cpython/Doc/library/ast.rst

1863 lines
60 KiB
ReStructuredText

:mod:`ast` --- Abstract Syntax Trees
====================================
.. module:: ast
:synopsis: Abstract Syntax Tree classes and manipulation.
.. sectionauthor:: Martin v. Löwis <martin@v.loewis.de>
.. sectionauthor:: Georg Brandl <georg@python.org>
.. testsetup::
import ast
**Source code:** :source:`Lib/ast.py`
--------------
The :mod:`ast` module helps Python applications to process trees of the Python
abstract syntax grammar. The abstract syntax itself might change with each
Python release; this module helps to find out programmatically what the current
grammar looks like.
An abstract syntax tree can be generated by passing :data:`ast.PyCF_ONLY_AST` as
a flag to the :func:`compile` built-in function, or using the :func:`parse`
helper provided in this module. The result will be a tree of objects whose
classes all inherit from :class:`ast.AST`. An abstract syntax tree can be
compiled into a Python code object using the built-in :func:`compile` function.
.. _abstract-grammar:
Abstract Grammar
----------------
The abstract grammar is currently defined as follows:
.. literalinclude:: ../../Parser/Python.asdl
:language: asdl
Node classes
------------
.. class:: AST
This is the base of all AST node classes. The actual node classes are
derived from the :file:`Parser/Python.asdl` file, which is reproduced
:ref:`below <abstract-grammar>`. They are defined in the :mod:`_ast` C
module and re-exported in :mod:`ast`.
There is one class defined for each left-hand side symbol in the abstract
grammar (for example, :class:`ast.stmt` or :class:`ast.expr`). In addition,
there is one class defined for each constructor on the right-hand side; these
classes inherit from the classes for the left-hand side trees. For example,
:class:`ast.BinOp` inherits from :class:`ast.expr`. For production rules
with alternatives (aka "sums"), the left-hand side class is abstract: only
instances of specific constructor nodes are ever created.
.. index:: single: ? (question mark); in AST grammar
.. index:: single: * (asterisk); in AST grammar
.. attribute:: _fields
Each concrete class has an attribute :attr:`_fields` which gives the names
of all child nodes.
Each instance of a concrete class has one attribute for each child node,
of the type as defined in the grammar. For example, :class:`ast.BinOp`
instances have an attribute :attr:`left` of type :class:`ast.expr`.
If these attributes are marked as optional in the grammar (using a
question mark), the value might be ``None``. If the attributes can have
zero-or-more values (marked with an asterisk), the values are represented
as Python lists. All possible attributes must be present and have valid
values when compiling an AST with :func:`compile`.
.. attribute:: lineno
col_offset
end_lineno
end_col_offset
Instances of :class:`ast.expr` and :class:`ast.stmt` subclasses have
:attr:`lineno`, :attr:`col_offset`, :attr:`end_lineno`, and
:attr:`end_col_offset` attributes. The :attr:`lineno` and :attr:`end_lineno`
are the first and last line numbers of source text span (1-indexed so the
first line is line 1) and the :attr:`col_offset` and :attr:`end_col_offset`
are the corresponding UTF-8 byte offsets of the first and last tokens that
generated the node. The UTF-8 offset is recorded because the parser uses
UTF-8 internally.
Note that the end positions are not required by the compiler and are
therefore optional. The end offset is *after* the last symbol, for example
one can get the source segment of a one-line expression node using
``source_line[node.col_offset : node.end_col_offset]``.
The constructor of a class :class:`ast.T` parses its arguments as follows:
* If there are positional arguments, there must be as many as there are items
in :attr:`T._fields`; they will be assigned as attributes of these names.
* If there are keyword arguments, they will set the attributes of the same
names to the given values.
For example, to create and populate an :class:`ast.UnaryOp` node, you could
use ::
node = ast.UnaryOp()
node.op = ast.USub()
node.operand = ast.Constant()
node.operand.value = 5
node.operand.lineno = 0
node.operand.col_offset = 0
node.lineno = 0
node.col_offset = 0
or the more compact ::
node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0),
lineno=0, col_offset=0)
.. versionchanged:: 3.8
Class :class:`ast.Constant` is now used for all constants.
.. versionchanged:: 3.9
Simple indices are represented by their value, extended slices are
represented as tuples.
.. deprecated:: 3.8
Old classes :class:`ast.Num`, :class:`ast.Str`, :class:`ast.Bytes`,
:class:`ast.NameConstant` and :class:`ast.Ellipsis` are still available,
but they will be removed in future Python releases. In the meantime,
instantiating them will return an instance of a different class.
.. deprecated:: 3.9
Old classes :class:`ast.Index` and :class:`ast.ExtSlice` are still
available, but they will be removed in future Python releases.
In the meantime, instantiating them will return an instance of
a different class.
Literals
^^^^^^^^
.. class:: Constant(value)
A constant value. The ``value`` attribute of the ``Constant`` literal contains the
Python object it represents. The values represented can be simple types
such as a number, string or ``None``, but also immutable container types
(tuples and frozensets) if all of their elements are constant.
.. doctest::
>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4))
Expression(
body=Constant(value=123))
.. class:: FormattedValue(value, conversion, format_spec)
Node representing a single formatting field in an f-string. If the string
contains a single formatting field and nothing else the node can be
isolated otherwise it appears in :class:`JoinedStr`.
* ``value`` is any expression node (such as a literal, a variable, or a
function call).
* ``conversion`` is an integer:
* -1: no formatting
* 115: ``!s`` string formatting
* 114: ``!r`` repr formatting
* 97: ``!a`` ascii formatting
* ``format_spec`` is a :class:`JoinedStr` node representing the formatting
of the value, or ``None`` if no format was specified. Both
``conversion`` and ``format_spec`` can be set at the same time.
