1181 lines
39 KiB
Python
1181 lines
39 KiB
Python
"""
|
||
Basic statistics module.
|
||
|
||
This module provides functions for calculating statistics of data, including
|
||
averages, variance, and standard deviation.
|
||
|
||
Calculating averages
|
||
--------------------
|
||
|
||
================== ==================================================
|
||
Function Description
|
||
================== ==================================================
|
||
mean Arithmetic mean (average) of data.
|
||
fmean Fast, floating point arithmetic mean.
|
||
geometric_mean Geometric mean of data.
|
||
harmonic_mean Harmonic mean of data.
|
||
median Median (middle value) of data.
|
||
median_low Low median of data.
|
||
median_high High median of data.
|
||
median_grouped Median, or 50th percentile, of grouped data.
|
||
mode Mode (most common value) of data.
|
||
multimode List of modes (most common values of data).
|
||
quantiles Divide data into intervals with equal probability.
|
||
================== ==================================================
|
||
|
||
Calculate the arithmetic mean ("the average") of data:
|
||
|
||
>>> mean([-1.0, 2.5, 3.25, 5.75])
|
||
2.625
|
||
|
||
|
||
Calculate the standard median of discrete data:
|
||
|
||
>>> median([2, 3, 4, 5])
|
||
3.5
|
||
|
||
|
||
Calculate the median, or 50th percentile, of data grouped into class intervals
|
||
centred on the data values provided. E.g. if your data points are rounded to
|
||
the nearest whole number:
|
||
|
||
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
|
||
2.8333333333...
|
||
|
||
This should be interpreted in this way: you have two data points in the class
|
||
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
|
||
the class interval 3.5-4.5. The median of these data points is 2.8333...
|
||
|
||
|
||
Calculating variability or spread
|
||
---------------------------------
|
||
|
||
================== =============================================
|
||
Function Description
|
||
================== =============================================
|
||
pvariance Population variance of data.
|
||
variance Sample variance of data.
|
||
pstdev Population standard deviation of data.
|
||
stdev Sample standard deviation of data.
|
||
================== =============================================
|
||
|
||
Calculate the standard deviation of sample data:
|
||
|
||
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
|
||
4.38961843444...
|
||
|
||
If you have previously calculated the mean, you can pass it as the optional
|
||
second argument to the four "spread" functions to avoid recalculating it:
|
||
|
||
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
|
||
>>> mu = mean(data)
|
||
>>> pvariance(data, mu)
|
||
2.5
|
||
|
||
|
||
Exceptions
|
||
----------
|
||
|
||
A single exception is defined: StatisticsError is a subclass of ValueError.
|
||
|
||
"""
|
||
|
||
__all__ = [
|
||
'NormalDist',
|
||
'StatisticsError',
|
||
'fmean',
|
||
'geometric_mean',
|
||
'harmonic_mean',
|
||
'mean',
|
||
'median',
|
||
'median_grouped',
|
||
'median_high',
|
||
'median_low',
|
||
'mode',
|
||
'multimode',
|
||
'pstdev',
|
||
'pvariance',
|
||
'quantiles',
|
||
'stdev',
|
||
'variance',
|
||
]
|
||
|
||
import math
|
||
import numbers
|
||
import random
|
||
|
||
from fractions import Fraction
|
||
from decimal import Decimal
|
||
from itertools import groupby
|
||
from bisect import bisect_left, bisect_right
|
||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
|
||
from operator import itemgetter
|
||
from collections import Counter
|
||
|
||
# === Exceptions ===
|
||
|
||
class StatisticsError(ValueError):
|
||
pass
|
||
|
||
|
||
# === Private utilities ===
|
||
|
||
def _sum(data, start=0):
|
||
"""_sum(data [, start]) -> (type, sum, count)
|
||
|
||
Return a high-precision sum of the given numeric data as a fraction,
|
||
together with the type to be converted to and the count of items.
|
||
|
||
If optional argument ``start`` is given, it is added to the total.
|
||
If ``data`` is empty, ``start`` (defaulting to 0) is returned.
|
||
|
||
|
||
Examples
|
||
--------
|
||
|
||
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
|
||
(<class 'float'>, Fraction(11, 1), 5)
|
||
|
||
Some sources of round-off error will be avoided:
|
||
|
||
# Built-in sum returns zero.
|
||
>>> _sum([1e50, 1, -1e50] * 1000)
|
||
(<class 'float'>, Fraction(1000, 1), 3000)
|
||
|
||
Fractions and Decimals are also supported:
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
|
||
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
|
||
>>> _sum(data)
|
||
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
|
||
|
||
Mixed types are currently treated as an error, except that int is
|
||
allowed.
|
||
"""
|
||
count = 0
|
||
n, d = _exact_ratio(start)
|
||
partials = {d: n}
|
||
partials_get = partials.get
|
||
T = _coerce(int, type(start))
|
||
for typ, values in groupby(data, type):
|
||
T = _coerce(T, typ) # or raise TypeError
|
||
for n,d in map(_exact_ratio, values):
|
||
count += 1
|
||
partials[d] = partials_get(d, 0) + n
|
||
if None in partials:
|
||
# The sum will be a NAN or INF. We can ignore all the finite
|
||
# partials, and just look at this special one.
|
||
total = partials[None]
|
||
assert not _isfinite(total)
|
||
else:
|
||
# Sum all the partial sums using builtin sum.
|
||
# FIXME is this faster if we sum them in order of the denominator?
|
||
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
|
||
return (T, total, count)
|
||
|
||
|
||
def _isfinite(x):
|
||
try:
|
||
return x.is_finite() # Likely a Decimal.
