lookup = lookdict_split;
|
|
mp->ma_values = values;
|
|
}
|
|
DK_INCREF(mp->ma_keys);
|
|
return mp->ma_keys;
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_NewPresized(Py_ssize_t minused)
|
|
{
|
|
Py_ssize_t newsize;
|
|
PyDictKeysObject *new_keys;
|
|
for (newsize = PyDict_MINSIZE_COMBINED;
|
|
newsize <= minused && newsize > 0;
|
|
newsize <<= 1)
|
|
;
|
|
new_keys = new_keys_object(newsize);
|
|
if (new_keys == NULL)
|
|
return NULL;
|
|
return new_dict(new_keys, NULL);
|
|
}
|
|
|
|
/* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
|
|
* that may occur (originally dicts supported only string keys, and exceptions
|
|
* weren't possible). So, while the original intent was that a NULL return
|
|
* meant the key wasn't present, in reality it can mean that, or that an error
|
|
* (suppressed) occurred while computing the key's hash, or that some error
|
|
* (suppressed) occurred when comparing keys in the dict's internal probe
|
|
* sequence. A nasty example of the latter is when a Python-coded comparison
|
|
* function hits a stack-depth error, which can cause this to return NULL
|
|
* even if the key is present.
|
|
*/
|
|
PyObject *
|
|
PyDict_GetItem(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictKeyEntry *ep;
|
|
PyThreadState *tstate;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyDict_Check(op))
|
|
return NULL;
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1) {
|
|
PyErr_Clear();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* We can arrive here with a NULL tstate during initialization: try
|
|
running "python -Wi" for an example related to string interning.
|
|
Let's just hope that no exception occurs then... This must be
|
|
_PyThreadState_Current and not PyThreadState_GET() because in debug
|
|
mode, the latter complains if tstate is NULL. */
|
|
tstate = (PyThreadState*)_Py_atomic_load_relaxed(
|
|
&_PyThreadState_Current);
|
|
if (tstate != NULL && tstate->curexc_type != NULL) {
|
|
/* preserve the existing exception */
|
|
PyObject *err_type, *err_value, *err_tb;
|
|
PyErr_Fetch(&err_type, &err_value, &err_tb);
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
/* ignore errors */
|
|
PyErr_Restore(err_type, err_value, err_tb);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
}
|
|
else {
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL) {
|
|
PyErr_Clear();
|
|
return NULL;
|
|
}
|
|
}
|
|
return *value_addr;
|
|
}
|
|
|
|
/* Variant of PyDict_GetItem() that doesn't suppress exceptions.
|
|
This returns NULL *with* an exception set if an exception occurred.
|
|
It returns NULL *without* an exception set if the key wasn't present.
|
|
*/
|
|
PyObject *
|
|
PyDict_GetItemWithError(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject*mp = (PyDictObject *)op;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
return *value_addr;
|
|
}
|
|
|
|
PyObject *
|
|
_PyDict_GetItemIdWithError(PyObject *dp, struct _Py_Identifier *key)
|
|
{
|
|
PyObject *kv;
|
|
kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return NULL;
|
|
return PyDict_GetItemWithError(dp, kv);
|
|
}
|
|
|
|
/* Fast version of global value lookup.
|
|
* Lookup in globals, then builtins.
|
|
*/
|
|
PyObject *
|
|
_PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key)
|
|
{
|
|
PyObject *x;
|
|
if (PyUnicode_CheckExact(key)) {
|
|
PyObject **value_addr;
|
|
Py_hash_t hash = ((PyASCIIObject *)key)->hash;
|
|
if (hash != -1) {
|
|
PyDictKeyEntry *e;
|
|
e = globals->ma_keys->dk_lookup(globals, key, hash, &value_addr);
|
|
if (e == NULL) {
|
|
return NULL;
|
|
}
|
|
x = *value_addr;
|
|
if (x != NULL)
|
|
return x;
|
|
e = builtins->ma_keys->dk_lookup(builtins, key, hash, &value_addr);
|
|
if (e == NULL) {
|
|
return NULL;
|
|
}
|
|
x = *value_addr;
|
|
return x;
|
|
}
|
|
}
|
|
x = PyDict_GetItemWithError((PyObject *)globals, key);
|
|
if (x != NULL)
|
|
return x;
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
return PyDict_GetItemWithError((PyObject *)builtins, key);
|
|
}
|
|
|
|
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
|
|
* dictionary if it's merely replacing the value for an existing key.
|
|
* This means that it's safe to loop over a dictionary with PyDict_Next()
|
|
* and occasionally replace a value -- but you can't insert new keys or
|
|
* remove them.
|
|
*/
|
|
int
|
|
PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value)
|
|
{
|
|
PyDictObject *mp;
|
|
Py_hash_t hash;
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
assert(value);
|
|
mp = (PyDictObject *)op;
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
|
|
/* insertdict() handles any resizing that might be necessary */
|
|
return insertdict(mp, key, hash, value);
|
|
}
|
|
|
|
int
|
|
PyDict_DelItem(PyObject *op, PyObject *key)
|
|
{
|
|
PyDictObject *mp;
|
|
Py_hash_t hash;
|
|
PyDictKeyEntry *ep;
|
|
PyObject *old_key, *old_value;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
mp = (PyDictObject *)op;
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return -1;
|
|
if (*value_addr == NULL) {
|
|
set_key_error(key);
|
|
return -1;
|
|
}
|
|
old_value = *value_addr;
|
|
*value_addr = NULL;
|
|
mp->ma_used--;
|
|
if (!_PyDict_HasSplitTable(mp)) {
|
|
ENSURE_ALLOWS_DELETIONS(mp);
|
|
old_key = ep->me_key;
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
Py_DECREF(old_key);
|
|
}
|
|
Py_DECREF(old_value);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyDict_Clear(PyObject *op)
|
|
{
|
|
PyDictObject *mp;
|
|
PyDictKeysObject *oldkeys;
|
|
PyObject **oldvalues;
|
|
Py_ssize_t i, n;
|
|
|
|
if (!PyDict_Check(op))
|
|
return;
|
|
mp = ((PyDictObject *)op);
|
|
oldkeys = mp->ma_keys;
|
|
oldvalues = mp->ma_values;
|
|
if (oldvalues == empty_values)
|
|
return;
|
|
/* Empty the dict... */
|
|
DK_INCREF(Py_EMPTY_KEYS);
|
|
mp->ma_keys = Py_EMPTY_KEYS;
|
|
mp->ma_values = empty_values;
|
|
mp->ma_used = 0;
|
|
/* ...then clear the keys and values */
|
|
if (oldvalues != NULL) {
|
|
n = DK_SIZE(oldkeys);
|
|
for (i = 0; i < n; i++)
|
|
Py_CLEAR(oldvalues[i]);
|
|
free_values(oldvalues);
|
|
DK_DECREF(oldkeys);
|
|
}
|
|
else {
|
|
assert(oldkeys->dk_refcnt == 1);
|
|
DK_DECREF(oldkeys);
|
|
}
|
|
}
|
|
|
|
/* Returns -1 if no more items (or op is not a dict),
|
|
* index of item otherwise. Stores value in pvalue
|
|
*/
|
|
Py_LOCAL_INLINE(Py_ssize_t)
|
|
dict_next(PyObject *op, Py_ssize_t i, PyObject **pvalue)
|
|
{
|
|
Py_ssize_t mask, offset;
|
|
PyDictObject *mp;
|
|
PyObject **value_ptr;
|
|
|
|
|
|
if (!PyDict_Check(op))
|
|
return -1;
|
|
mp = (PyDictObject *)op;
|
|
if (i < 0)
|
|
return -1;
|
|
if (mp->ma_values) {
|
|
value_ptr = &mp->ma_values[i];
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &mp->ma_keys->dk_entries[i].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
mask = DK_MASK(mp->ma_keys);
|
|
while (i <= mask && *value_ptr == NULL) {
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
i++;
|
|
}
|
|
if (i > mask)
|
|
return -1;
|
|
if (pvalue)
|
|
*pvalue = *value_ptr;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Iterate over a dict. Use like so:
|
|
*
|
|
* Py_ssize_t i;
|
|
* PyObject *key, *value;
|
|
* i = 0; # important! i should not otherwise be changed by you
|
|
* while (PyDict_Next(yourdict, &i, &key, &value)) {
|
|
* Refer to borrowed references in key and value.