.. class:: JoinedStr(values)
An f-string, comprising a series of :class:`FormattedValue` and :class:`Constant`
nodes.
.. doctest::
>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4))
Expression(
body=JoinedStr(
values=[
Constant(value='sin('),
FormattedValue(
value=Name(id='a', ctx=Load()),
conversion=-1),
Constant(value=') is '),
FormattedValue(
value=Call(
func=Name(id='sin', ctx=Load()),
args=[
Name(id='a', ctx=Load())],
keywords=[]),
conversion=-1,
format_spec=JoinedStr(
values=[
Constant(value='.3')]))]))
.. class:: List(elts, ctx)
Tuple(elts, ctx)
A list or tuple. ``elts`` holds a list of nodes representing the elements.
``ctx`` is :class:`Store` if the container is an assignment target (i.e.
``(x,y)=something``), and :class:`Load` otherwise.
.. doctest::
>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4))
Expression(
body=List(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)],
ctx=Load()))
>>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4))
Expression(
body=Tuple(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)],
ctx=Load()))
.. class:: Set(elts)
A set. ``elts`` holds a list of nodes representing the set's elements.
.. doctest::
>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4))
Expression(
body=Set(
elts=[
Constant(value=1),
Constant(value=2),
Constant(value=3)]))
.. class:: Dict(keys, values)
A dictionary. ``keys`` and ``values`` hold lists of nodes representing the
keys and the values respectively, in matching order (what would be returned
when calling :code:`dictionary.keys()` and :code:`dictionary.values()`).
When doing dictionary unpacking using dictionary literals the expression to be
expanded goes in the ``values`` list, with a ``None`` at the corresponding
position in ``keys``.
.. doctest::
>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4))
Expression(
body=Dict(
keys=[
Constant(value='a'),
None],
values=[
Constant(value=1),
Name(id='d', ctx=Load())]))
Variables
^^^^^^^^^
.. class:: Name(id, ctx)
A variable name. ``id`` holds the name as a string, and ``ctx`` is one of
the following types.
.. class:: Load()
Store()
Del()
Variable references can be used to load the value of a variable, to assign
a new value to it, or to delete it. Variable references are given a context
to distinguish these cases.
.. doctest::
>>> print(ast.dump(ast.parse('a'), indent=4))
Module(
body=[
Expr(
value=Name(id='a', ctx=Load()))],
type_ignores=[])
>>> print(ast.dump(ast.parse('a = 1'), indent=4))
Module(
body=[
Assign(
targets=[
Name(id='a', ctx=Store())],
value=Constant(value=1))],
type_ignores=[])
>>> print(ast.dump(ast.parse('del a'), indent=4))
Module(
body=[
Delete(
targets=[
Name(id='a', ctx=Del())])],
type_ignores=[])
.. class:: Starred(value, ctx)
A ``*var`` variable reference. ``value`` holds the variable, typically a
:class:`Name` node. This type must be used when building a :class:`Call`
node with ``*args``.
.. doctest::
>>> print(ast.dump(ast.parse('a, *b = it'), indent=4))
Module(
body=[
Assign(
targets=[
Tuple(
elts=[
Name(id='a', ctx=Store()),
Starred(
value=Name(id='b', ctx=Store()),
ctx=Store())],
ctx=Store())],
value=Name(id='it', ctx=Load()))],
type_ignores=[])
Expressions
^^^^^^^^^^^
.. class:: Expr(value)
When an expression, such as a function call, appears as a statement by itself
with its return value not used or stored, it is wrapped in this container.
``value`` holds one of the other nodes in this section, a :class:`Constant`, a
:class:`Name`, a :class:`Lambda`, a :class:`Yield` or :class:`YieldFrom` node.
.. doctest::
>>> print(ast.dump(ast.parse('-a'), indent=4))
Module(
body=[
Expr(
value=UnaryOp(
op=USub(),
operand=Name(id='a', ctx=Load())))],
type_ignores=[])
.. class:: UnaryOp(op, operand)
A unary operation. ``op`` is the operator, and ``operand`` any expression
node.
.. class:: UAdd
USub
Not
Invert
Unary operator tokens. :class:`Not` is the ``not`` keyword, :class:`Invert`
is the ``~`` operator.
.. doctest::
>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4))
Expression(
body=UnaryOp(
op=Not(),
operand=Name(id='x', ctx=Load())))
.. class:: BinOp(left, op, right)
A binary operation (like addition or division). ``op`` is the operator, and
``left`` and ``right`` are any expression nodes.
.. doctest::
>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4))
Expression(
body=BinOp(
left=Name(id='x', ctx=Load()),
op=Add(),
right=Name(id='y', ctx=Load())))
.. class:: Add
Sub
Mult
Div
FloorDiv
Mod
Pow
LShift
RShift
BitOr
BitXor
BitAnd
MatMult
Binary operator tokens.
.. class:: BoolOp(op, values)
A boolean operation, 'or' or 'and'. ``op`` is :class:`Or` or :class:`And`.
``values`` are the values involved. Consecutive operations with the same
operator, such as ``a or b or c``, are collapsed into one node with several
values.
This doesn't include ``not``, which is a :class:`UnaryOp`.
.. doctest::
>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4))
Expression(
body=BoolOp(
op=Or(),
values=[
Name(id='x', ctx=Load()),
Name(id='y', ctx=Load())]))
.. class:: And
Or
Boolean operator tokens.
.. class:: Compare(left, ops, comparators)
A comparison of two or more values. ``left`` is the first value in the
comparison, ``ops`` the list of operators, and ``comparators`` the list
of values after the first element in the comparison.