|
||
except AttributeError:
|
||
return math.isfinite(x) # Coerces to float first.
|
||
|
||
|
||
def _coerce(T, S):
|
||
"""Coerce types T and S to a common type, or raise TypeError.
|
||
|
||
Coercion rules are currently an implementation detail. See the CoerceTest
|
||
test class in test_statistics for details.
|
||
"""
|
||
# See http://bugs.python.org/issue24068.
|
||
assert T is not bool, "initial type T is bool"
|
||
# If the types are the same, no need to coerce anything. Put this
|
||
# first, so that the usual case (no coercion needed) happens as soon
|
||
# as possible.
|
||
if T is S: return T
|
||
# Mixed int & other coerce to the other type.
|
||
if S is int or S is bool: return T
|
||
if T is int: return S
|
||
# If one is a (strict) subclass of the other, coerce to the subclass.
|
||
if issubclass(S, T): return S
|
||
if issubclass(T, S): return T
|
||
# Ints coerce to the other type.
|
||
if issubclass(T, int): return S
|
||
if issubclass(S, int): return T
|
||
# Mixed fraction & float coerces to float (or float subclass).
|
||
if issubclass(T, Fraction) and issubclass(S, float):
|
||
return S
|
||
if issubclass(T, float) and issubclass(S, Fraction):
|
||
return T
|
||
# Any other combination is disallowed.
|
||
msg = "don't know how to coerce %s and %s"
|
||
raise TypeError(msg % (T.__name__, S.__name__))
|
||
|
||
|
||
def _exact_ratio(x):
|
||
"""Return Real number x to exact (numerator, denominator) pair.
|
||
|
||
>>> _exact_ratio(0.25)
|
||
(1, 4)
|
||
|
||
x is expected to be an int, Fraction, Decimal or float.
|
||
"""
|
||
try:
|
||
# Optimise the common case of floats. We expect that the most often
|
||
# used numeric type will be builtin floats, so try to make this as
|
||
# fast as possible.
|
||
if type(x) is float or type(x) is Decimal:
|
||
return x.as_integer_ratio()
|
||
try:
|
||
# x may be an int, Fraction, or Integral ABC.
|
||
return (x.numerator, x.denominator)
|
||
except AttributeError:
|
||
try:
|
||
# x may be a float or Decimal subclass.
|
||
return x.as_integer_ratio()
|
||
except AttributeError:
|
||
# Just give up?
|
||
pass
|
||
except (OverflowError, ValueError):
|
||
# float NAN or INF.
|
||
assert not _isfinite(x)
|
||
return (x, None)
|
||
msg = "can't convert type '{}' to numerator/denominator"
|
||
raise TypeError(msg.format(type(x).__name__))
|
||
|
||
|
||
def _convert(value, T):
|
||
"""Convert value to given numeric type T."""
|
||
if type(value) is T:
|
||
# This covers the cases where T is Fraction, or where value is
|
||
# a NAN or INF (Decimal or float).
|
||
return value
|
||
if issubclass(T, int) and value.denominator != 1:
|
||
T = float
|
||
try:
|
||
# FIXME: what do we do if this overflows?
|
||
return T(value)
|
||
except TypeError:
|
||
if issubclass(T, Decimal):
|
||
return T(value.numerator)/T(value.denominator)
|
||
else:
|
||
raise
|
||
|
||
|
||
def _find_lteq(a, x):
|
||
'Locate the leftmost value exactly equal to x'
|
||
i = bisect_left(a, x)
|
||
if i != len(a) and a[i] == x:
|
||
return i
|
||
raise ValueError
|
||
|
||
|
||
def _find_rteq(a, l, x):
|
||
'Locate the rightmost value exactly equal to x'
|
||
i = bisect_right(a, x, lo=l)
|
||
if i != (len(a)+1) and a[i-1] == x:
|
||
return i-1
|
||
raise ValueError
|
||
|
||
|
||
def _fail_neg(values, errmsg='negative value'):
|
||
"""Iterate over values, failing if any are less than zero."""
|
||
for x in values:
|
||
if x < 0:
|
||
raise StatisticsError(errmsg)
|
||
yield x
|
||
|
||
|
||
# === Measures of central tendency (averages) ===
|
||
|
||
def mean(data):
|
||
"""Return the sample arithmetic mean of data.
|
||
|
||
>>> mean([1, 2, 3, 4, 4])
|
||
2.8
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
|
||
Fraction(13, 21)
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
|
||
Decimal('0.5625')
|
||
|
||
If ``data`` is empty, StatisticsError will be raised.
|
||
"""
|
||
if iter(data) is data:
|
||
data = list(data)
|
||
n = len(data)
|
||
if n < 1:
|
||
raise StatisticsError('mean requires at least one data point')
|
||
T, total, count = _sum(data)
|
||
assert count == n
|
||
return _convert(total/n, T)
|
||
|
||
|
||
def fmean(data):
|
||
"""Convert data to floats and compute the arithmetic mean.