|
|
* }
|
|
*
|
|
* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
|
|
* mutates the dict. One exception: it is safe if the loop merely changes
|
|
* the values associated with the keys (but doesn't insert new keys or
|
|
* delete keys), via PyDict_SetItem().
|
|
*/
|
|
int
|
|
PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
|
|
{
|
|
PyDictObject *mp;
|
|
Py_ssize_t i = dict_next(op, *ppos, pvalue);
|
|
if (i < 0)
|
|
return 0;
|
|
mp = (PyDictObject *)op;
|
|
*ppos = i+1;
|
|
if (pkey)
|
|
*pkey = mp->ma_keys->dk_entries[i].me_key;
|
|
return 1;
|
|
}
|
|
|
|
/* Internal version of PyDict_Next that returns a hash value in addition
|
|
* to the key and value.
|
|
*/
|
|
int
|
|
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey,
|
|
PyObject **pvalue, Py_hash_t *phash)
|
|
{
|
|
PyDictObject *mp;
|
|
Py_ssize_t i = dict_next(op, *ppos, pvalue);
|
|
if (i < 0)
|
|
return 0;
|
|
mp = (PyDictObject *)op;
|
|
*ppos = i+1;
|
|
*phash = mp->ma_keys->dk_entries[i].me_hash;
|
|
if (pkey)
|
|
*pkey = mp->ma_keys->dk_entries[i].me_key;
|
|
return 1;
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
dict_dealloc(PyDictObject *mp)
|
|
{
|
|
PyObject **values = mp->ma_values;
|
|
PyDictKeysObject *keys = mp->ma_keys;
|
|
Py_ssize_t i, n;
|
|
PyObject_GC_UnTrack(mp);
|
|
Py_TRASHCAN_SAFE_BEGIN(mp)
|
|
if (values != NULL) {
|
|
if (values != empty_values) {
|
|
for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) {
|
|
Py_XDECREF(values[i]);
|
|
}
|
|
free_values(values);
|
|
}
|
|
DK_DECREF(keys);
|
|
}
|
|
else {
|
|
assert(keys->dk_refcnt == 1);
|
|
DK_DECREF(keys);
|
|
}
|
|
if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
|
|
free_list[numfree++] = mp;
|
|
else
|
|
Py_TYPE(mp)->tp_free((PyObject *)mp);
|
|
Py_TRASHCAN_SAFE_END(mp)
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_repr(PyDictObject *mp)
|
|
{
|
|
Py_ssize_t i;
|
|
PyObject *s, *temp, *colon = NULL;
|
|
PyObject *pieces = NULL, *result = NULL;
|
|
PyObject *key, *value;
|
|
|
|
i = Py_ReprEnter((PyObject *)mp);
|
|
if (i != 0) {
|
|
return i > 0 ? PyUnicode_FromString("{...}") : NULL;
|
|
}
|
|
|
|
if (mp->ma_used == 0) {
|
|
result = PyUnicode_FromString("{}");
|
|
goto Done;
|
|
}
|
|
|
|
pieces = PyList_New(0);
|
|
if (pieces == NULL)
|
|
goto Done;
|
|
|
|
colon = PyUnicode_FromString(": ");
|
|
if (colon == NULL)
|
|
goto Done;
|
|
|
|
/* Do repr() on each key+value pair, and insert ": " between them.
|
|
Note that repr may mutate the dict. */
|
|
i = 0;
|
|
while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
|
|
int status;
|
|
/* Prevent repr from deleting key or value during key format. */
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
s = PyObject_Repr(key);
|
|
PyUnicode_Append(&s, colon);
|
|
PyUnicode_AppendAndDel(&s, PyObject_Repr(value));
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (s == NULL)
|
|
goto Done;
|
|
status = PyList_Append(pieces, s);
|
|
Py_DECREF(s); /* append created a new ref */
|
|
if (status < 0)
|
|
goto Done;
|
|
}
|
|
|
|
/* Add "{}" decorations to the first and last items. */
|
|
assert(PyList_GET_SIZE(pieces) > 0);
|
|
s = PyUnicode_FromString("{");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, 0);
|
|
PyUnicode_AppendAndDel(&s, temp);
|
|
PyList_SET_ITEM(pieces, 0, s);
|
|
if (s == NULL)
|
|
goto Done;
|
|
|
|
s = PyUnicode_FromString("}");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
|
|
PyUnicode_AppendAndDel(&temp, s);
|
|
PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
|
|
if (temp == NULL)
|
|
goto Done;
|
|
|
|
/* Paste them all together with ", " between. */
|
|
s = PyUnicode_FromString(", ");
|
|
if (s == NULL)
|
|
goto Done;
|
|
result = PyUnicode_Join(s, pieces);
|
|
Py_DECREF(s);
|
|
|
|
Done:
|
|
Py_XDECREF(pieces);
|
|
Py_XDECREF(colon);
|
|
Py_ReprLeave((PyObject *)mp);
|
|
return result;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dict_length(PyDictObject *mp)
|
|
{
|
|
return mp->ma_used;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_subscript(PyDictObject *mp, register PyObject *key)
|
|
{
|
|
PyObject *v;
|
|
Py_hash_t hash;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
v = *value_addr;
|
|
if (v == NULL) {
|
|
if (!PyDict_CheckExact(mp)) {
|
|
/* Look up __missing__ method if we're a subclass. */
|
|
PyObject *missing, *res;
|
|
_Py_IDENTIFIER(__missing__);
|
|
missing = _PyObject_LookupSpecial((PyObject *)mp, &PyId___missing__);
|
|
if (missing != NULL) {
|
|
res = PyObject_CallFunctionObjArgs(missing,
|
|
key, NULL);
|
|
Py_DECREF(missing);
|
|
return res;
|
|
}
|
|
else if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
else
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
|
|
static int
|
|
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
|
|
{
|
|
if (w == NULL)
|
|
return PyDict_DelItem((PyObject *)mp, v);
|
|
else
|
|
return PyDict_SetItem((PyObject *)mp, v, w);
|
|
}
|
|
|
|
static PyMappingMethods dict_as_mapping = {
|
|
(lenfunc)dict_length, /*mp_length*/
|
|
(binaryfunc)dict_subscript, /*mp_subscript*/
|
|
(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
|
|
};
|
|
|
|
static PyObject *
|
|
dict_keys(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j;
|
|
PyDictKeyEntry *ep;
|
|
Py_ssize_t size, n, offset;
|
|
PyObject **value_ptr;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
ep = &mp->ma_keys->dk_entries[0];
|
|
size = DK_SIZE(mp->ma_keys);
|
|
if (mp->ma_values) {
|
|
value_ptr = mp->ma_values;
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &ep[0].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
for (i = 0, j = 0; i < size; i++) {
|
|
if (*value_ptr != NULL) {
|
|
PyObject *key = ep[i].me_key;
|
|
Py_INCREF(key);
|
|
PyList_SET_ITEM(v, j, key);
|
|
j++;
|
|
}
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_values(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j;
|
|
Py_ssize_t size, n, offset;
|
|
PyObject **value_ptr;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
size = DK_SIZE(mp->ma_keys);
|
|
if (mp->ma_values) {
|
|
value_ptr = mp->ma_values;
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &mp->ma_keys->dk_entries[0].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
for (i = 0, j = 0; i < size; i++) {
|
|
PyObject *value = *value_ptr;
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
if (value != NULL) {
|
|
Py_INCREF(value);
|
|
PyList_SET_ITEM(v, j, value);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_items(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j, n;
|
|
Py_ssize_t size, offset;
|
|
PyObject *item, *key;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_ptr;
|
|
|
|
/* Preallocate the list of tuples, to avoid allocations during
|
|
* the loop over the items, which could trigger GC, which
|
|
* could resize the dict. :-(
|
|
*/
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
for (i = 0; i < n; i++) {
|
|
item = PyTuple_New(2);
|
|
if (item == NULL) {
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
PyList_SET_ITEM(v, i, item);
|
|
}
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
/* Nothing we do below makes any function calls. */
|
|
ep = mp->ma_keys->dk_entries;
|
|
size = DK_SIZE(mp->ma_keys);
|
|
if (mp->ma_values) {
|
|
value_ptr = mp->ma_values;
