1035 lines
24 KiB
C
1035 lines
24 KiB
C
|
|
/* Complex object implementation */
|
|
|
|
/* Borrows heavily from floatobject.c */
|
|
|
|
/* Submitted by Jim Hugunin */
|
|
|
|
#include "Python.h"
|
|
#include "structmember.h"
|
|
|
|
#ifndef WITHOUT_COMPLEX
|
|
|
|
/* Precisions used by repr() and str(), respectively.
|
|
|
|
The repr() precision (17 significant decimal digits) is the minimal number
|
|
that is guaranteed to have enough precision so that if the number is read
|
|
back in the exact same binary value is recreated. This is true for IEEE
|
|
floating point by design, and also happens to work for all other modern
|
|
hardware.
|
|
|
|
The str() precision is chosen so that in most cases, the rounding noise
|
|
created by various operations is suppressed, while giving plenty of
|
|
precision for practical use.
|
|
*/
|
|
|
|
#define PREC_REPR 17
|
|
#define PREC_STR 12
|
|
|
|
/* elementary operations on complex numbers */
|
|
|
|
static Py_complex c_1 = {1., 0.};
|
|
|
|
Py_complex
|
|
c_sum(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real + b.real;
|
|
r.imag = a.imag + b.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_diff(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real - b.real;
|
|
r.imag = a.imag - b.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_neg(Py_complex a)
|
|
{
|
|
Py_complex r;
|
|
r.real = -a.real;
|
|
r.imag = -a.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_prod(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real*b.real - a.imag*b.imag;
|
|
r.imag = a.real*b.imag + a.imag*b.real;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_quot(Py_complex a, Py_complex b)
|
|
{
|
|
/******************************************************************
|
|
This was the original algorithm. It's grossly prone to spurious
|
|
overflow and underflow errors. It also merrily divides by 0 despite
|
|
checking for that(!). The code still serves a doc purpose here, as
|
|
the algorithm following is a simple by-cases transformation of this
|
|
one:
|
|
|
|
Py_complex r;
|
|
double d = b.real*b.real + b.imag*b.imag;
|
|
if (d == 0.)
|
|
errno = EDOM;
|
|
r.real = (a.real*b.real + a.imag*b.imag)/d;
|
|
r.imag = (a.imag*b.real - a.real*b.imag)/d;
|
|
return r;
|
|
******************************************************************/
|
|
|
|
/* This algorithm is better, and is pretty obvious: first divide the
|
|
* numerators and denominator by whichever of {b.real, b.imag} has
|
|
* larger magnitude. The earliest reference I found was to CACM
|
|
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
|
|
* University). As usual, though, we're still ignoring all IEEE
|
|
* endcases.
|
|
*/
|
|
Py_complex r; /* the result */
|
|
const double abs_breal = b.real < 0 ? -b.real : b.real;
|
|
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
|
|
|
|
if (abs_breal >= abs_bimag) {
|
|
/* divide tops and bottom by b.real */
|
|
if (abs_breal == 0.0) {
|
|
errno = EDOM;
|
|
r.real = r.imag = 0.0;
|
|
}
|
|
else {
|
|
const double ratio = b.imag / b.real;
|
|
const double denom = b.real + b.imag * ratio;
|
|
r.real = (a.real + a.imag * ratio) / denom;
|
|
r.imag = (a.imag - a.real * ratio) / denom;
|
|
}
|
|
}
|
|
else {
|
|
/* divide tops and bottom by b.imag */
|
|
const double ratio = b.real / b.imag;
|
|
const double denom = b.real * ratio + b.imag;
|
|
assert(b.imag != 0.0);
|
|
r.real = (a.real * ratio + a.imag) / denom;
|
|
r.imag = (a.imag * ratio - a.real) / denom;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_pow(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
double vabs,len,at,phase;
|
|
if (b.real == 0. && b.imag == 0.) {
|
|
r.real = 1.;
|
|
r.imag = 0.;
|
|
}
|
|
else if (a.real == 0. && a.imag == 0.) {
|
|
if (b.imag != 0. || b.real < 0.)