|
||
|
||
This runs faster than the mean() function and it always returns a float.
|
||
If the input dataset is empty, it raises a StatisticsError.
|
||
|
||
>>> fmean([3.5, 4.0, 5.25])
|
||
4.25
|
||
"""
|
||
try:
|
||
n = len(data)
|
||
except TypeError:
|
||
# Handle iterators that do not define __len__().
|
||
n = 0
|
||
def count(iterable):
|
||
nonlocal n
|
||
for n, x in enumerate(iterable, start=1):
|
||
yield x
|
||
total = fsum(count(data))
|
||
else:
|
||
total = fsum(data)
|
||
try:
|
||
return total / n
|
||
except ZeroDivisionError:
|
||
raise StatisticsError('fmean requires at least one data point') from None
|
||
|
||
|
||
def geometric_mean(data):
|
||
"""Convert data to floats and compute the geometric mean.
|
||
|
||
Raises a StatisticsError if the input dataset is empty,
|
||
if it contains a zero, or if it contains a negative value.
|
||
|
||
No special efforts are made to achieve exact results.
|
||
(However, this may change in the future.)
|
||
|
||
>>> round(geometric_mean([54, 24, 36]), 9)
|
||
36.0
|
||
"""
|
||
try:
|
||
return exp(fmean(map(log, data)))
|
||
except ValueError:
|
||
raise StatisticsError('geometric mean requires a non-empty dataset '
|
||
' containing positive numbers') from None
|
||
|
||
|
||
def harmonic_mean(data):
|
||
"""Return the harmonic mean of data.
|
||
|
||
The harmonic mean, sometimes called the subcontrary mean, is the
|
||
reciprocal of the arithmetic mean of the reciprocals of the data,
|
||
and is often appropriate when averaging quantities which are rates
|
||
or ratios, for example speeds. Example:
|
||
|
||
Suppose an investor purchases an equal value of shares in each of
|
||
three companies, with P/E (price/earning) ratios of 2.5, 3 and 10.
|
||
What is the average P/E ratio for the investor's portfolio?
|
||
|
||
>>> harmonic_mean([2.5, 3, 10]) # For an equal investment portfolio.
|
||
3.6
|
||
|
||
Using the arithmetic mean would give an average of about 5.167, which
|
||
is too high.
|
||
|
||
If ``data`` is empty, or any element is less than zero,
|
||
``harmonic_mean`` will raise ``StatisticsError``.
|
||
"""
|
||
# For a justification for using harmonic mean for P/E ratios, see
|
||
# http://fixthepitch.pellucid.com/comps-analysis-the-missing-harmony-of-summary-statistics/
|
||
# http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2621087
|
||
if iter(data) is data:
|
||
data = list(data)
|
||
errmsg = 'harmonic mean does not support negative values'
|
||
n = len(data)
|
||
if n < 1:
|
||
raise StatisticsError('harmonic_mean requires at least one data point')
|
||
elif n == 1:
|
||
x = data[0]
|
||
if isinstance(x, (numbers.Real, Decimal)):
|
||
if x < 0:
|
||
raise StatisticsError(errmsg)
|
||
return x
|
||
else:
|
||
raise TypeError('unsupported type')
|
||
try:
|
||
T, total, count = _sum(1/x for x in _fail_neg(data, errmsg))
|
||
except ZeroDivisionError:
|
||
return 0
|
||
assert count == n
|
||
return _convert(n/total, T)
|
||
|
||
|
||
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
|
||
def median(data):
|
||
"""Return the median (middle value) of numeric data.
|
||
|
||
When the number of data points is odd, return the middle data point.
|
||
When the number of data points is even, the median is interpolated by
|
||
taking the average of the two middle values:
|
||
|
||
>>> median([1, 3, 5])
|
||
3
|
||
>>> median([1, 3, 5, 7])
|
||
4.0
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
if n%2 == 1:
|
||
return data[n//2]
|
||
else:
|
||
i = n//2
|
||
return (data[i - 1] + data[i])/2
|
||
|
||
|
||
def median_low(data):
|
||
"""Return the low median of numeric data.
|
||
|
||
When the number of data points is odd, the middle value is returned.
|
||
When it is even, the smaller of the two middle values is returned.
|
||
|
||
>>> median_low([1, 3, 5])
|
||
3
|
||
>>> median_low([1, 3, 5, 7])
|
||
3
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
if n%2 == 1:
|
||
return data[n//2]
|
||
else:
|
||
return data[n//2 - 1]
|
||
|
||
|
||
def median_high(data):
|
||
"""Return the high median of data.
|
||
|
||
When the number of data points is odd, the middle value is returned.
|
||
When it is even, the larger of the two middle values is returned.
|
||
|
||
>>> median_high([1, 3, 5])
|
||
3
|
||
>>> median_high([1, 3, 5, 7])
|
||
5
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
return data[n//2]
|
||
|
||
|
||
def median_grouped(data, interval=1):
|
||
"""Return the 50th percentile (median) of grouped continuous data.
|
||
|
||
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
|
||
3.7
|
||
>>> median_grouped([52, 52, 53, 54])
|
||
52.5
|
||
|
||
This calculates the median as the 50th percentile, and should be
|
||
used when your data is continuous and grouped. In the above example,
|
||
the values 1, 2, 3, etc. actually represent the midpoint of classes
|
||
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
|
||
class 3.5-4.5, and interpolation is used to estimate it.
|
||
|
||
Optional argument ``interval`` represents the class interval, and
|
||
defaults to 1. Changing the class interval naturally will change the
|
||
interpolated 50th percentile value:
|
||
|
||
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
|
||
3.25
|
||
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
|
||
3.5
|
||
|
||
This function does not check whether the data points are at least
|
||
``interval`` apart.