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &ep[0].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
for (i = 0, j = 0; i < size; i++) {
|
|
PyObject *value = *value_ptr;
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
if (value != NULL) {
|
|
key = ep[i].me_key;
|
|
item = PyList_GET_ITEM(v, j);
|
|
Py_INCREF(key);
|
|
PyTuple_SET_ITEM(item, 0, key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(item, 1, value);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_fromkeys(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *seq;
|
|
PyObject *value = Py_None;
|
|
PyObject *it; /* iter(seq) */
|
|
PyObject *key;
|
|
PyObject *d;
|
|
int status;
|
|
|
|
if (!PyArg_UnpackTuple(args, "fromkeys", 1, 2, &seq, &value))
|
|
return NULL;
|
|
|
|
d = PyObject_CallObject(cls, NULL);
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
if (PyDict_CheckExact(d) && ((PyDictObject *)d)->ma_used == 0) {
|
|
if (PyDict_CheckExact(seq)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
PyObject *oldvalue;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
|
|
if (dictresize(mp, Py_SIZE(seq))) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
while (_PyDict_Next(seq, &pos, &key, &oldvalue, &hash)) {
|
|
if (insertdict(mp, key, hash, value)) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
if (PyAnySet_CheckExact(seq)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
|
|
if (dictresize(mp, PySet_GET_SIZE(seq))) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
while (_PySet_NextEntry(seq, &pos, &key, &hash)) {
|
|
if (insertdict(mp, key, hash, value)) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
}
|
|
|
|
it = PyObject_GetIter(seq);
|
|
if (it == NULL){
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
if (PyDict_CheckExact(d)) {
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = PyDict_SetItem(d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
} else {
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = PyObject_SetItem(d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
}
|
|
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
Py_DECREF(it);
|
|
return d;
|
|
|
|
Fail:
|
|
Py_DECREF(it);
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
dict_update_common(PyObject *self, PyObject *args, PyObject *kwds, char *methname)
|
|
{
|
|
PyObject *arg = NULL;
|
|
int result = 0;
|
|
|
|
if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg))
|
|
result = -1;
|
|
|
|
else if (arg != NULL) {
|
|
_Py_IDENTIFIER(keys);
|
|
if (_PyObject_HasAttrId(arg, &PyId_keys))
|
|
result = PyDict_Merge(self, arg, 1);
|
|
else
|
|
result = PyDict_MergeFromSeq2(self, arg, 1);
|
|
}
|
|
if (result == 0 && kwds != NULL) {
|
|
if (PyArg_ValidateKeywordArguments(kwds))
|
|
result = PyDict_Merge(self, kwds, 1);
|
|
else
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_update(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
if (dict_update_common(self, args, kwds, "update") != -1)
|
|
Py_RETURN_NONE;
|
|
return NULL;
|
|
}
|
|
|
|
/* Update unconditionally replaces existing items.
|
|
Merge has a 3rd argument 'override'; if set, it acts like Update,
|
|
otherwise it leaves existing items unchanged.
|
|
|
|
PyDict_{Update,Merge} update/merge from a mapping object.
|
|
|
|
PyDict_MergeFromSeq2 updates/merges from any iterable object
|
|
producing iterable objects of length 2.
|
|
*/
|
|
|
|
int
|
|
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
|
|
{
|
|
PyObject *it; /* iter(seq2) */
|
|
Py_ssize_t i; /* index into seq2 of current element */
|
|
PyObject *item; /* seq2[i] */
|
|
PyObject *fast; /* item as a 2-tuple or 2-list */
|
|
|
|
assert(d != NULL);
|
|
assert(PyDict_Check(d));
|
|
assert(seq2 != NULL);
|
|
|
|
it = PyObject_GetIter(seq2);
|
|
if (it == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; ; ++i) {
|
|
PyObject *key, *value;
|
|
Py_ssize_t n;
|
|
|
|
fast = NULL;
|
|
item = PyIter_Next(it);
|
|
if (item == NULL) {
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
break;
|
|
}
|
|
|
|
/* Convert item to sequence, and verify length 2. */
|
|
fast = PySequence_Fast(item, "");
|
|
if (fast == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_TypeError))
|
|
PyErr_Format(PyExc_TypeError,
|
|
"cannot convert dictionary update "
|
|
"sequence element #%zd to a sequence",
|
|
i);
|
|
goto Fail;
|
|
}
|
|
n = PySequence_Fast_GET_SIZE(fast);
|
|
if (n != 2) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"dictionary update sequence element #%zd "
|
|
"has length %zd; 2 is required",
|
|
i, n);
|
|
goto Fail;
|
|
}
|
|
|
|
/* Update/merge with this (key, value) pair. */
|
|
key = PySequence_Fast_GET_ITEM(fast, 0);
|
|
value = PySequence_Fast_GET_ITEM(fast, 1);
|
|
if (override || PyDict_GetItem(d, key) == NULL) {
|
|
int status = PyDict_SetItem(d, key, value);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
Py_DECREF(fast);
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
i = 0;
|
|
goto Return;
|
|
Fail:
|
|
Py_XDECREF(item);
|
|
Py_XDECREF(fast);
|
|
i = -1;
|
|
Return:
|
|
Py_DECREF(it);
|
|
return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
|
|
}
|
|
|
|
int
|
|
PyDict_Update(PyObject *a, PyObject *b)
|
|
{
|
|
return PyDict_Merge(a, b, 1);
|
|
}
|
|
|
|
int
|
|
PyDict_Merge(PyObject *a, PyObject *b, int override)
|
|
{
|
|
register PyDictObject *mp, *other;
|
|
register Py_ssize_t i, n;
|
|
PyDictKeyEntry *entry;
|
|
|
|
/* We accept for the argument either a concrete dictionary object,
|
|
* or an abstract "mapping" object. For the former, we can do
|
|
* things quite efficiently. For the latter, we only require that
|
|
* PyMapping_Keys() and PyObject_GetItem() be supported.
|
|
*/
|
|
if (a == NULL || !PyDict_Check(a) || b == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
mp = (PyDictObject*)a;
|
|
if (PyDict_Check(b)) {
|
|
other = (PyDictObject*)b;
|
|
if (other == mp || other->ma_used == 0)
|
|
/* a.update(a) or a.update({}); nothing to do */
|
|
return 0;
|
|
if (mp->ma_used == 0)
|
|
/* Since the target dict is empty, PyDict_GetItem()
|
|
* always returns NULL. Setting override to 1
|
|
* skips the unnecessary test.
|
|
*/
|
|
override = 1;
|
|
/* Do one big resize at the start, rather than
|
|
* incrementally resizing as we insert new items. Expect
|
|
* that there will be no (or few) overlapping keys.
|
|
*/
|
|
if (mp->ma_keys->dk_usable * 3 < other->ma_used * 2)
|
|
if (dictresize(mp, (mp->ma_used + other->ma_used)*2) != 0)
|
|
return -1;
|
|
for (i = 0, n = DK_SIZE(other->ma_keys); i < n; i++) {
|
|
PyObject *value;
|
|
entry = &other->ma_keys->dk_entries[i];
|
|
if (other->ma_values)
|
|
value = other->ma_values[i];
|
|
else
|
|
value = entry->me_value;
|
|
|
|
if (value != NULL &&
|
|
(override ||
|
|
PyDict_GetItem(a, entry->me_key) == NULL)) {
|
|
if (insertdict(mp, entry->me_key,
|
|
entry->me_hash,
|
|
value) != 0)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Do it the generic, slower way */
|
|
PyObject *keys = PyMapping_Keys(b);
|
|
PyObject *iter;
|
|
PyObject *key, *value;
|
|
int status;
|
|
|
|
if (keys == NULL)
|
|
/* Docstring says this is equivalent to E.keys() so
|
|
* if E doesn't have a .keys() method we want
|
|
* AttributeError to percolate up. Might as well
|
|
* do the same for any other error.