.. doctest::
>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4))
Expression(
body=Compare(
left=Constant(value=1),
ops=[
LtE(),
Lt()],
comparators=[
Name(id='a', ctx=Load()),
Constant(value=10)]))
.. class:: Eq
NotEq
Lt
LtE
Gt
GtE
Is
IsNot
In
NotIn
Comparison operator tokens.
.. class:: Call(func, args, keywords, starargs, kwargs)
A function call. ``func`` is the function, which will often be a
:class:`Name` or :class:`Attribute` object. Of the arguments:
* ``args`` holds a list of the arguments passed by position.
* ``keywords`` holds a list of :class:`keyword` objects representing
arguments passed by keyword.
When creating a ``Call`` node, ``args`` and ``keywords`` are required, but
they can be empty lists. ``starargs`` and ``kwargs`` are optional.
.. doctest::
>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4))
Expression(
body=Call(
func=Name(id='func', ctx=Load()),
args=[
Name(id='a', ctx=Load()),
Starred(
value=Name(id='d', ctx=Load()),
ctx=Load())],
keywords=[
keyword(
arg='b',
value=Name(id='c', ctx=Load())),
keyword(
value=Name(id='e', ctx=Load()))]))
.. class:: keyword(arg, value)
A keyword argument to a function call or class definition. ``arg`` is a raw
string of the parameter name, ``value`` is a node to pass in.
.. class:: IfExp(test, body, orelse)
An expression such as ``a if b else c``. Each field holds a single node, so
in the following example, all three are :class:`Name` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4))
Expression(
body=IfExp(
test=Name(id='b', ctx=Load()),
body=Name(id='a', ctx=Load()),
orelse=Name(id='c', ctx=Load())))
.. class:: Attribute(value, attr, ctx)
Attribute access, e.g. ``d.keys``. ``value`` is a node, typically a
:class:`Name`. ``attr`` is a bare string giving the name of the attribute,
and ``ctx`` is :class:`Load`, :class:`Store` or :class:`Del` according to how
the attribute is acted on.
.. doctest::
>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4))
Expression(
body=Attribute(
value=Name(id='snake', ctx=Load()),
attr='colour',
ctx=Load()))
.. class:: NamedExpr(target, value)
A named expression. This AST node is produced by the assignment expressions
operator (also known as the walrus operator). As opposed to the :class:`Assign`
node in which the first argument can be multiple nodes, in this case both
``target`` and ``value`` must be single nodes.
.. doctest::
>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4))
Expression(
body=NamedExpr(
target=Name(id='x', ctx=Store()),
value=Constant(value=4)))
Subscripting
~~~~~~~~~~~~
.. class:: Subscript(value, slice, ctx)
A subscript, such as ``l[1]``. ``value`` is the subscripted object
(usually sequence or mapping). ``slice`` is an index, slice or key.
It can be a :class:`Tuple` and contain a :class:`Slice`.
``ctx`` is :class:`Load`, :class:`Store` or :class:`Del`
according to the action performed with the subscript.
.. doctest::
>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4))
Expression(
body=Subscript(
value=Name(id='l', ctx=Load()),
slice=Tuple(
elts=[
Slice(
lower=Constant(value=1),
upper=Constant(value=2)),
Constant(value=3)],
ctx=Load()),
ctx=Load()))
.. class:: Slice(lower, upper, step)
Regular slicing (on the form ``lower:upper`` or ``lower:upper:step``).
Can occur only inside the *slice* field of :class:`Subscript`, either
directly or as an element of :class:`Tuple`.
.. doctest::
>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4))
Expression(
body=Subscript(
value=Name(id='l', ctx=Load()),
slice=Slice(
lower=Constant(value=1),
upper=Constant(value=2)),
ctx=Load()))
Comprehensions
~~~~~~~~~~~~~~
.. class:: ListComp(elt, generators)
SetComp(elt, generators)
GeneratorExp(elt, generators)
DictComp(key, value, generators)
List and set comprehensions, generator expressions, and dictionary
comprehensions. ``elt`` (or ``key`` and ``value``) is a single node
representing the part that will be evaluated for each item.
``generators`` is a list of :class:`comprehension` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('[x for x in numbers]', mode='eval'), indent=4))
Expression(
body=ListComp(
elt=Name(id='x', ctx=Load()),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
ifs=[],
is_async=0)]))
>>> print(ast.dump(ast.parse('{x: x**2 for x in numbers}', mode='eval'), indent=4))
Expression(
body=DictComp(
key=Name(id='x', ctx=Load()),
value=BinOp(
left=Name(id='x', ctx=Load()),
op=Pow(),
right=Constant(value=2)),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
ifs=[],
is_async=0)]))
>>> print(ast.dump(ast.parse('{x for x in numbers}', mode='eval'), indent=4))
Expression(
body=SetComp(
elt=Name(id='x', ctx=Load()),
generators=[
comprehension(
target=Name(id='x', ctx=Store()),
iter=Name(id='numbers', ctx=Load()),
ifs=[],
is_async=0)]))
.. class:: comprehension(target, iter, ifs, is_async)
One ``for`` clause in a comprehension. ``target`` is the reference to use for
each element - typically a :class:`Name` or :class:`Tuple` node. ``iter``
is the object to iterate over. ``ifs`` is a list of test expressions: each
``for`` clause can have multiple ``ifs``.
``is_async`` indicates a comprehension is asynchronous (using an
``async for`` instead of ``for``). The value is an integer (0 or 1).
.. doctest::
>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'),
... indent=4)) # Multiple comprehensions in one.