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
elif n == 1:
|
||
return data[0]
|
||
# Find the value at the midpoint. Remember this corresponds to the
|
||
# centre of the class interval.
|
||
x = data[n//2]
|
||
for obj in (x, interval):
|
||
if isinstance(obj, (str, bytes)):
|
||
raise TypeError('expected number but got %r' % obj)
|
||
try:
|
||
L = x - interval/2 # The lower limit of the median interval.
|
||
except TypeError:
|
||
# Mixed type. For now we just coerce to float.
|
||
L = float(x) - float(interval)/2
|
||
|
||
# Uses bisection search to search for x in data with log(n) time complexity
|
||
# Find the position of leftmost occurrence of x in data
|
||
l1 = _find_lteq(data, x)
|
||
# Find the position of rightmost occurrence of x in data[l1...len(data)]
|
||
# Assuming always l1 <= l2
|
||
l2 = _find_rteq(data, l1, x)
|
||
cf = l1
|
||
f = l2 - l1 + 1
|
||
return L + interval*(n/2 - cf)/f
|
||
|
||
|
||
def mode(data):
|
||
"""Return the most common data point from discrete or nominal data.
|
||
|
||
``mode`` assumes discrete data, and returns a single value. This is the
|
||
standard treatment of the mode as commonly taught in schools:
|
||
|
||
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
||
3
|
||
|
||
This also works with nominal (non-numeric) data:
|
||
|
||
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||
'red'
|
||
|
||
If there are multiple modes with same frequency, return the first one
|
||
encountered:
|
||
|
||
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
|
||
'red'
|
||
|
||
If *data* is empty, ``mode``, raises StatisticsError.
|
||
|
||
"""
|
||
data = iter(data)
|
||
pairs = Counter(data).most_common(1)
|
||
try:
|
||
return pairs[0][0]
|
||
except IndexError:
|
||
raise StatisticsError('no mode for empty data') from None
|
||
|
||
|
||
def multimode(data):
|
||
"""Return a list of the most frequently occurring values.
|
||
|
||
Will return more than one result if there are multiple modes
|
||
or an empty list if *data* is empty.
|
||
|
||
>>> multimode('aabbbbbbbbcc')
|
||
['b']
|
||
>>> multimode('aabbbbccddddeeffffgg')
|
||
['b', 'd', 'f']
|
||
>>> multimode('')
|
||
[]
|
||
"""
|
||
counts = Counter(iter(data)).most_common()
|
||
maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
|
||
return list(map(itemgetter(0), mode_items))
|
||
|
||
|
||
# Notes on methods for computing quantiles
|
||
# ----------------------------------------
|
||
#
|
||
# There is no one perfect way to compute quantiles. Here we offer
|
||
# two methods that serve common needs. Most other packages
|
||
# surveyed offered at least one or both of these two, making them
|
||
# "standard" in the sense of "widely-adopted and reproducible".
|
||
# They are also easy to explain, easy to compute manually, and have
|
||
# straight-forward interpretations that aren't surprising.
|
||
|
||
# The default method is known as "R6", "PERCENTILE.EXC", or "expected
|
||
# value of rank order statistics". The alternative method is known as
|
||
# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
|
||
|
||
# For sample data where there is a positive probability for values
|
||
# beyond the range of the data, the R6 exclusive method is a
|
||
# reasonable choice. Consider a random sample of nine values from a
|
||
# population with a uniform distribution from 0.0 to 100.0. The
|
||
# distribution of the third ranked sample point is described by
|
||
# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
|
||
# mean=0.300. Only the latter (which corresponds with R6) gives the
|
||
# desired cut point with 30% of the population falling below that
|
||
# value, making it comparable to a result from an inv_cdf() function.
|
||
# The R6 exclusive method is also idempotent.
|
||
|
||
# For describing population data where the end points are known to
|
||
# be included in the data, the R7 inclusive method is a reasonable
|
||
# choice. Instead of the mean, it uses the mode of the beta
|
||
# distribution for the interior points. Per Hyndman & Fan, "One nice
|
||
# property is that the vertices of Q7(p) divide the range into n - 1
|
||
# intervals, and exactly 100p% of the intervals lie to the left of
|
||
# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
|
||
|
||
# If needed, other methods could be added. However, for now, the
|
||
# position is that fewer options make for easier choices and that
|
||
# external packages can be used for anything more advanced.
|
||
|
||
def quantiles(data, *, n=4, method='exclusive'):
|
||
"""Divide *data* into *n* continuous intervals with equal probability.
|
||
|
||
Returns a list of (n - 1) cut points separating the intervals.
|
||
|
||
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
|
||
Set *n* to 100 for percentiles which gives the 99 cuts points that
|
||
separate *data* in to 100 equal sized groups.