|
|
*/
|
|
return -1;
|
|
|
|
iter = PyObject_GetIter(keys);
|
|
Py_DECREF(keys);
|
|
if (iter == NULL)
|
|
return -1;
|
|
|
|
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
|
|
if (!override && PyDict_GetItem(a, key) != NULL) {
|
|
Py_DECREF(key);
|
|
continue;
|
|
}
|
|
value = PyObject_GetItem(b, key);
|
|
if (value == NULL) {
|
|
Py_DECREF(iter);
|
|
Py_DECREF(key);
|
|
return -1;
|
|
}
|
|
status = PyDict_SetItem(a, key, value);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (status < 0) {
|
|
Py_DECREF(iter);
|
|
return -1;
|
|
}
|
|
}
|
|
Py_DECREF(iter);
|
|
if (PyErr_Occurred())
|
|
/* Iterator completed, via error */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_copy(register PyDictObject *mp)
|
|
{
|
|
return PyDict_Copy((PyObject*)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Copy(PyObject *o)
|
|
{
|
|
PyObject *copy;
|
|
PyDictObject *mp;
|
|
Py_ssize_t i, n;
|
|
|
|
if (o == NULL || !PyDict_Check(o)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
mp = (PyDictObject *)o;
|
|
if (_PyDict_HasSplitTable(mp)) {
|
|
PyDictObject *split_copy;
|
|
PyObject **newvalues = new_values(DK_SIZE(mp->ma_keys));
|
|
if (newvalues == NULL)
|
|
return PyErr_NoMemory();
|
|
split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type);
|
|
if (split_copy == NULL) {
|
|
free_values(newvalues);
|
|
return NULL;
|
|
}
|
|
split_copy->ma_values = newvalues;
|
|
split_copy->ma_keys = mp->ma_keys;
|
|
split_copy->ma_used = mp->ma_used;
|
|
DK_INCREF(mp->ma_keys);
|
|
for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) {
|
|
PyObject *value = mp->ma_values[i];
|
|
Py_XINCREF(value);
|
|
split_copy->ma_values[i] = value;
|
|
}
|
|
if (_PyObject_GC_IS_TRACKED(mp))
|
|
_PyObject_GC_TRACK(split_copy);
|
|
return (PyObject *)split_copy;
|
|
}
|
|
copy = PyDict_New();
|
|
if (copy == NULL)
|
|
return NULL;
|
|
if (PyDict_Merge(copy, o, 1) == 0)
|
|
return copy;
|
|
Py_DECREF(copy);
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyDict_Size(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ((PyDictObject *)mp)->ma_used;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Keys(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_keys((PyDictObject *)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Values(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_values((PyDictObject *)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Items(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_items((PyDictObject *)mp);
|
|
}
|
|
|
|
/* Return 1 if dicts equal, 0 if not, -1 if error.
|
|
* Gets out as soon as any difference is detected.
|
|
* Uses only Py_EQ comparison.
|
|
*/
|
|
static int
|
|
dict_equal(PyDictObject *a, PyDictObject *b)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
if (a->ma_used != b->ma_used)
|
|
/* can't be equal if # of entries differ */
|
|
return 0;
|
|
/* Same # of entries -- check all of 'em. Exit early on any diff. */
|
|
for (i = 0; i < DK_SIZE(a->ma_keys); i++) {
|
|
PyDictKeyEntry *ep = &a->ma_keys->dk_entries[i];
|
|
PyObject *aval;
|
|
if (a->ma_values)
|
|
aval = a->ma_values[i];
|
|
else
|
|
aval = ep->me_value;
|
|
if (aval != NULL) {
|
|
int cmp;
|
|
PyObject *bval;
|
|
PyObject **vaddr;
|
|
PyObject *key = ep->me_key;
|
|
/* temporarily bump aval's refcount to ensure it stays
|
|
alive until we're done with it */
|
|
Py_INCREF(aval);
|
|
/* ditto for key */
|
|
Py_INCREF(key);
|
|
/* reuse the known hash value */
|
|
if ((b->ma_keys->dk_lookup)(b, key, ep->me_hash, &vaddr) == NULL)
|
|
bval = NULL;
|
|
else
|
|
bval = *vaddr;
|
|
Py_DECREF(key);
|
|
if (bval == NULL) {
|
|
Py_DECREF(aval);
|
|
if (PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
|
|
Py_DECREF(aval);
|
|
if (cmp <= 0) /* error or not equal */
|
|
return cmp;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
int cmp;
|
|
PyObject *res;
|
|
|
|
if (!PyDict_Check(v) || !PyDict_Check(w)) {
|
|
res = Py_NotImplemented;
|
|
}
|
|
else if (op == Py_EQ || op == Py_NE) {
|
|
cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
|
|
}
|
|
else
|
|
res = Py_NotImplemented;
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_contains(register PyDictObject *mp, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
return PyBool_FromLong(*value_addr != NULL);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_get(register PyDictObject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *failobj = Py_None;
|
|
PyObject *val = NULL;
|
|
Py_hash_t hash;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &failobj))
|
|
return NULL;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
val = *value_addr;
|
|
if (val == NULL)
|
|
val = failobj;
|
|
Py_INCREF(val);
|
|
return val;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
PyObject *val = NULL;
|
|
Py_hash_t hash;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyDict_Check(d)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
val = *value_addr;
|
|
if (val == NULL) {
|
|
if (mp->ma_keys->dk_usable <= 0) {
|
|
/* Need to resize. */
|
|
if (insertion_resize(mp) < 0)
|
|
return NULL;
|
|
ep = find_empty_slot(mp, key, hash, &value_addr);
|
|
}
|
|
Py_INCREF(defaultobj);
|
|
Py_INCREF(key);
|
|
MAINTAIN_TRACKING(mp, key, defaultobj);
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
*value_addr = defaultobj;
|
|
val = defaultobj;
|
|
mp->ma_keys->dk_usable--;
|
|
mp->ma_used++;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_setdefault(PyDictObject *mp, PyObject *args)
|
|
{
|
|
PyObject *key, *val;
|
|
PyObject *defaultobj = Py_None;
|
|
|
|
if (!PyArg_UnpackTuple(args, "setdefault", 1, 2, &key, &defaultobj))
|
|
return NULL;
|
|
|
|
val = PyDict_SetDefault((PyObject *)mp, key, defaultobj);
|
|
Py_XINCREF(val);
|
|
return val;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_clear(register PyDictObject *mp)
|
|
{
|
|
PyDict_Clear((PyObject *)mp);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_pop(PyDictObject *mp, PyObject *args)
|
|
{
|
|
Py_hash_t hash;
|
|
PyObject *old_value, *old_key;
|
|
PyObject *key, *deflt = NULL;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt))
|
|
return NULL;
|
|
if (mp->ma_used == 0) {
|
|
if (deflt) {
|
|
Py_INCREF(deflt);
|
|
return deflt;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
old_value = *value_addr;
|
|
if (old_value == NULL) {
|
|
if (deflt) {
|
|
Py_INCREF(deflt);
|
|
return deflt;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
*value_addr = NULL;
|
|
mp->ma_used--;
|
|
if (!_PyDict_HasSplitTable(mp)) {
|
|
ENSURE_ALLOWS_DELETIONS(mp);
|
|
old_key = ep->me_key;
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
Py_DECREF(old_key);
|
|
}
|
|
return old_value;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_popitem(PyDictObject *mp)
|
|
{
|
|
Py_hash_t i = 0;
|
|
PyDictKeyEntry *ep;
|
|
PyObject *res;
|
|
|
|
|
|
/* Allocate the result tuple before checking the size. Believe it
|
|
* or not, this allocation could trigger a garbage collection which
|
|
* could empty the dict, so if we checked the size first and that
|
|
* happened, the result would be an infinite loop (searching for an
|
|
* entry that no longer exists). Note that the usual popitem()
|
|
* idiom is "while d: k, v = d.popitem()". so needing to throw the
|
|
* tuple away if the dict *is* empty isn't a significant
|
|
* inefficiency -- possible, but unlikely in practice.