|
|
errno = EDOM;
|
|
r.real = 0.;
|
|
r.imag = 0.;
|
|
}
|
|
else {
|
|
vabs = hypot(a.real,a.imag);
|
|
len = pow(vabs,b.real);
|
|
at = atan2(a.imag, a.real);
|
|
phase = at*b.real;
|
|
if (b.imag != 0.0) {
|
|
len /= exp(at*b.imag);
|
|
phase += b.imag*log(vabs);
|
|
}
|
|
r.real = len*cos(phase);
|
|
r.imag = len*sin(phase);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static Py_complex
|
|
c_powu(Py_complex x, long n)
|
|
{
|
|
Py_complex r, p;
|
|
long mask = 1;
|
|
r = c_1;
|
|
p = x;
|
|
while (mask > 0 && n >= mask) {
|
|
if (n & mask)
|
|
r = c_prod(r,p);
|
|
mask <<= 1;
|
|
p = c_prod(p,p);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static Py_complex
|
|
c_powi(Py_complex x, long n)
|
|
{
|
|
Py_complex cn;
|
|
|
|
if (n > 100 || n < -100) {
|
|
cn.real = (double) n;
|
|
cn.imag = 0.;
|
|
return c_pow(x,cn);
|
|
}
|
|
else if (n > 0)
|
|
return c_powu(x,n);
|
|
else
|
|
return c_quot(c_1,c_powu(x,-n));
|
|
|
|
}
|
|
|
|
static PyObject *
|
|
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
|
|
{
|
|
PyObject *op;
|
|
|
|
op = type->tp_alloc(type, 0);
|
|
if (op != NULL)
|
|
((PyComplexObject *)op)->cval = cval;
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
PyComplex_FromCComplex(Py_complex cval)
|
|
{
|
|
register PyComplexObject *op;
|
|
|
|
/* Inline PyObject_New */
|
|
op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
PyObject_INIT(op, &PyComplex_Type);
|
|
op->cval = cval;
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
|
|
{
|
|
Py_complex c;
|
|
c.real = real;
|
|
c.imag = imag;
|
|
return complex_subtype_from_c_complex(type, c);
|
|
}
|
|
|
|
PyObject *
|
|
PyComplex_FromDoubles(double real, double imag)
|
|
{
|
|
Py_complex c;
|
|
c.real = real;
|
|
c.imag = imag;
|
|
return PyComplex_FromCComplex(c);
|
|
}
|
|
|
|
double
|
|
PyComplex_RealAsDouble(PyObject *op)
|
|
{
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval.real;
|
|
}
|
|
else {
|
|
return PyFloat_AsDouble(op);
|
|
}
|
|
}
|
|
|
|
double
|
|
PyComplex_ImagAsDouble(PyObject *op)
|
|
{
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval.imag;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
Py_complex
|
|
PyComplex_AsCComplex(PyObject *op)
|
|
{
|
|
Py_complex cv;
|
|
PyObject *newop = NULL;
|
|
static PyObject *complex_str = NULL;
|
|
|
|
assert(op);
|
|
/* If op is already of type PyComplex_Type, return its value */
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval;
|
|
}
|
|
/* If not, use op's __complex__ method, if it exists */
|
|
|
|
/* return -1 on failure */
|
|
cv.real = -1.;
|
|
cv.imag = 0.;
|
|
|
|
{
|
|
PyObject *complexfunc;
|
|
if (!complex_str) {
|
|
if (!(complex_str = PyUnicode_FromString("__complex__")))
|
|
return cv;
|
|
}
|
|
complexfunc = _PyType_Lookup(op->ob_type, complex_str);
|
|
/* complexfunc is a borrowed reference */
|
|
if (complexfunc) {
|
|
newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
|
|
if (!newop)
|
|
return cv;
|
|
}
|
|
}
|
|
|
|
if (newop) {
|
|
if (!PyComplex_Check(newop)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__complex__ should return a complex object");
|
|
Py_DECREF(newop);
|
|
return cv;
|
|
}
|
|
cv = ((PyComplexObject *)newop)->cval;
|
|
Py_DECREF(newop);
|
|
return cv;
|
|
}
|
|
/* If neither of the above works, interpret op as a float giving the
|
|
real part of the result, and fill in the imaginary part as 0. */
|
|
else {
|
|
/* PyFloat_AsDouble will return -1 on failure */
|
|
cv.real = PyFloat_AsDouble(op);
|
|
return cv;
|
|
}
|
|
}
|
|
|
|
static void
|
|
complex_dealloc(PyObject *op)
|
|
{
|
|
op->ob_type->tp_free(op);
|
|
}
|
|
|
|
|
|
static void
|
|
complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision)
|
|
{
|
|
char format[32];
|
|
if (v->cval.real == 0.) {
|
|
PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
|
PyOS_ascii_formatd(buf, bufsz - 1, format, v->cval.imag);
|
|
strncat(buf, "j", 1);
|
|
} else {
|
|
char re[64], im[64];
|
|
/* Format imaginary part with sign, real part without */
|
|
PyOS_snprintf(format, sizeof(format), "%%.%ig", precision);
|
|
PyOS_ascii_formatd(re, sizeof(re), format, v->cval.real);
|
|
PyOS_snprintf(format, sizeof(format), "%%+.%ig", precision);
|
|
PyOS_ascii_formatd(im, sizeof(im), format, v->cval.imag);
|
|
PyOS_snprintf(buf, bufsz, "(%s%sj)", re, im);
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
complex_repr(PyComplexObject *v)
|
|
{
|
|
char buf[100];
|
|
complex_to_buf(buf, sizeof(buf), v, PREC_REPR);
|
|
return PyUnicode_FromString(buf);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_str(PyComplexObject *v)
|
|
{
|
|
char buf[100];
|
|
complex_to_buf(buf, sizeof(buf), v, PREC_STR);
|
|
return PyUnicode_FromString(buf);
|
|
}
|
|
|
|
static long
|
|
complex_hash(PyComplexObject *v)
|
|
{
|
|
long hashreal, hashimag, combined;
|
|
hashreal = _Py_HashDouble(v->cval.real);
|
|
if (hashreal == -1)
|
|
return -1;
|
|
hashimag = _Py_HashDouble(v->cval.imag);
|
|
if (hashimag == -1)
|
|
return -1;
|
|
/* Note: if the imaginary part is 0, hashimag is 0 now,
|
|
* so the following returns hashreal unchanged. This is
|
|
* important because numbers of different types that
|
|
* compare equal must have the same hash value, so that
|
|
* hash(x + 0*j) must equal hash(x).
|
|
*/
|
|
combined = hashreal + 1000003 * hashimag;
|
|
if (combined == -1)
|
|
combined = -2;
|
|
return combined;
|
|
}
|
|
|
|
/* This macro may return! */
|
|
#define TO_COMPLEX(obj, c) \
|
|
if (PyComplex_Check(obj)) \
|
|
c = ((PyComplexObject *)(obj))->cval; \
|
|
else if (to_complex(&(obj), &(c)) < 0) \
|
|
return (obj)
|
|
|
|
static int
|
|
to_complex(PyObject **pobj, Py_complex *pc)
|
|
{
|
|
PyObject *obj = *pobj;
|
|
|
|
pc->real = pc->imag = 0.0;
|
|
if (PyLong_Check(obj)) {
|
|
pc->real = PyLong_AsDouble(obj);
|
|
if (pc->real == -1.0 && PyErr_Occurred()) {
|
|
*pobj = NULL;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (PyFloat_Check(obj)) {
|
|
pc->real = PyFloat_AsDouble(obj);
|
|
return 0;
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
*pobj = Py_NotImplemented;
|
|
return -1;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
complex_add(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_add", return 0)
|
|
result = c_sum(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_sub(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_sub", return 0)
|
|
result = c_diff(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_mul(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_mul", return 0)
|
|
result = c_prod(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_div(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex quot;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_div", return 0)
|
|
errno = 0;
|
|
quot = c_quot(a, b);
|
|
PyFPE_END_PROTECT(quot)
|
|
if (errno == EDOM) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
|
|
return NULL;
|
|
}
|
|
return PyComplex_FromCComplex(quot);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_remainder(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't mod complex numbers.");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
complex_divmod(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't take floor or mod of complex number.");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_pow(PyObject *v, PyObject *w, PyObject *z)
|
|
{