|
||
|
||
The *data* can be any iterable containing sample.
|
||
The cut points are linearly interpolated between data points.
|
||
|
||
If *method* is set to *inclusive*, *data* is treated as population
|
||
data. The minimum value is treated as the 0th percentile and the
|
||
maximum value is treated as the 100th percentile.
|
||
"""
|
||
if n < 1:
|
||
raise StatisticsError('n must be at least 1')
|
||
data = sorted(data)
|
||
ld = len(data)
|
||
if ld < 2:
|
||
raise StatisticsError('must have at least two data points')
|
||
if method == 'inclusive':
|
||
m = ld - 1
|
||
result = []
|
||
for i in range(1, n):
|
||
j = i * m // n
|
||
delta = i*m - j*n
|
||
interpolated = (data[j] * (n - delta) + data[j+1] * delta) / n
|
||
result.append(interpolated)
|
||
return result
|
||
if method == 'exclusive':
|
||
m = ld + 1
|
||
result = []
|
||
for i in range(1, n):
|
||
j = i * m // n # rescale i to m/n
|
||
j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
|
||
delta = i*m - j*n # exact integer math
|
||
interpolated = (data[j-1] * (n - delta) + data[j] * delta) / n
|
||
result.append(interpolated)
|
||
return result
|
||
raise ValueError(f'Unknown method: {method!r}')
|
||
|
||
|
||
# === Measures of spread ===
|
||
|
||
# See http://mathworld.wolfram.com/Variance.html
|
||
# http://mathworld.wolfram.com/SampleVariance.html
|
||
# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
||
#
|
||
# Under no circumstances use the so-called "computational formula for
|
||
# variance", as that is only suitable for hand calculations with a small
|
||
# amount of low-precision data. It has terrible numeric properties.
|
||
#
|
||
# See a comparison of three computational methods here:
|
||
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
|
||
|
||
def _ss(data, c=None):
|
||
"""Return sum of square deviations of sequence data.
|
||
|
||
If ``c`` is None, the mean is calculated in one pass, and the deviations
|
||
from the mean are calculated in a second pass. Otherwise, deviations are
|
||
calculated from ``c`` as given. Use the second case with care, as it can
|
||
lead to garbage results.
|
||
"""
|
||
if c is not None:
|
||
T, total, count = _sum((x-c)**2 for x in data)
|
||
return (T, total)
|
||
c = mean(data)
|
||
T, total, count = _sum((x-c)**2 for x in data)
|
||
# The following sum should mathematically equal zero, but due to rounding
|
||
# error may not.
|
||
U, total2, count2 = _sum((x-c) for x in data)
|
||
assert T == U and count == count2
|
||
total -= total2**2/len(data)
|
||
assert not total < 0, 'negative sum of square deviations: %f' % total
|
||
return (T, total)
|
||
|
||
|
||
def variance(data, xbar=None):
|
||
"""Return the sample variance of data.
|
||
|
||
data should be an iterable of Real-valued numbers, with at least two
|
||
values. The optional argument xbar, if given, should be the mean of
|
||
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
||
Use this function when your data is a sample from a population. To
|
||
calculate the variance from the entire population, see ``pvariance``.
|
||
|
||
Examples:
|
||
|
||
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
|
||
>>> variance(data)
|
||
1.3720238095238095
|
||
|
||
If you have already calculated the mean of your data, you can pass it as
|
||
the optional second argument ``xbar`` to avoid recalculating it:
|
||
|
||
>>> m = mean(data)
|
||
>>> variance(data, m)
|
||
1.3720238095238095
|
||
|
||
This function does not check that ``xbar`` is actually the mean of
|
||
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
|
||
impossible results.
|
||
|
||
Decimals and Fractions are supported:
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
Decimal('31.01875')
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
||
Fraction(67, 108)
|
||
|
||
"""
|
||
if iter(data) is data:
|
||
data = list(data)
|
||
n = len(data)
|
||
if n < 2:
|
||
raise StatisticsError('variance requires at least two data points')
|
||
T, ss = _ss(data, xbar)
|
||
return _convert(ss/(n-1), T)
|
||
|
||
|
||
def pvariance(data, mu=None):
|
||
"""Return the population variance of ``data``.
|
||
|
||
data should be a sequence or iterable of Real-valued numbers, with at least one
|
||
value. The optional argument mu, if given, should be the mean of
|
||
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
||
Use this function to calculate the variance from the entire population.
|
||
To estimate the variance from a sample, the ``variance`` function is
|
||
usually a better choice.
|
||
|
||
Examples:
|
||
|
||
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
|
||
>>> pvariance(data)
|
||
1.25
|
||
|
||
If you have already calculated the mean of the data, you can pass it as
|
||
the optional second argument to avoid recalculating it:
|
||
|
||
>>> mu = mean(data)
|
||
>>> pvariance(data, mu)
|
||
1.25
|
||
|
||
Decimals and Fractions are supported:
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
Decimal('24.815')
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
||
Fraction(13, 72)
|
||
|
||
"""
|
||
if iter(data) is data:
|
||
data = list(data)
|
||
n = len(data)
|
||
if n < 1:
|
||
raise StatisticsError('pvariance requires at least one data point')
|
||
T, ss = _ss(data, mu)
|
||
return _convert(ss/n, T)
|
||
|
||
|
||
def stdev(data, xbar=None):
|
||
"""Return the square root of the sample variance.