|
|
*/
|
|
res = PyTuple_New(2);
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (mp->ma_used == 0) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_KeyError,
|
|
"popitem(): dictionary is empty");
|
|
return NULL;
|
|
}
|
|
/* Convert split table to combined table */
|
|
if (mp->ma_keys->dk_lookup == lookdict_split) {
|
|
if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
}
|
|
ENSURE_ALLOWS_DELETIONS(mp);
|
|
/* Set ep to "the first" dict entry with a value. We abuse the hash
|
|
* field of slot 0 to hold a search finger:
|
|
* If slot 0 has a value, use slot 0.
|
|
* Else slot 0 is being used to hold a search finger,
|
|
* and we use its hash value as the first index to look.
|
|
*/
|
|
ep = &mp->ma_keys->dk_entries[0];
|
|
if (ep->me_value == NULL) {
|
|
Py_ssize_t mask = DK_MASK(mp->ma_keys);
|
|
i = ep->me_hash;
|
|
/* The hash field may be a real hash value, or it may be a
|
|
* legit search finger, or it may be a once-legit search
|
|
* finger that's out of bounds now because it wrapped around
|
|
* or the table shrunk -- simply make sure it's in bounds now.
|
|
*/
|
|
if (i > mask || i < 1)
|
|
i = 1; /* skip slot 0 */
|
|
while ((ep = &mp->ma_keys->dk_entries[i])->me_value == NULL) {
|
|
i++;
|
|
if (i > mask)
|
|
i = 1;
|
|
}
|
|
}
|
|
PyTuple_SET_ITEM(res, 0, ep->me_key);
|
|
PyTuple_SET_ITEM(res, 1, ep->me_value);
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
assert(mp->ma_keys->dk_entries[0].me_value == NULL);
|
|
mp->ma_keys->dk_entries[0].me_hash = i + 1; /* next place to start */
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
dict_traverse(PyObject *op, visitproc visit, void *arg)
|
|
{
|
|
Py_ssize_t i, n;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
if (mp->ma_keys->dk_lookup == lookdict) {
|
|
for (i = 0; i < DK_SIZE(mp->ma_keys); i++) {
|
|
if (mp->ma_keys->dk_entries[i].me_value != NULL) {
|
|
Py_VISIT(mp->ma_keys->dk_entries[i].me_value);
|
|
Py_VISIT(mp->ma_keys->dk_entries[i].me_key);
|
|
}
|
|
}
|
|
} else {
|
|
if (mp->ma_values != NULL) {
|
|
for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) {
|
|
Py_VISIT(mp->ma_values[i]);
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) {
|
|
Py_VISIT(mp->ma_keys->dk_entries[i].me_value);
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dict_tp_clear(PyObject *op)
|
|
{
|
|
PyDict_Clear(op);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *dictiter_new(PyDictObject *, PyTypeObject *);
|
|
|
|
static PyObject *
|
|
dict_sizeof(PyDictObject *mp)
|
|
{
|
|
Py_ssize_t size, res;
|
|
|
|
size = DK_SIZE(mp->ma_keys);
|
|
res = sizeof(PyDictObject);
|
|
if (mp->ma_values)
|
|
res += size * sizeof(PyObject*);
|
|
/* If the dictionary is split, the keys portion is accounted-for
|
|
in the type object. */
|
|
if (mp->ma_keys->dk_refcnt == 1)
|
|
res += sizeof(PyDictKeysObject) + (size-1) * sizeof(PyDictKeyEntry);
|
|
return PyLong_FromSsize_t(res);
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyDict_KeysSize(PyDictKeysObject *keys)
|
|
{
|
|
return sizeof(PyDictKeysObject) + (DK_SIZE(keys)-1) * sizeof(PyDictKeyEntry);
|
|
}
|
|
|
|
PyDoc_STRVAR(contains__doc__,
|
|
"D.__contains__(k) -> True if D has a key k, else False");
|
|
|
|
PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]");
|
|
|
|
PyDoc_STRVAR(sizeof__doc__,
|
|
"D.__sizeof__() -> size of D in memory, in bytes");
|
|
|
|
PyDoc_STRVAR(get__doc__,
|
|
"D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.");
|
|
|
|
PyDoc_STRVAR(setdefault_doc__,
|
|
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D");
|
|
|
|
PyDoc_STRVAR(pop__doc__,
|
|
"D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n\
|
|
If key is not found, d is returned if given, otherwise KeyError is raised");
|
|
|
|
PyDoc_STRVAR(popitem__doc__,
|
|
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
|
|
2-tuple; but raise KeyError if D is empty.");
|
|
|
|
PyDoc_STRVAR(update__doc__,
|
|
"D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n"
|
|
"If E present and has a .keys() method, does: for k in E: D[k] = E[k]\n\
|
|
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v\n\
|
|
In either case, this is followed by: for k in F: D[k] = F[k]");
|
|
|
|
PyDoc_STRVAR(fromkeys__doc__,
|
|
"dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.\n\
|
|
v defaults to None.");
|
|
|
|
PyDoc_STRVAR(clear__doc__,
|
|
"D.clear() -> None. Remove all items from D.");
|
|
|
|
PyDoc_STRVAR(copy__doc__,
|
|
"D.copy() -> a shallow copy of D");
|
|
|
|
/* Forward */
|
|
static PyObject *dictkeys_new(PyObject *);
|
|
static PyObject *dictitems_new(PyObject *);
|
|
static PyObject *dictvalues_new(PyObject *);
|
|
|
|
PyDoc_STRVAR(keys__doc__,
|
|
"D.keys() -> a set-like object providing a view on D's keys");
|
|
PyDoc_STRVAR(items__doc__,
|
|
"D.items() -> a set-like object providing a view on D's items");
|
|
PyDoc_STRVAR(values__doc__,
|
|
"D.values() -> an object providing a view on D's values");
|
|
|
|
static PyMethodDef mapp_methods[] = {
|
|
{"__contains__",(PyCFunction)dict_contains, METH_O | METH_COEXIST,
|
|
contains__doc__},
|
|
{"__getitem__", (PyCFunction)dict_subscript, METH_O | METH_COEXIST,
|
|
getitem__doc__},
|
|
{"__sizeof__", (PyCFunction)dict_sizeof, METH_NOARGS,
|
|
sizeof__doc__},
|
|
{"get", (PyCFunction)dict_get, METH_VARARGS,
|
|
get__doc__},
|
|
{"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS,
|
|
setdefault_doc__},
|
|
{"pop", (PyCFunction)dict_pop, METH_VARARGS,
|
|
pop__doc__},
|
|
{"popitem", (PyCFunction)dict_popitem, METH_NOARGS,
|
|
popitem__doc__},
|
|
{"keys", (PyCFunction)dictkeys_new, METH_NOARGS,
|
|
keys__doc__},
|
|
{"items", (PyCFunction)dictitems_new, METH_NOARGS,
|
|
items__doc__},
|
|
{"values", (PyCFunction)dictvalues_new, METH_NOARGS,
|
|
values__doc__},
|
|
{"update", (PyCFunction)dict_update, METH_VARARGS | METH_KEYWORDS,
|
|
update__doc__},
|
|
{"fromkeys", (PyCFunction)dict_fromkeys, METH_VARARGS | METH_CLASS,
|
|
fromkeys__doc__},
|
|
{"clear", (PyCFunction)dict_clear, METH_NOARGS,
|
|
clear__doc__},
|
|
{"copy", (PyCFunction)dict_copy, METH_NOARGS,
|
|
copy__doc__},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
/* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
|
|
int
|
|
PyDict_Contains(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
return (ep == NULL) ? -1 : (*value_addr != NULL);
|
|
}
|
|
|
|
/* Internal version of PyDict_Contains used when the hash value is already known */
|
|
int
|
|
_PyDict_Contains(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictKeyEntry *ep;
|
|
PyObject **value_addr;
|
|
|
|
ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr);
|
|
return (ep == NULL) ? -1 : (*value_addr != NULL);
|
|
}
|
|
|
|
/* Hack to implement "key in dict" */
|
|
static PySequenceMethods dict_as_sequence = {
|
|
0, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
PyDict_Contains, /* sq_contains */
|
|
0, /* sq_inplace_concat */
|
|
0, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyObject *
|
|
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *self;
|
|
|
|
assert(type != NULL && type->tp_alloc != NULL);
|
|
self = type->tp_alloc(type, 0);
|
|
if (self != NULL) {
|
|
PyDictObject *d = (PyDictObject *)self;
|
|
d->ma_keys = new_keys_object(PyDict_MINSIZE_COMBINED);
|
|
/* XXX - Should we raise a no-memory error? */
|
|
if (d->ma_keys == NULL) {