Expression(
body=ListComp(
elt=Call(
func=Name(id='ord', ctx=Load()),
args=[
Name(id='c', ctx=Load())],
keywords=[]),
generators=[
comprehension(
target=Name(id='line', ctx=Store()),
iter=Name(id='file', ctx=Load()),
ifs=[],
is_async=0),
comprehension(
target=Name(id='c', ctx=Store()),
iter=Name(id='line', ctx=Load()),
ifs=[],
is_async=0)]))
>>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'),
... indent=4)) # generator comprehension
Expression(
body=GeneratorExp(
elt=BinOp(
left=Name(id='n', ctx=Load()),
op=Pow(),
right=Constant(value=2)),
generators=[
comprehension(
target=Name(id='n', ctx=Store()),
iter=Name(id='it', ctx=Load()),
ifs=[
Compare(
left=Name(id='n', ctx=Load()),
ops=[
Gt()],
comparators=[
Constant(value=5)]),
Compare(
left=Name(id='n', ctx=Load()),
ops=[
Lt()],
comparators=[
Constant(value=10)])],
is_async=0)]))
>>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'),
... indent=4)) # Async comprehension
Expression(
body=ListComp(
elt=Name(id='i', ctx=Load()),
generators=[
comprehension(
target=Name(id='i', ctx=Store()),
iter=Name(id='soc', ctx=Load()),
ifs=[],
is_async=1)]))
Statements
^^^^^^^^^^
.. class:: Assign(targets, value, type_comment)
An assignment. ``targets`` is a list of nodes, and ``value`` is a single node.
Multiple nodes in ``targets`` represents assigning the same value to each.
Unpacking is represented by putting a :class:`Tuple` or :class:`List`
within ``targets``.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. doctest::
>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment
Module(
body=[
Assign(
targets=[
Name(id='a', ctx=Store()),
Name(id='b', ctx=Store())],
value=Constant(value=1))],
type_ignores=[])
>>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking
Module(
body=[
Assign(
targets=[
Tuple(
elts=[
Name(id='a', ctx=Store()),
Name(id='b', ctx=Store())],
ctx=Store())],
value=Name(id='c', ctx=Load()))],
type_ignores=[])
.. class:: AnnAssign(target, annotation, value, simple)
An assignment with a type annotation. ``target`` is a single node and can
be a :class:`Name`, a :class:`Attribute` or a :class:`Subscript`.
``annotation`` is the annotation, such as a :class:`Constant` or :class:`Name`
node. ``value`` is a single optional node. ``simple`` is a boolean integer
set to True for a :class:`Name` node in ``target`` that do not appear in
between parenthesis and are hence pure names and not expressions.
.. doctest::
>>> print(ast.dump(ast.parse('c: int'), indent=4))
Module(
body=[
AnnAssign(
target=Name(id='c', ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=1)],
type_ignores=[])
>>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis
Module(
body=[
AnnAssign(
target=Name(id='a', ctx=Store()),
annotation=Name(id='int', ctx=Load()),
value=Constant(value=1),
simple=0)],
type_ignores=[])
>>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation
Module(
body=[
AnnAssign(
target=Attribute(
value=Name(id='a', ctx=Load()),
attr='b',
ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=0)],
type_ignores=[])
>>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation
Module(
body=[
AnnAssign(
target=Subscript(
value=Name(id='a', ctx=Load()),
slice=Constant(value=1),
ctx=Store()),
annotation=Name(id='int', ctx=Load()),
simple=0)],
type_ignores=[])
.. class:: AugAssign(target, op, value)
Augmented assignment, such as ``a += 1``. In the following example,
``target`` is a :class:`Name` node for ``x`` (with the :class:`Store`
context), ``op`` is :class:`Add`, and ``value`` is a :class:`Constant` with
value for 1.
The ``target`` attribute connot be of class :class:`Tuple` or :class:`List`,
unlike the targets of :class:`Assign`.
.. doctest::
>>> print(ast.dump(ast.parse('x += 2'), indent=4))
Module(
body=[
AugAssign(
target=Name(id='x', ctx=Store()),
op=Add(),
value=Constant(value=2))],
type_ignores=[])
.. class:: Raise(exc, cause)
A ``raise`` statement. ``exc`` is the exception object to be raised, normally a
:class:`Call` or :class:`Name`, or ``None`` for a standalone ``raise``.
``cause`` is the optional part for ``y`` in ``raise x from y``.
.. doctest::
>>> print(ast.dump(ast.parse('raise x from y'), indent=4))
Module(
body=[
Raise(
exc=Name(id='x', ctx=Load()),
cause=Name(id='y', ctx=Load()))],
type_ignores=[])
.. class:: Assert(test, msg)
An assertion. ``test`` holds the condition, such as a :class:`Compare` node.
``msg`` holds the failure message.
.. doctest::
>>> print(ast.dump(ast.parse('assert x,y'), indent=4))
Module(
body=[
Assert(
test=Name(id='x', ctx=Load()),
msg=Name(id='y', ctx=Load()))],
type_ignores=[])
.. class:: Delete(targets)
Represents a ``del`` statement. ``targets`` is a list of nodes, such as
:class:`Name`, :class:`Attribute` or :class:`Subscript` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('del x,y,z'), indent=4))
Module(
body=[
Delete(
targets=[
Name(id='x', ctx=Del()),
Name(id='y', ctx=Del()),
Name(id='z', ctx=Del())])],
type_ignores=[])
.. class:: Pass()
A ``pass`` statement.
.. doctest::
>>> print(ast.dump(ast.parse('pass'), indent=4))
Module(
body=[
Pass()],
type_ignores=[])
Other statements which are only applicable inside functions or loops are
described in other sections.
Imports
~~~~~~~
.. class:: Import(names)
An import statement. ``names`` is a list of :class:`alias` nodes.