|
||
|
||
See ``variance`` for arguments and other details.
|
||
|
||
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
1.0810874155219827
|
||
|
||
"""
|
||
var = variance(data, xbar)
|
||
try:
|
||
return var.sqrt()
|
||
except AttributeError:
|
||
return math.sqrt(var)
|
||
|
||
|
||
def pstdev(data, mu=None):
|
||
"""Return the square root of the population variance.
|
||
|
||
See ``pvariance`` for arguments and other details.
|
||
|
||
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
0.986893273527251
|
||
|
||
"""
|
||
var = pvariance(data, mu)
|
||
try:
|
||
return var.sqrt()
|
||
except AttributeError:
|
||
return math.sqrt(var)
|
||
|
||
|
||
## Normal Distribution #####################################################
|
||
|
||
|
||
def _normal_dist_inv_cdf(p, mu, sigma):
|
||
# There is no closed-form solution to the inverse CDF for the normal
|
||
# distribution, so we use a rational approximation instead:
|
||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||
q = p - 0.5
|
||
if fabs(q) <= 0.425:
|
||
r = 0.180625 - q * q
|
||
# Hash sum: 55.88319_28806_14901_4439
|
||
num = (((((((2.50908_09287_30122_6727e+3 * r +
|
||
3.34305_75583_58812_8105e+4) * r +
|
||
6.72657_70927_00870_0853e+4) * r +
|
||
4.59219_53931_54987_1457e+4) * r +
|
||
1.37316_93765_50946_1125e+4) * r +
|
||
1.97159_09503_06551_4427e+3) * r +
|
||
1.33141_66789_17843_7745e+2) * r +
|
||
3.38713_28727_96366_6080e+0) * q
|
||
den = (((((((5.22649_52788_52854_5610e+3 * r +
|
||
2.87290_85735_72194_2674e+4) * r +
|
||
3.93078_95800_09271_0610e+4) * r +
|
||
2.12137_94301_58659_5867e+4) * r +
|
||
5.39419_60214_24751_1077e+3) * r +
|
||
6.87187_00749_20579_0830e+2) * r +
|
||
4.23133_30701_60091_1252e+1) * r +
|
||
1.0)
|
||
x = num / den
|
||
return mu + (x * sigma)
|
||
r = p if q <= 0.0 else 1.0 - p
|
||
r = sqrt(-log(r))
|
||
if r <= 5.0:
|
||
r = r - 1.6
|
||
# Hash sum: 49.33206_50330_16102_89036
|
||
num = (((((((7.74545_01427_83414_07640e-4 * r +
|
||
2.27238_44989_26918_45833e-2) * r +
|
||
2.41780_72517_74506_11770e-1) * r +
|
||
1.27045_82524_52368_38258e+0) * r +
|
||
3.64784_83247_63204_60504e+0) * r +
|
||
5.76949_72214_60691_40550e+0) * r +
|
||
4.63033_78461_56545_29590e+0) * r +
|
||
1.42343_71107_49683_57734e+0)
|
||
den = (((((((1.05075_00716_44416_84324e-9 * r +
|
||
5.47593_80849_95344_94600e-4) * r +
|
||
1.51986_66563_61645_71966e-2) * r +
|
||
1.48103_97642_74800_74590e-1) * r +
|
||
6.89767_33498_51000_04550e-1) * r +
|
||
1.67638_48301_83803_84940e+0) * r +
|
||
2.05319_16266_37758_82187e+0) * r +
|
||
1.0)
|
||
else:
|
||
r = r - 5.0
|
||
# Hash sum: 47.52583_31754_92896_71629
|
||
num = (((((((2.01033_43992_92288_13265e-7 * r +
|
||
2.71155_55687_43487_57815e-5) * r +
|
||
1.24266_09473_88078_43860e-3) * r +
|
||
2.65321_89526_57612_30930e-2) * r +
|
||
2.96560_57182_85048_91230e-1) * r +
|
||
1.78482_65399_17291_33580e+0) * r +
|
||
5.46378_49111_64114_36990e+0) * r +
|
||
6.65790_46435_01103_77720e+0)
|
||
den = (((((((2.04426_31033_89939_78564e-15 * r +
|
||
1.42151_17583_16445_88870e-7) * r +
|
||
1.84631_83175_10054_68180e-5) * r +
|
||
7.86869_13114_56132_59100e-4) * r +
|
||
1.48753_61290_85061_48525e-2) * r +
|
||
1.36929_88092_27358_05310e-1) * r +
|
||
5.99832_20655_58879_37690e-1) * r +
|
||
1.0)
|
||
x = num / den
|
||
if q < 0.0:
|
||
x = -x
|
||
return mu + (x * sigma)
|
||
|
||
|
||
class NormalDist:
|
||
"Normal distribution of a random variable"
|
||
# https://en.wikipedia.org/wiki/Normal_distribution
|
||
# https://en.wikipedia.org/wiki/Variance#Properties
|
||
|
||
__slots__ = {
|
||
'_mu': 'Arithmetic mean of a normal distribution',
|
||
'_sigma': 'Standard deviation of a normal distribution',
|
||
}
|
||
|
||
def __init__(self, mu=0.0, sigma=1.0):
|
||
"NormalDist where mu is the mean and sigma is the standard deviation."