|
|
DK_INCREF(Py_EMPTY_KEYS);
|
|
d->ma_keys = Py_EMPTY_KEYS;
|
|
d->ma_values = empty_values;
|
|
}
|
|
d->ma_used = 0;
|
|
/* The object has been implicitly tracked by tp_alloc */
|
|
if (type == &PyDict_Type)
|
|
_PyObject_GC_UNTRACK(d);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
dict_init(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
return dict_update_common(self, args, kwds, "dict");
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iter(PyDictObject *dict)
|
|
{
|
|
return dictiter_new(dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
PyDoc_STRVAR(dictionary_doc,
|
|
"dict() -> new empty dictionary\n"
|
|
"dict(mapping) -> new dictionary initialized from a mapping object's\n"
|
|
" (key, value) pairs\n"
|
|
"dict(iterable) -> new dictionary initialized as if via:\n"
|
|
" d = {}\n"
|
|
" for k, v in iterable:\n"
|
|
" d[k] = v\n"
|
|
"dict(**kwargs) -> new dictionary initialized with the name=value pairs\n"
|
|
" in the keyword argument list. For example: dict(one=1, two=2)");
|
|
|
|
PyTypeObject PyDict_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict",
|
|
sizeof(PyDictObject),
|
|
0,
|
|
(destructor)dict_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dict_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dict_as_sequence, /* tp_as_sequence */
|
|
&dict_as_mapping, /* tp_as_mapping */
|
|
PyObject_HashNotImplemented, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS, /* tp_flags */
|
|
dictionary_doc, /* tp_doc */
|
|
dict_traverse, /* tp_traverse */
|
|
dict_tp_clear, /* tp_clear */
|
|
dict_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dict_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
mapp_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
dict_init, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
dict_new, /* tp_new */
|
|
PyObject_GC_Del, /* tp_free */
|
|
};
|
|
|
|
PyObject *
|
|
_PyDict_GetItemId(PyObject *dp, struct _Py_Identifier *key)
|
|
{
|
|
PyObject *kv;
|
|
kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return NULL;
|
|
return PyDict_GetItem(dp, kv);
|
|
}
|
|
|
|
/* For backward compatibility with old dictionary interface */
|
|
|
|
PyObject *
|
|
PyDict_GetItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv, *rv;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return NULL;
|
|
rv = PyDict_GetItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
_PyDict_SetItemId(PyObject *v, struct _Py_Identifier *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
kv = _PyUnicode_FromId(key); /* borrowed */
|
|
if (kv == NULL)
|
|
return -1;
|
|
return PyDict_SetItem(v, kv, item);
|
|
}
|
|
|
|
int
|
|
PyDict_SetItemString(PyObject *v, const char *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
PyUnicode_InternInPlace(&kv); /* XXX Should we really? */
|
|
err = PyDict_SetItem(v, kv, item);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
PyDict_DelItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
err = PyDict_DelItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
/* Dictionary iterator types */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */
|
|
Py_ssize_t di_used;
|
|
Py_ssize_t di_pos;
|
|
PyObject* di_result; /* reusable result tuple for iteritems */
|
|
Py_ssize_t len;
|
|
} dictiterobject;
|
|
|
|
static PyObject *
|
|
dictiter_new(PyDictObject *dict, PyTypeObject *itertype)
|
|
{
|
|
dictiterobject *di;
|
|
di = PyObject_GC_New(dictiterobject, itertype);
|
|
if (di == NULL)
|
|
return NULL;
|
|
Py_INCREF(dict);
|
|
di->di_dict = dict;
|
|
di->di_used = dict->ma_used;
|
|
di->di_pos = 0;
|
|
di->len = dict->ma_used;
|
|
if (itertype == &PyDictIterItem_Type) {
|
|
di->di_result = PyTuple_Pack(2, Py_None, Py_None);
|
|
if (di->di_result == NULL) {
|
|
Py_DECREF(di);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
di->di_result = NULL;
|
|
_PyObject_GC_TRACK(di);
|
|
return (PyObject *)di;
|
|
}
|
|
|
|
static void
|
|
dictiter_dealloc(dictiterobject *di)
|
|
{
|
|
Py_XDECREF(di->di_dict);
|
|
Py_XDECREF(di->di_result);
|
|
PyObject_GC_Del(di);
|
|
}
|
|
|
|
static int
|
|
dictiter_traverse(dictiterobject *di, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(di->di_dict);
|
|
Py_VISIT(di->di_result);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_len(dictiterobject *di)
|
|
{
|
|
Py_ssize_t len = 0;
|
|
if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used)
|
|
len = di->len;
|
|
return PyLong_FromSize_t(len);
|
|
}
|
|
|
|
PyDoc_STRVAR(length_hint_doc,
|
|
"Private method returning an estimate of len(list(it)).");
|
|
|
|
static PyObject *
|
|
dictiter_reduce(dictiterobject *di);
|
|
|
|
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
|
|
|
|
static PyMethodDef dictiter_methods[] = {
|
|
{"__length_hint__", (PyCFunction)dictiter_len, METH_NOARGS,
|
|
length_hint_doc},
|
|
{"__reduce__", (PyCFunction)dictiter_reduce, METH_NOARGS,
|
|
reduce_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *dictiter_iternextkey(dictiterobject *di)
|
|
{
|
|
PyObject *key;
|
|
register Py_ssize_t i, mask, offset;
|
|
register PyDictKeysObject *k;
|
|
PyDictObject *d = di->di_dict;
|
|
PyObject **value_ptr;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
if (i < 0)
|
|
goto fail;
|
|
k = d->ma_keys;
|
|
if (d->ma_values) {
|
|
value_ptr = &d->ma_values[i];
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &k->dk_entries[i].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
mask = DK_SIZE(k)-1;
|
|
while (i <= mask && *value_ptr == NULL) {
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
i++;
|
|
}
|
|
di->di_pos = i+1;
|
|
if (i > mask)
|
|
goto fail;
|
|
di->len--;
|
|
key = k->dk_entries[i].me_key;
|
|
Py_INCREF(key);
|
|
return key;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterKey_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keyiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextkey, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *dictiter_iternextvalue(dictiterobject *di)
|
|
{
|
|
PyObject *value;
|
|
register Py_ssize_t i, mask, offset;
|
|
PyDictObject *d = di->di_dict;
|
|
PyObject **value_ptr;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
mask = DK_SIZE(d->ma_keys)-1;
|
|
if (i < 0 || i > mask)
|
|
goto fail;
|
|
if (d->ma_values) {
|
|
value_ptr = &d->ma_values[i];
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &d->ma_keys->dk_entries[i].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
while (i <= mask && *value_ptr == NULL) {
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
i++;
|
|
if (i > mask)
|
|
goto fail;
|
|
}
|
|
di->di_pos = i+1;
|
|
di->len--;
|
|
value = *value_ptr;
|
|
Py_INCREF(value);
|
|
return value;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterValue_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_valueiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextvalue, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *dictiter_iternextitem(dictiterobject *di)
|
|
{
|
|
PyObject *key, *value, *result = di->di_result;
|
|
register Py_ssize_t i, mask, offset;
|
|
PyDictObject *d = di->di_dict;
|
|
PyObject **value_ptr;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
if (i < 0)
|
|
goto fail;
|
|
mask = DK_SIZE(d->ma_keys)-1;
|
|
if (d->ma_values) {
|
|
value_ptr = &d->ma_values[i];
|
|
offset = sizeof(PyObject *);
|
|
}
|