|
|
Py_complex p;
|
|
Py_complex exponent;
|
|
long int_exponent;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
|
|
if (z != Py_None) {
|
|
PyErr_SetString(PyExc_ValueError, "complex modulo");
|
|
return NULL;
|
|
}
|
|
PyFPE_START_PROTECT("complex_pow", return 0)
|
|
errno = 0;
|
|
exponent = b;
|
|
int_exponent = (long)exponent.real;
|
|
if (exponent.imag == 0. && exponent.real == int_exponent)
|
|
p = c_powi(a, int_exponent);
|
|
else
|
|
p = c_pow(a, exponent);
|
|
|
|
PyFPE_END_PROTECT(p)
|
|
Py_ADJUST_ERANGE2(p.real, p.imag);
|
|
if (errno == EDOM) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"0.0 to a negative or complex power");
|
|
return NULL;
|
|
}
|
|
else if (errno == ERANGE) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"complex exponentiation");
|
|
return NULL;
|
|
}
|
|
return PyComplex_FromCComplex(p);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_int_div(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't take floor of complex number.");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_neg(PyComplexObject *v)
|
|
{
|
|
Py_complex neg;
|
|
neg.real = -v->cval.real;
|
|
neg.imag = -v->cval.imag;
|
|
return PyComplex_FromCComplex(neg);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_pos(PyComplexObject *v)
|
|
{
|
|
if (PyComplex_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return (PyObject *)v;
|
|
}
|
|
else
|
|
return PyComplex_FromCComplex(v->cval);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_abs(PyComplexObject *v)
|
|
{
|
|
double result;
|
|
PyFPE_START_PROTECT("complex_abs", return 0)
|
|
result = hypot(v->cval.real,v->cval.imag);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyFloat_FromDouble(result);
|
|
}
|
|
|
|
static int
|
|
complex_bool(PyComplexObject *v)
|
|
{
|
|
return v->cval.real != 0.0 || v->cval.imag != 0.0;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
Py_complex i, j;
|
|
TO_COMPLEX(v, i);
|
|
TO_COMPLEX(w, j);
|
|
|
|
if (op != Py_EQ && op != Py_NE) {
|
|
/* XXX Should eventually return NotImplemented */
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"no ordering relation is defined for complex numbers");
|
|
return NULL;
|
|
}
|
|
|
|
if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
|
|
res = Py_True;
|
|
else
|
|
res = Py_False;
|
|
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_int(PyObject *v)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't convert complex to int; use int(abs(z))");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_long(PyObject *v)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't convert complex to long; use long(abs(z))");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_float(PyObject *v)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't convert complex to float; use abs(z)");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_conjugate(PyObject *self)
|
|
{
|
|
Py_complex c;
|
|
c = ((PyComplexObject *)self)->cval;
|
|
c.imag = -c.imag;
|
|
return PyComplex_FromCComplex(c);
|
|
}
|
|
|
|
PyDoc_STRVAR(complex_conjugate_doc,
|
|
"complex.conjugate() -> complex\n"
|
|
"\n"
|
|
"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
|
|
|
|
static PyObject *
|
|
complex_getnewargs(PyComplexObject *v)
|
|
{
|
|
return Py_BuildValue("(D)", &v->cval);
|
|
}
|
|
|
|
static PyMethodDef complex_methods[] = {
|
|
{"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
|
|
complex_conjugate_doc},
|
|
{"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyMemberDef complex_members[] = {
|
|
{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
|
|
"the real part of a complex number"},
|
|
{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