|
||
if sigma < 0.0:
|
||
raise StatisticsError('sigma must be non-negative')
|
||
self._mu = float(mu)
|
||
self._sigma = float(sigma)
|
||
|
||
@classmethod
|
||
def from_samples(cls, data):
|
||
"Make a normal distribution instance from sample data."
|
||
if not isinstance(data, (list, tuple)):
|
||
data = list(data)
|
||
xbar = fmean(data)
|
||
return cls(xbar, stdev(data, xbar))
|
||
|
||
def samples(self, n, *, seed=None):
|
||
"Generate *n* samples for a given mean and standard deviation."
|
||
gauss = random.gauss if seed is None else random.Random(seed).gauss
|
||
mu, sigma = self._mu, self._sigma
|
||
return [gauss(mu, sigma) for i in range(n)]
|
||
|
||
def pdf(self, x):
|
||
"Probability density function. P(x <= X < x+dx) / dx"
|
||
variance = self._sigma ** 2.0
|
||
if not variance:
|
||
raise StatisticsError('pdf() not defined when sigma is zero')
|
||
return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
|
||
|
||
def cdf(self, x):
|
||
"Cumulative distribution function. P(X <= x)"
|
||
if not self._sigma:
|
||
raise StatisticsError('cdf() not defined when sigma is zero')
|
||
return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
|
||
|
||
def inv_cdf(self, p):
|
||
"""Inverse cumulative distribution function. x : P(X <= x) = p
|
||
|
||
Finds the value of the random variable such that the probability of
|
||
the variable being less than or equal to that value equals the given
|
||
probability.
|
||
|
||
This function is also called the percent point function or quantile
|
||
function.
|
||
"""
|
||
if p <= 0.0 or p >= 1.0:
|
||
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
|
||
if self._sigma <= 0.0:
|
||
raise StatisticsError('cdf() not defined when sigma at or below zero')
|
||
return _normal_dist_inv_cdf(p, self._mu, self._sigma)
|
||
|
||
def quantiles(self, n=4):
|
||
"""Divide into *n* continuous intervals with equal probability.
|
||
|
||
Returns a list of (n - 1) cut points separating the intervals.
|
||
|
||
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
|
||
Set *n* to 100 for percentiles which gives the 99 cuts points that
|
||
separate the normal distribution in to 100 equal sized groups.
|
||
"""
|
||
return [self.inv_cdf(i / n) for i in range(1, n)]
|
||
|
||
def overlap(self, other):
|
||
"""Compute the overlapping coefficient (OVL) between two normal distributions.
|
||
|
||
Measures the agreement between two normal probability distributions.
|
||
Returns a value between 0.0 and 1.0 giving the overlapping area in
|
||
the two underlying probability density functions.
|
||
|
||
>>> N1 = NormalDist(2.4, 1.6)
|
||
>>> N2 = NormalDist(3.2, 2.0)
|
||
>>> N1.overlap(N2)
|
||
0.8035050657330205
|
||
"""
|
||
# See: "The overlapping coefficient as a measure of agreement between
|
||
# probability distributions and point estimation of the overlap of two
|
||
# normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
|
||
# http://dx.doi.org/10.1080/03610928908830127
|
||
if not isinstance(other, NormalDist):
|
||
raise TypeError('Expected another NormalDist instance')
|
||
X, Y = self, other
|
||
if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
|
||
X, Y = Y, X
|
||
X_var, Y_var = X.variance, Y.variance
|
||
if not X_var or not Y_var:
|
||
raise StatisticsError('overlap() not defined when sigma is zero')
|
||
dv = Y_var - X_var
|
||
dm = fabs(Y._mu - X._mu)
|
||
if not dv:
|
||
return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
|
||
a = X._mu * Y_var - Y._mu * X_var
|
||
b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
|
||
x1 = (a + b) / dv
|
||
x2 = (a - b) / dv
|
||
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
|
||
|
||
@property
|
||
def mean(self):
|
||
"Arithmetic mean of the normal distribution."
|
||
return self._mu
|
||
|
||
@property
|
||
def median(self):
|
||
"Return the median of the normal distribution"
|
||
return self._mu
|
||
|
||
@property
|
||
def mode(self):
|
||
"""Return the mode of the normal distribution
|
||
|
||
The mode is the value x where which the probability density
|
||
function (pdf) takes its maximum value.
|
||
"""
|
||
return self._mu
|
||
|
||
@property
|
||
def stdev(self):
|
||
"Standard deviation of the normal distribution."
|
||
return self._sigma
|
||
|
||
@property
|
||
def variance(self):
|
||
"Square of the standard deviation."
|
||
return self._sigma ** 2.0
|
||
|
||
def __add__(x1, x2):
|
||
"""Add a constant or another NormalDist instance.
|
||
|
||
If *other* is a constant, translate mu by the constant,
|
||
leaving sigma unchanged.
|
||
|
||
If *other* is a NormalDist, add both the means and the variances.
|
||
Mathematically, this works only if the two distributions are
|
||
independent or if they are jointly normally distributed.