|
else {
|
|
value_ptr = &d->ma_keys->dk_entries[i].me_value;
|
|
offset = sizeof(PyDictKeyEntry);
|
|
}
|
|
while (i <= mask && *value_ptr == NULL) {
|
|
value_ptr = (PyObject **)(((char *)value_ptr) + offset);
|
|
i++;
|
|
}
|
|
di->di_pos = i+1;
|
|
if (i > mask)
|
|
goto fail;
|
|
|
|
if (result->ob_refcnt == 1) {
|
|
Py_INCREF(result);
|
|
Py_DECREF(PyTuple_GET_ITEM(result, 0));
|
|
Py_DECREF(PyTuple_GET_ITEM(result, 1));
|
|
} else {
|
|
result = PyTuple_New(2);
|
|
if (result == NULL)
|
|
return NULL;
|
|
}
|
|
di->len--;
|
|
key = d->ma_keys->dk_entries[i].me_key;
|
|
value = *value_ptr;
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(result, 0, key);
|
|
PyTuple_SET_ITEM(result, 1, value);
|
|
return result;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterItem_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_itemiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextitem, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
|
|
static PyObject *
|
|
dictiter_reduce(dictiterobject *di)
|
|
{
|
|
PyObject *list;
|
|
dictiterobject tmp;
|
|
|
|
list = PyList_New(0);
|
|
if (!list)
|
|
return NULL;
|
|
|
|
/* copy the itertor state */
|
|
tmp = *di;
|
|
Py_XINCREF(tmp.di_dict);
|
|
|
|
/* iterate the temporary into a list */
|
|
for(;;) {
|
|
PyObject *element = 0;
|
|
if (Py_TYPE(di) == &PyDictIterItem_Type)
|
|
element = dictiter_iternextitem(&tmp);
|
|
else if (Py_TYPE(di) == &PyDictIterKey_Type)
|
|
element = dictiter_iternextkey(&tmp);
|
|
else if (Py_TYPE(di) == &PyDictIterValue_Type)
|
|
element = dictiter_iternextvalue(&tmp);
|
|
else
|
|
assert(0);
|
|
if (element) {
|
|
if (PyList_Append(list, element)) {
|
|
Py_DECREF(element);
|
|
Py_DECREF(list);
|
|
Py_XDECREF(tmp.di_dict);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(element);
|
|
} else
|
|
break;
|
|
}
|
|
Py_XDECREF(tmp.di_dict);
|
|
/* check for error */
|
|
if (tmp.di_dict != NULL) {
|
|
/* we have an error */
|
|
Py_DECREF(list);
|
|
return NULL;
|
|
}
|
|
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
|
|
}
|
|
|
|
/***********************************************/
|
|
/* View objects for keys(), items(), values(). */
|
|
/***********************************************/
|
|
|
|
/* The instance lay-out is the same for all three; but the type differs. */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyDictObject *dv_dict;
|
|
} dictviewobject;
|
|
|
|
|
|
static void
|
|
dictview_dealloc(dictviewobject *dv)
|
|
{
|
|
Py_XDECREF(dv->dv_dict);
|
|
PyObject_GC_Del(dv);
|
|
}
|
|
|
|
static int
|
|
dictview_traverse(dictviewobject *dv, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(dv->dv_dict);
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dictview_len(dictviewobject *dv)
|
|
{
|
|
Py_ssize_t len = 0;
|
|
if (dv->dv_dict != NULL)
|
|
len = dv->dv_dict->ma_used;
|
|
return len;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_new(PyObject *dict, PyTypeObject *type)
|
|
{
|
|
dictviewobject *dv;
|
|
if (dict == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyDict_Check(dict)) {
|
|
/* XXX Get rid of this restriction later */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%s() requires a dict argument, not '%s'",
|
|
type->tp_name, dict->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
dv = PyObject_GC_New(dictviewobject, type);
|
|
if (dv == NULL)
|
|
return NULL;
|
|
Py_INCREF(dict);
|
|
dv->dv_dict = (PyDictObject *)dict;
|
|
_PyObject_GC_TRACK(dv);
|
|
return (PyObject *)dv;
|
|
}
|
|
|
|
/* TODO(guido): The views objects are not complete:
|
|
|
|
* support more set operations
|
|
* support arbitrary mappings?
|
|
- either these should be static or exported in dictobject.h
|
|
- if public then they should probably be in builtins
|
|
*/
|
|
|
|
/* Return 1 if self is a subset of other, iterating over self;
|
|
0 if not; -1 if an error occurred. */
|
|
static int
|
|
all_contained_in(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *iter = PyObject_GetIter(self);
|
|
int ok = 1;
|
|
|
|
if (iter == NULL)
|
|
return -1;
|
|
for (;;) {
|
|
PyObject *next = PyIter_Next(iter);
|
|
if (next == NULL) {
|
|
if (PyErr_Occurred())
|
|
ok = -1;
|
|
break;
|
|
}
|
|
ok = PySequence_Contains(other, next);
|
|
Py_DECREF(next);
|
|
if (ok <= 0)
|
|
break;
|
|
}
|
|
Py_DECREF(iter);
|
|
return ok;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
Py_ssize_t len_self, len_other;
|
|
int ok;
|
|
PyObject *result;
|
|
|
|
assert(self != NULL);
|
|
assert(PyDictViewSet_Check(self));
|
|
assert(other != NULL);
|
|
|
|
if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
len_self = PyObject_Size(self);
|
|
if (len_self < 0)
|
|
return NULL;
|
|
len_other = PyObject_Size(other);
|
|
if (len_other < 0)
|
|
return NULL;
|
|
|
|
ok = 0;
|
|
switch(op) {
|
|
|
|
case Py_NE:
|
|
case Py_EQ:
|
|
if (len_self == len_other)
|
|
ok = all_contained_in(self, other);
|
|
if (op == Py_NE && ok >= 0)
|
|
ok = !ok;
|
|
break;
|
|
|
|
case Py_LT:
|
|
if (len_self < len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_LE:
|
|
if (len_self <= len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_GT:
|
|
if (len_self > len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
case Py_GE:
|
|
if (len_self >= len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
}
|
|
if (ok < 0)
|
|
return NULL;
|
|
result = ok ? Py_True : Py_False;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_repr(dictviewobject *dv)
|
|
{
|
|
PyObject *seq;
|
|
PyObject *result;
|
|
|
|
seq = PySequence_List((PyObject *)dv);
|
|
if (seq == NULL)
|
|
return NULL;
|
|
|
|
result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq);
|
|
Py_DECREF(seq);
|
|
return result;
|
|
}
|
|
|
|
/*** dict_keys ***/
|
|
|
|
static PyObject *
|
|
dictkeys_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
static int
|
|
dictkeys_contains(dictviewobject *dv, PyObject *obj)
|
|
{
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
return PyDict_Contains((PyObject *)dv->dv_dict, obj);
|
|
}
|
|
|
|
static PySequenceMethods dictkeys_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)dictkeys_contains, /* sq_contains */
|
|
};
|
|
|
|
static PyObject*
|
|
dictviews_sub(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(difference_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_difference_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_and(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(intersection_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_intersection_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_or(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_xor(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(symmetric_difference_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_symmetric_difference_update, "O",
|
|
other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyNumberMethods dictviews_as_number = {
|
|
0, /*nb_add*/
|
|
(binaryfunc)dictviews_sub, /*nb_subtract*/
|
|
0, /*nb_multiply*/
|
|
0, /*nb_remainder*/
|
|
0, /*nb_divmod*/
|
|
0, /*nb_power*/
|
|
0, /*nb_negative*/
|
|
0, /*nb_positive*/
|
|
0, /*nb_absolute*/
|
|
0, /*nb_bool*/
|
|
0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
0, /*nb_rshift*/
|
|
(binaryfunc)dictviews_and, /*nb_and*/
|
|
(binaryfunc)dictviews_xor, /*nb_xor*/
|
|
(binaryfunc)dictviews_or, /*nb_or*/
|
|
};