.. doctest::
>>> print(ast.dump(ast.parse('import x,y,z'), indent=4))
Module(
body=[
Import(
names=[
alias(name='x'),
alias(name='y'),
alias(name='z')])],
type_ignores=[])
.. class:: ImportFrom(module, names, level)
Represents ``from x import y``. ``module`` is a raw string of the 'from' name,
without any leading dots, or ``None`` for statements such as ``from . import foo``.
``level`` is an integer holding the level of the relative import (0 means
absolute import).
.. doctest::
>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4))
Module(
body=[
ImportFrom(
module='y',
names=[
alias(name='x'),
alias(name='y'),
alias(name='z')],
level=0)],
type_ignores=[])
.. class:: alias(name, asname)
Both parameters are raw strings of the names. ``asname`` can be ``None`` if
the regular name is to be used.
.. doctest::
>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4))
Module(
body=[
ImportFrom(
module='foo.bar',
names=[
alias(name='a', asname='b'),
alias(name='c')],
level=2)],
type_ignores=[])
Control flow
^^^^^^^^^^^^
.. note::
Optional clauses such as ``else`` are stored as an empty list if they're
not present.
.. class:: If(test, body, orelse)
An ``if`` statement. ``test`` holds a single node, such as a :class:`Compare`
node. ``body`` and ``orelse`` each hold a list of nodes.
``elif`` clauses don't have a special representation in the AST, but rather
appear as extra :class:`If` nodes within the ``orelse`` section of the
previous one.
.. doctest::
>>> print(ast.dump(ast.parse("""
... if x:
... ...
... elif y:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
If(
test=Name(id='x', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
If(
test=Name(id='y', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])])],
type_ignores=[])
.. class:: For(target, iter, body, orelse, type_comment)
A ``for`` loop. ``target`` holds the variable(s) the loop assigns to, as a
single :class:`Name`, :class:`Tuple` or :class:`List` node. ``iter`` holds
the item to be looped over, again as a single node. ``body`` and ``orelse``
contain lists of nodes to execute. Those in ``orelse`` are executed if the
loop finishes normally, rather than via a ``break`` statement.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. doctest::
>>> print(ast.dump(ast.parse("""
... for x in y:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
For(
target=Name(id='x', ctx=Store()),
iter=Name(id='y', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])],
type_ignores=[])
.. class:: While(test, body, orelse)
A ``while`` loop. ``test`` holds the condition, such as a :class:`Compare`
node.
.. doctest::
>> print(ast.dump(ast.parse("""
... while x:
... ...
... else:
... ...
... """), indent=4))
Module(
body=[
While(
test=Name(id='x', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))],
orelse=[
Expr(
value=Constant(value=Ellipsis))])],
type_ignores=[])
.. class:: Break
Continue
The ``break`` and ``continue`` statements.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... for a in b:
... if a > 5:
... break
... else:
... continue
...
... """), indent=4))
Module(
body=[
For(
target=Name(id='a', ctx=Store()),
iter=Name(id='b', ctx=Load()),
body=[
If(
test=Compare(
left=Name(id='a', ctx=Load()),
ops=[
Gt()],
comparators=[
Constant(value=5)]),
body=[
Break()],
orelse=[
Continue()])],
orelse=[])],
type_ignores=[])
.. class:: Try(body, handlers, orelse, finalbody)
``try`` blocks. All attributes are list of nodes to execute, except for
``handlers``, which is a list of :class:`ExceptHandler` nodes.
.. doctest::
>>> print(ast.dump(ast.parse("""
... try:
... ...
... except Exception:
... ...
... except OtherException as e:
... ...
... else:
... ...
... finally:
... ...
... """), indent=4))
Module(
body=[
Try(
body=[
Expr(
value=Constant(value=Ellipsis))],
handlers=[
ExceptHandler(
type=Name(id='Exception', ctx=Load()),
body=[
Expr(
value=Constant(value=Ellipsis))]),
ExceptHandler(
type=Name(id='OtherException', ctx=Load()),
name='e',
body=[
Expr(
value=Constant(value=Ellipsis))])],
orelse=[
Expr(
value=Constant(value=Ellipsis))],
finalbody=[
Expr(
value=Constant(value=Ellipsis))])],
type_ignores=[])
.. class:: ExceptHandler(type, name, body)
A single ``except`` clause. ``type`` is the exception type it will match,
typically a :class:`Name` node (or ``None`` for a catch-all ``except:`` clause).
``name`` is a raw string for the name to hold the exception, or ``None`` if
the clause doesn't have ``as foo``. ``body`` is a list of nodes.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... try:
... a + 1
... except TypeError:
... pass
... """), indent=4))
Module(
body=[
Try(
body=[
Expr(
value=BinOp(
left=Name(id='a', ctx=Load()),
op=Add(),
right=Constant(value=1)))],
handlers=[
ExceptHandler(
type=Name(id='TypeError', ctx=Load()),
body=[
Pass()])],
orelse=[],
finalbody=[])],
type_ignores=[])
.. class:: With(items, body, type_comment)
A ``with`` block. ``items`` is a list of :class:`withitem` nodes representing
the context managers, and ``body`` is the indented block inside the context.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. class:: withitem(context_expr, optional_vars)
A single context manager in a ``with`` block. ``context_expr`` is the context
manager, often a :class:`Call` node. ``optional_vars`` is a :class:`Name`,
:class:`Tuple` or :class:`List` for the ``as foo`` part, or ``None`` if that
isn't used.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... with a as b, c as d:
... something(b, d)
... """), indent=4))
Module(
body=[
With(
items=[
withitem(
context_expr=Name(id='a', ctx=Load()),
optional_vars=Name(id='b', ctx=Store())),
withitem(
context_expr=Name(id='c', ctx=Load()),
optional_vars=Name(id='d', ctx=Store()))],
body=[
Expr(
value=Call(
func=Name(id='something', ctx=Load()),
args=[
Name(id='b', ctx=Load()),
Name(id='d', ctx=Load())],
keywords=[]))])],
type_ignores=[])
Function and class definitions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. class:: FunctionDef(name, args, body, decorator_list, returns, type_comment)
A function definition.