|
||
"""
|
||
if isinstance(x2, NormalDist):
|
||
return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
|
||
return NormalDist(x1._mu + x2, x1._sigma)
|
||
|
||
def __sub__(x1, x2):
|
||
"""Subtract a constant or another NormalDist instance.
|
||
|
||
If *other* is a constant, translate by the constant mu,
|
||
leaving sigma unchanged.
|
||
|
||
If *other* is a NormalDist, subtract the means and add the variances.
|
||
Mathematically, this works only if the two distributions are
|
||
independent or if they are jointly normally distributed.
|
||
"""
|
||
if isinstance(x2, NormalDist):
|
||
return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
|
||
return NormalDist(x1._mu - x2, x1._sigma)
|
||
|
||
def __mul__(x1, x2):
|
||
"""Multiply both mu and sigma by a constant.
|
||
|
||
Used for rescaling, perhaps to change measurement units.
|
||
Sigma is scaled with the absolute value of the constant.
|
||
"""
|
||
return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
|
||
|
||
def __truediv__(x1, x2):
|
||
"""Divide both mu and sigma by a constant.
|
||
|
||
Used for rescaling, perhaps to change measurement units.
|
||
Sigma is scaled with the absolute value of the constant.
|
||
"""
|
||
return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
|
||
|
||
def __pos__(x1):
|
||
"Return a copy of the instance."
|
||
return NormalDist(x1._mu, x1._sigma)
|
||
|
||
def __neg__(x1):
|
||
"Negates mu while keeping sigma the same."
|
||
return NormalDist(-x1._mu, x1._sigma)
|
||
|
||
__radd__ = __add__
|
||
|
||
def __rsub__(x1, x2):
|
||
"Subtract a NormalDist from a constant or another NormalDist."
|
||
return -(x1 - x2)
|
||
|
||
__rmul__ = __mul__
|
||
|
||
def __eq__(x1, x2):
|
||
"Two NormalDist objects are equal if their mu and sigma are both equal."
|
||
if not isinstance(x2, NormalDist):
|
||
return NotImplemented
|
||
return x1._mu == x2._mu and x1._sigma == x2._sigma
|
||
|
||
def __hash__(self):
|
||
"NormalDist objects hash equal if their mu and sigma are both equal."
|
||
return hash((self._mu, self._sigma))
|
||
|
||
def __repr__(self):
|
||
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
|
||
|
||
# If available, use C implementation
|
||
try:
|
||
from _statistics import _normal_dist_inv_cdf
|
||
except ImportError:
|
||
pass
|
||
|
||
|
||
if __name__ == '__main__':
|
||
|
||
# Show math operations computed analytically in comparsion
|
||
# to a monte carlo simulation of the same operations
|
||
|
||
from math import isclose
|
||
from operator import add, sub, mul, truediv
|
||
from itertools import repeat
|
||
import doctest
|
||
|
||
g1 = NormalDist(10, 20)
|
||
g2 = NormalDist(-5, 25)
|
||
|
||
# Test scaling by a constant
|
||
assert (g1 * 5 / 5).mean == g1.mean
|
||
assert (g1 * 5 / 5).stdev == g1.stdev
|
||
|
||
n = 100_000
|
||
G1 = g1.samples(n)
|
||
G2 = g2.samples(n)
|
||
|
||
for func in (add, sub):
|
||
print(f'\nTest {func.__name__} with another NormalDist:')
|
||
print(func(g1, g2))
|
||
print(NormalDist.from_samples(map(func, G1, G2)))
|
||
|
||
const = 11
|
||
for func in (add, sub, mul, truediv):
|
||
print(f'\nTest {func.__name__} with a constant:')
|
||
print(func(g1, const))
|
||
print(NormalDist.from_samples(map(func, G1, repeat(const))))
|
||
|
||
const = 19
|
||
for func in (add, sub, mul):
|
||
print(f'\nTest constant with {func.__name__}:')
|
||
print(func(const, g1))
|
||
print(NormalDist.from_samples(map(func, repeat(const), G1)))
|
||
|
||
def assert_close(G1, G2):
|
||
assert isclose(G1.mean, G1.mean, rel_tol=0.01), (G1, G2)
|
||
assert isclose(G1.stdev, G2.stdev, rel_tol=0.01), (G1, G2)
|
||
|
||
X = NormalDist(-105, 73)
|
||
Y = NormalDist(31, 47)
|
||
s = 32.75
|
||
n = 100_000
|
||
|
||
S = NormalDist.from_samples([x + s for x in X.samples(n)])
|
||
assert_close(X + s, S)
|
||
|
||
S = NormalDist.from_samples([x - s for x in X.samples(n)])
|
||
assert_close(X - s, S)
|
||
|
||
S = NormalDist.from_samples([x * s for x in X.samples(n)])
|
||
assert_close(X * s, S)
|
||
|
||
S = NormalDist.from_samples([x / s for x in X.samples(n)])
|
||
assert_close(X / s, S)
|
||
|
||
S = NormalDist.from_samples([x + y for x, y in zip(X.samples(n),
|
||
Y.samples(n))])
|
||
assert_close(X + Y, S)
|
||
|
||
S = NormalDist.from_samples([x - y for x, y in zip(X.samples(n),
|
||
Y.samples(n))])
|
||
assert_close(X - Y, S)
|
||
|
||
print(doctest.testmod())
|