|
|
|
|
static PyObject*
|
|
dictviews_isdisjoint(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *it;
|
|
PyObject *item = NULL;
|
|
|
|
if (self == other) {
|
|
if (dictview_len((dictviewobject *)self) == 0)
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
/* Iterate over the shorter object (only if other is a set,
|
|
* because PySequence_Contains may be expensive otherwise): */
|
|
if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) {
|
|
Py_ssize_t len_self = dictview_len((dictviewobject *)self);
|
|
Py_ssize_t len_other = PyObject_Size(other);
|
|
if (len_other == -1)
|
|
return NULL;
|
|
|
|
if ((len_other > len_self)) {
|
|
PyObject *tmp = other;
|
|
other = self;
|
|
self = tmp;
|
|
}
|
|
}
|
|
|
|
it = PyObject_GetIter(other);
|
|
if (it == NULL)
|
|
return NULL;
|
|
|
|
while ((item = PyIter_Next(it)) != NULL) {
|
|
int contains = PySequence_Contains(self, item);
|
|
Py_DECREF(item);
|
|
if (contains == -1) {
|
|
Py_DECREF(it);
|
|
return NULL;
|
|
}
|
|
|
|
if (contains) {
|
|
Py_DECREF(it);
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
Py_DECREF(it);
|
|
if (PyErr_Occurred())
|
|
return NULL; /* PyIter_Next raised an exception. */
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyDoc_STRVAR(isdisjoint_doc,
|
|
"Return True if the view and the given iterable have a null intersection.");
|
|
|
|
static PyMethodDef dictkeys_methods[] = {
|
|
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictKeys_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keys", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictkeys_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictkeys_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictkeys_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictkeys_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictKeys_Type);
|
|
}
|
|
|
|
/*** dict_items ***/
|
|
|
|
static PyObject *
|
|
dictitems_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterItem_Type);
|
|
}
|
|
|
|
static int
|
|
dictitems_contains(dictviewobject *dv, PyObject *obj)
|
|
{
|
|
PyObject *key, *value, *found;
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2)
|
|
return 0;
|
|
key = PyTuple_GET_ITEM(obj, 0);
|
|
value = PyTuple_GET_ITEM(obj, 1);
|
|
found = PyDict_GetItem((PyObject *)dv->dv_dict, key);
|
|
if (found == NULL) {
|
|
if (PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
return PyObject_RichCompareBool(value, found, Py_EQ);
|
|
}
|
|
|
|
static PySequenceMethods dictitems_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)dictitems_contains, /* sq_contains */
|
|
};
|
|
|
|
static PyMethodDef dictitems_methods[] = {
|
|
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictItems_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_items", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictitems_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictitems_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictitems_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictitems_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictItems_Type);
|
|
}
|
|
|
|
/*** dict_values ***/
|
|
|
|
static PyObject *
|
|
dictvalues_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterValue_Type);
|
|
}
|
|
|
|
static PySequenceMethods dictvalues_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)0, /* sq_contains */
|
|
};
|
|
|
|
static PyMethodDef dictvalues_methods[] = {
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictValues_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_values", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dictvalues_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictvalues_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictvalues_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictvalues_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictValues_Type);
|
|
}
|
|
|
|
/* Returns NULL if cannot allocate a new PyDictKeysObject,
|
|
but does not set an error */
|
|
PyDictKeysObject *
|
|
_PyDict_NewKeysForClass(void)
|
|
{
|
|
PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE_SPLIT);
|
|
if (keys == NULL)
|
|
PyErr_Clear();
|
|
else
|
|
keys->dk_lookup = lookdict_split;
|
|
return keys;
|
|
}
|
|
|
|
#define CACHED_KEYS(tp) (((PyHeapTypeObject*)tp)->ht_cached_keys)
|
|
|
|
PyObject *
|
|
PyObject_GenericGetDict(PyObject *obj, void *context)
|
|
{
|
|
PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj);
|
|
if (dictptr == NULL) {
|
|
PyErr_SetString(PyExc_AttributeError,
|
|
"This object has no __dict__");
|
|
return NULL;
|
|
}
|
|
dict = *dictptr;
|
|
if (dict == NULL) {
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && CACHED_KEYS(tp)) {
|
|
DK_INCREF(CACHED_KEYS(tp));
|
|
*dictptr = dict = new_dict_with_shared_keys(CACHED_KEYS(tp));
|
|
}
|
|
else {
|
|
*dictptr = dict = PyDict_New();
|
|
}
|
|
}
|
|
Py_XINCREF(dict);
|
|
return dict;
|
|
}
|
|
|
|
int
|
|
_PyObjectDict_SetItem(PyTypeObject *tp, PyObject **dictptr,
|
|
PyObject *key, PyObject *value)
|
|
{
|
|
PyObject *dict;
|
|
int res;
|
|
PyDictKeysObject *cached;
|
|
|
|
assert(dictptr != NULL);
|
|
if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && (cached = CACHED_KEYS(tp))) {
|
|
assert(dictptr != NULL);
|
|
dict = *dictptr;
|
|
if (dict == NULL) {
|
|
DK_INCREF(cached);
|
|
dict = new_dict_with_shared_keys(cached);
|
|
if (dict == NULL)
|
|
return -1;
|
|
*dictptr = dict;
|
|
}
|
|
if (value == NULL) {
|
|
res = PyDict_DelItem(dict, key);
|
|
if (cached != ((PyDictObject *)dict)->ma_keys) {
|
|
CACHED_KEYS(tp) = NULL;
|
|
DK_DECREF(cached);
|
|
}
|
|
} else {
|
|
res = PyDict_SetItem(dict, key, value);
|
|
if (cached != ((PyDictObject *)dict)->ma_keys) {
|
|
/* Either update tp->ht_cached_keys or delete it */
|
|
if (cached->dk_refcnt == 1) {
|
|
CACHED_KEYS(tp) = make_keys_shared(dict);
|
|
} else {
|
|
CACHED_KEYS(tp) = NULL;
|
|
}
|
|
DK_DECREF(cached);
|
|
if (CACHED_KEYS(tp) == NULL && PyErr_Occurred())
|
|
return -1;
|
|
}
|
|
}
|
|
} else {
|
|
dict = *dictptr;
|
|
if (dict == NULL) {
|
|
dict = PyDict_New();
|
|
if (dict == NULL)
|
|
return -1;
|
|
*dictptr = dict;
|
|
}
|
|
if (value == NULL) {
|
|
res = PyDict_DelItem(dict, key);
|
|
} else {
|
|
res = PyDict_SetItem(dict, key, value);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void
|
|
_PyDictKeys_DecRef(PyDictKeysObject *keys)
|
|
{
|
|
DK_DECREF(keys);
|
|
}
|
|
|
|
|
|
/* ARGSUSED */
|
|
static PyObject *
|
|
dummy_repr(PyObject *op)
|
|
{
|
|
return PyUnicode_FromString("<dummy key>");
|
|
}
|
|
|
|
/* ARGUSED */
|
|
static void
|
|
dummy_dealloc(PyObject* ignore)
|
|
{
|
|
/* This should never get called, but we also don't want to SEGV if
|
|
* we accidentally decref dummy-key out of existence.
|
|
*/
|
|
Py_FatalError("deallocating <dummy key>");
|
|
}
|
|
|
|
static PyTypeObject PyDictDummy_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"<dummy key> type",
|
|
0,
|
|
0,
|
|
dummy_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_reserved*/
|
|
dummy_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
0, /*tp_call */
|
|
0, /*tp_str */
|
|
0, /*tp_getattro */
|
|
0, /*tp_setattro */
|
|
0, /*tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT, /*tp_flags */
|
|
};
|
|
|
|
static PyObject _dummy_struct = {
|
|
_PyObject_EXTRA_INIT
|
|
2, &PyDictDummy_Type
|
|
};
|
|
|