* ``name`` is a raw string of the function name.
* ``args`` is a :class:`arguments` node.
* ``body`` is the list of nodes inside the function.
* ``decorator_list`` is the list of decorators to be applied, stored outermost
first (i.e. the first in the list will be applied last).
* ``returns`` is the return annotation.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment.
.. class:: Lambda(args, body)
``lambda`` is a minimal function definition that can be used inside an
expression. Unlike :class:`FunctionDef`, ``body`` holds a single node.
.. doctest::
>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4))
Module(
body=[
Expr(
value=Lambda(
args=arguments(
posonlyargs=[],
args=[
arg(arg='x'),
arg(arg='y')],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=Constant(value=Ellipsis)))],
type_ignores=[])
.. class:: arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)
The arguments for a function.
* ``posonlyargs``, ``args`` and ``kwonlyargs`` are lists of :class:`arg` nodes.
* ``vararg`` and ``kwarg`` are single :class:`arg` nodes, referring to the
``*args, **kwargs`` parameters.
* ``kw_defaults`` is a list of default values for keyword-only arguments. If
one is ``None``, the corresponding argument is required.
* ``defaults`` is a list of default values for arguments that can be passed
positionally. If there are fewer defaults, they correspond to the last n
arguments.
.. class:: arg(arg, annotation, type_comment)
A single argument in a list. ``arg`` is a raw string of the argument
name, ``annotation`` is its annotation, such as a :class:`Str` or
:class:`Name` node.
.. attribute:: type_comment
``type_comment`` is an optional string with the type annotation as a comment
.. doctest::
>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation':
... pass
... """), indent=4))
Module(
body=[
FunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[
arg(
arg='a',
annotation=Constant(value='annotation')),
arg(arg='b'),
arg(arg='c')],
vararg=arg(arg='d'),
kwonlyargs=[
arg(arg='e'),
arg(arg='f')],
kw_defaults=[
None,
Constant(value=3)],
kwarg=arg(arg='g'),
defaults=[
Constant(value=1),
Constant(value=2)]),
body=[
Pass()],
decorator_list=[
Name(id='decorator1', ctx=Load()),
Name(id='decorator2', ctx=Load())],
returns=Constant(value='return annotation'))],
type_ignores=[])
.. class:: Return(value)
A ``return`` statement.
.. doctest::
>>> print(ast.dump(ast.parse('return 4'), indent=4))
Module(
body=[
Return(
value=Constant(value=4))],
type_ignores=[])
.. class:: Yield(value)
YieldFrom(value)
A ``yield`` or ``yield from`` expression. Because these are expressions, they
must be wrapped in a :class:`Expr` node if the value sent back is not used.
.. doctest::
>>> print(ast.dump(ast.parse('yield x'), indent=4))
Module(
body=[
Expr(
value=Yield(
value=Name(id='x', ctx=Load())))],
type_ignores=[])
>>> print(ast.dump(ast.parse('yield from x'), indent=4))
Module(
body=[
Expr(
value=YieldFrom(
value=Name(id='x', ctx=Load())))],
type_ignores=[])
.. class:: Global(names)
Nonlocal(names)
``global`` and ``nonlocal`` statements. ``names`` is a list of raw strings.
.. doctest::
>>> print(ast.dump(ast.parse('global x,y,z'), indent=4))
Module(
body=[
Global(
names=[
'x',
'y',
'z'])],
type_ignores=[])
>>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4))
Module(
body=[
Nonlocal(
names=[
'x',
'y',
'z'])],
type_ignores=[])
.. class:: ClassDef(name, bases, keywords, starargs, kwargs, body, decorator_list)
A class definition.
* ``name`` is a raw string for the class name
* ``bases`` is a list of nodes for explicitly specified base classes.
* ``keywords`` is a list of :class:`keyword` nodes, principally for 'metaclass'.
Other keywords will be passed to the metaclass, as per `PEP-3115
<http://www.python.org/dev/peps/pep-3115/>`_.
* ``starargs`` and ``kwargs`` are each a single node, as in a function call.
starargs will be expanded to join the list of base classes, and kwargs will
be passed to the metaclass.
* ``body`` is a list of nodes representing the code within the class
definition.
* ``decorator_list`` is a list of nodes, as in :class:`FunctionDef`.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... @decorator1
... @decorator2
... class Foo(base1, base2, metaclass=meta):
... pass
... """), indent=4))
Module(
body=[
ClassDef(
name='Foo',
bases=[
Name(id='base1', ctx=Load()),
Name(id='base2', ctx=Load())],
keywords=[
keyword(
arg='metaclass',
value=Name(id='meta', ctx=Load()))],
body=[
Pass()],
decorator_list=[
Name(id='decorator1', ctx=Load()),
Name(id='decorator2', ctx=Load())])],
type_ignores=[])
Async and await
^^^^^^^^^^^^^^^
.. class:: AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment)
An ``async def`` function definition. Has the same fields as
:class:`FunctionDef`.
.. class:: Await(value)
An ``await`` expression. ``value`` is what it waits for.
Only valid in the body of an :class:`AsyncFunctionDef`.
.. doctest::
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()),
args=[],
keywords=[])))],
decorator_list=[])],
type_ignores=[])
.. class:: AsyncFor(target, iter, body, orelse, type_comment)
AsyncWith(items, body, type_comment)
``async for`` loops and ``async with`` context managers. They have the same
fields as :class:`For` and :class:`With`, respectively. Only valid in the
body of an :class:`AsyncFunctionDef`.
.. note::
When a string is parsed by :func:`ast.parse`, operator nodes (subclasses
of :class:`ast.operator`, :class:`ast.unaryop`, :class:`ast.cmpop`,
:class:`ast.boolop` and :class:`ast.expr_context`) on the returned tree
will be singletons. Changes to one will be reflected in all other
occurrences of the same value (e.g. :class:`ast.Add`).
:mod:`ast` Helpers
------------------
Apart from the node classes, the :mod:`ast` module defines these utility functions
and classes for traversing abstract syntax trees:
.. function:: parse(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None)
Parse the source into an AST node. Equivalent to ``compile(source,
filename, mode, ast.PyCF_ONLY_AST)``.
If ``type_comments=True`` is given, the parser is modified to check
and return type comments as specified by :pep:`484` and :pep:`526`.
This is equivalent to adding :data:`ast.PyCF_TYPE_COMMENTS` to the
flags passed to :func:`compile()`. This will report syntax errors
for misplaced type comments. Without this flag, type comments will
be ignored, and the ``type_comment`` field on selected AST nodes
will always be ``None``. In addition, the locations of ``# type:
ignore`` comments will be returned as the ``type_ignores``
attribute of :class:`Module` (otherwise it is always an empty list).
In addition, if ``mode`` is ``'func_type'``, the input syntax is
modified to correspond to :pep:`484` "signature type comments",
e.g. ``(str, int) -> List[str]``.
Also, setting ``feature_version`` to a tuple ``(major, minor)``
will attempt to parse using that Python version's grammar.
Currently ``major`` must equal to ``3``. For example, setting
``feature_version=(3, 4)`` will allow the use of ``async`` and
``await`` as variable names. The lowest supported version is
``(3, 4)``; the highest is ``sys.version_info[0:2]``.
.. warning::
It is possible to crash the Python interpreter with a
sufficiently large/complex string due to stack depth limitations
in Python's AST compiler.
.. versionchanged:: 3.8
Added ``type_comments``, ``mode='func_type'`` and ``feature_version``.
.. function:: unparse(ast_obj)
Unparse an :class:`ast.AST` object and generate a string with code
that would produce an equivalent :class:`ast.AST` object if parsed
back with :func:`ast.parse`.
.. warning::
The produced code string will not necessarily be equal to the original
code that generated the :class:`ast.AST` object (without any compiler
optimizations, such as constant tuples/frozensets).
.. warning::
Trying to unparse a highly complex expression would result with
:exc:`RecursionError`.
.. versionadded:: 3.9
.. function:: literal_eval(node_or_string)
Safely evaluate an expression node or a string containing a Python literal or
container display. The string or node provided may only consist of the
following Python literal structures: strings, bytes, numbers, tuples, lists,
dicts, sets, booleans, and ``None``.
This can be used for safely evaluating strings containing Python values from
untrusted sources without the need to parse the values oneself. It is not
capable of evaluating arbitrarily complex expressions, for example involving
operators or indexing.
.. warning::
It is possible to crash the Python interpreter with a
sufficiently large/complex string due to stack depth limitations
in Python's AST compiler.
.. versionchanged:: 3.2
Now allows bytes and set literals.
.. versionchanged:: 3.9
Now supports creating empty sets with ``'set()'``.
.. versionchanged:: 3.10
For string inputs, leading spaces and tabs are now stripped.
.. function:: get_docstring(node, clean=True)
Return the docstring of the given *node* (which must be a
:class:`FunctionDef`, :class:`AsyncFunctionDef`, :class:`ClassDef`,
or :class:`Module` node), or ``None`` if it has no docstring.
If *clean* is true, clean up the docstring's indentation with
:func:`inspect.cleandoc`.
.. versionchanged:: 3.5
:class:`AsyncFunctionDef` is now supported.
.. function:: get_source_segment(source, node, *, padded=False)
Get source code segment of the *source* that generated *node*.
If some location information (:attr:`lineno`, :attr:`end_lineno`,
:attr:`col_offset`, or :attr:`end_col_offset`) is missing, return ``None``.
If *padded* is ``True``, the first line of a multi-line statement will
be padded with spaces to match its original position.
.. versionadded:: 3.8
.. function:: fix_missing_locations(node)
When you compile a node tree with :func:`compile`, the compiler expects
:attr:`lineno` and :attr:`col_offset` attributes for every node that supports
them. This is rather tedious to fill in for generated nodes, so this helper
adds these attributes recursively where not already set, by setting them to
the values of the parent node. It works recursively starting at *node*.
.. function:: increment_lineno(node, n=1)
Increment the line number and end line number of each node in the tree
starting at *node* by *n*. This is useful to "move code" to a different
location in a file.
.. function:: copy_location(new_node, old_node)
Copy source location (:attr:`lineno`, :attr:`col_offset`, :attr:`end_lineno`,
and :attr:`end_col_offset`) from *old_node* to *new_node* if possible,
and return *new_node*.
.. function:: iter_fields(node)
Yield a tuple of ``(fieldname, value)`` for each field in ``node._fields``
that is present on *node*.
.. function:: iter_child_nodes(node)
Yield all direct child nodes of *node*, that is, all fields that are nodes
and all items of fields that are lists of nodes.
.. function:: walk(node)
Recursively yield all descendant nodes in the tree starting at *node*
(including *node* itself), in no specified order. This is useful if you only
want to modify nodes in place and don't care about the context.
.. class:: NodeVisitor()
A node visitor base class that walks the abstract syntax tree and calls a
visitor function for every node found. This function may return a value
which is forwarded by the :meth:`visit` method.
This class is meant to be subclassed, with the subclass adding visitor
methods.
.. method:: visit(node)
Visit a node. The default implementation calls the method called
:samp:`self.visit_{classname}` where *classname* is the name of the node
class, or :meth:`generic_visit` if that method doesn't exist.
.. method:: generic_visit(node)
This visitor calls :meth:`visit` on all children of the node.
Note that child nodes of nodes that have a custom visitor method won't be
visited unless the visitor calls :meth:`generic_visit` or visits them
itself.
Don't use the :class:`NodeVisitor` if you want to apply changes to nodes
during traversal. For this a special visitor exists
(:class:`NodeTransformer`) that allows modifications.
.. deprecated:: 3.8
Methods :meth:`visit_Num`, :meth:`visit_Str`, :meth:`visit_Bytes`,
:meth:`visit_NameConstant` and :meth:`visit_Ellipsis` are deprecated
now and will not be called in future Python versions. Add the
:meth:`visit_Constant` method to handle all constant nodes.
.. class:: NodeTransformer()
A :class:`NodeVisitor` subclass that walks the abstract syntax tree and
allows modification of nodes.
The :class:`NodeTransformer` will walk the AST and use the return value of
the visitor methods to replace or remove the old node. If the return value
of the visitor method is ``None``, the node will be removed from its
location, otherwise it is replaced with the return value. The return value
may be the original node in which case no replacement takes place.
Here is an example transformer that rewrites all occurrences of name lookups
(``foo``) to ``data['foo']``::
class RewriteName(NodeTransformer):
def visit_Name(self, node):
return Subscript(
value=Name(id='data', ctx=Load()),
slice=Constant(value=node.id),
ctx=node.ctx
)
Keep in mind that if the node you're operating on has child nodes you must
either transform the child nodes yourself or call the :meth:`generic_visit`
method for the node first.
For nodes that were part of a collection of statements (that applies to all
statement nodes), the visitor may also return a list of nodes rather than
just a single node.
If :class:`NodeTransformer` introduces new nodes (that weren't part of
original tree) without giving them location information (such as
:attr:`lineno`), :func:`fix_missing_locations` should be called with
the new sub-tree to recalculate the location information::
tree = ast.parse('foo', mode='eval')
new_tree = fix_missing_locations(RewriteName().visit(tree))
Usually you use the transformer like this::
node = YourTransformer().visit(node)
.. function:: dump(node, annotate_fields=True, include_attributes=False, *, indent=None)
Return a formatted dump of the tree in *node*. This is mainly useful for
debugging purposes. If *annotate_fields* is true (by default),
the returned string will show the names and the values for fields.
If *annotate_fields* is false, the result string will be more compact by
omitting unambiguous field names. Attributes such as line
numbers and column offsets are not dumped by default. If this is wanted,
*include_attributes* can be set to true.
If *indent* is a non-negative integer or string, then the tree will be
pretty-printed with that indent level. An indent level
of 0, negative, or ``""`` will only insert newlines. ``None`` (the default)
selects the single line representation. Using a positive integer indent
indents that many spaces per level. If *indent* is a string (such as ``"\t"``),
that string is used to indent each level.
.. versionchanged:: 3.9
Added the *indent* option.
.. _ast-compiler-flags:
Compiler Flags
--------------
The following flags may be passed to :func:`compile` in order to change
effects on the compilation of a program:
.. data:: PyCF_ALLOW_TOP_LEVEL_AWAIT
Enables support for top-level ``await``, ``async for``, ``async with``
and async comprehensions.
.. versionadded:: 3.8
.. data:: PyCF_ONLY_AST
Generates and returns an abstract syntax tree instead of returning a
compiled code object.
.. data:: PyCF_TYPE_COMMENTS
Enables support for :pep:`484` and :pep:`526` style type comments
(``# type: <type>``, ``# type: ignore <stuff>``).
.. versionadded:: 3.8
.. _ast-cli:
Command-Line Usage
------------------
.. versionadded:: 3.9
The :mod:`ast` module can be executed as a script from the command line.
It is as simple as:
.. code-block:: sh
python -m ast [-m <mode>] [-a] [infile]
The following options are accepted:
.. program:: ast
.. cmdoption:: -h, --help
Show the help message and exit.
.. cmdoption:: -m <mode>
--mode <mode>
Specify what kind of code must be compiled, like the *mode* argument
in :func:`parse`.
.. cmdoption:: --no-type-comments
Don't parse type comments.
.. cmdoption:: -a, --include-attributes
Include attributes such as line numbers and column offsets.
.. cmdoption:: -i <indent>
--indent <indent>
Indentation of nodes in AST (number of spaces).
If :file:`infile` is specified its contents are parsed to AST and dumped
to stdout. Otherwise, the content is read from stdin.
.. seealso::
`Green Tree Snakes <https://greentreesnakes.readthedocs.io/>`_, an external
documentation resource, has good details on working with Python ASTs.
`ASTTokens <https://asttokens.readthedocs.io/en/latest/user-guide.html>`_
annotates Python ASTs with the positions of tokens and text in the source
code that generated them. This is helpful for tools that make source code
transformations.
`leoAst.py <http://leoeditor.com/appendices.html#leoast-py>`_ unifies the
token-based and parse-tree-based views of python programs by inserting
two-way links between tokens and ast nodes.
`LibCST <https://libcst.readthedocs.io/>`_ parses code as a Concrete Syntax
Tree that looks like an ast tree and keeps all formatting details. It's
useful for building automated refactoring (codemod) applications and
linters.
`Parso <https://parso.readthedocs.io>`_ is a Python parser that supports
error recovery and round-trip parsing for different Python versions (in
multiple Python versions). Parso is also able to list multiple syntax errors
in your python file.