|
|
"the imaginary part of a complex number"},
|
|
{0},
|
|
};
|
|
|
|
static PyObject *
|
|
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
|
|
{
|
|
const char *s, *start;
|
|
char *end;
|
|
double x=0.0, y=0.0, z;
|
|
int got_re=0, got_im=0, got_bracket=0, done=0;
|
|
int digit_or_dot;
|
|
int sw_error=0;
|
|
int sign;
|
|
char buffer[256]; /* For errors */
|
|
char s_buffer[256];
|
|
Py_ssize_t len;
|
|
|
|
if (PyString_Check(v)) {
|
|
s = PyString_AS_STRING(v);
|
|
len = PyString_GET_SIZE(v);
|
|
}
|
|
else if (PyUnicode_Check(v)) {
|
|
if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"complex() literal too large to convert");
|
|
return NULL;
|
|
}
|
|
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
|
PyUnicode_GET_SIZE(v),
|
|
s_buffer,
|
|
NULL))
|
|
return NULL;
|
|
s = s_buffer;
|
|
len = strlen(s);
|
|
}
|
|
else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() arg is not a string");
|
|
return NULL;
|
|
}
|
|
|
|
/* position on first nonblank */
|
|
start = s;
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
if (s[0] == '\0') {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"complex() arg is an empty string");
|
|
return NULL;
|
|
}
|
|
if (s[0] == '(') {
|
|
/* Skip over possible bracket from repr(). */
|
|
got_bracket = 1;
|
|
s++;
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
}
|
|
|
|
z = -1.0;
|
|
sign = 1;
|
|
do {
|
|
|
|
switch (*s) {
|
|
|
|
case '\0':
|
|
if (s-start != len) {
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
"complex() arg contains a null byte");
|
|
return NULL;
|
|
}
|
|
if(!done) sw_error=1;
|
|
break;
|
|
|
|
case ')':
|
|
if (!got_bracket || !(got_re || got_im)) {
|
|
sw_error=1;
|
|
break;
|
|
}
|
|
got_bracket=0;
|
|
done=1;
|
|
s++;
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
if (*s) sw_error=1;
|
|
break;
|
|
|
|
case '-':
|
|
sign = -1;
|
|
/* Fallthrough */
|
|
case '+':
|
|
if (done) sw_error=1;
|
|
s++;
|
|
if ( *s=='\0'||*s=='+'||*s=='-'||*s==')'||
|
|
isspace(Py_CHARMASK(*s)) ) sw_error=1;
|
|
break;
|
|
|
|
case 'J':
|
|
case 'j':
|
|
if (got_im || done) {
|
|
sw_error = 1;
|
|
break;
|
|
}
|
|
if (z<0.0) {
|
|
y=sign;
|
|
}
|
|
else{
|
|
y=sign*z;
|
|
}
|
|
got_im=1;
|
|
s++;
|
|
if (*s!='+' && *s!='-' )
|
|
done=1;
|
|
break;
|
|
|
|
default:
|
|
if (isspace(Py_CHARMASK(*s))) {
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
if (*s && *s != ')')
|
|
sw_error=1;
|
|
else
|
|
done = 1;
|
|
break;
|
|
}
|
|
digit_or_dot =
|
|
(*s=='.' || isdigit(Py_CHARMASK(*s)));
|
|
if (done||!digit_or_dot) {
|
|
sw_error=1;
|
|
break;
|
|
}
|
|
errno = 0;
|
|
PyFPE_START_PROTECT("strtod", return 0)
|
|
z = PyOS_ascii_strtod(s, &end) ;
|
|
PyFPE_END_PROTECT(z)
|
|
if (errno != 0) {
|
|
PyOS_snprintf(buffer, sizeof(buffer),
|
|
"float() out of range: %.150s", s);
|
|
PyErr_SetString(
|
|
PyExc_ValueError,
|
|
buffer);
|
|
return NULL;
|
|
}
|
|
s=end;
|
|
if (*s=='J' || *s=='j') {
|
|
|
|
break;
|
|
}
|
|
if (got_re) {
|
|
sw_error=1;
|
|
break;
|
|
}
|
|
|
|
/* accept a real part */
|
|
x=sign*z;
|
|
got_re=1;
|
|
if (got_im) done=1;
|
|
z = -1.0;
|
|
sign = 1;
|
|
break;
|
|
|
|
} /* end of switch */
|
|
|
|
} while (s - start < len && !sw_error);
|
|
|
|
if (sw_error || got_bracket) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"complex() arg is a malformed string");
|
|
return NULL;
|
|
}
|
|
|
|
return complex_subtype_from_doubles(type, x, y);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *r, *i, *tmp, *f;
|
|
PyNumberMethods *nbr, *nbi = NULL;
|
|
Py_complex cr, ci;
|
|
int own_r = 0;
|
|
static PyObject *complexstr;
|
|
static char *kwlist[] = {"real", "imag", 0};
|
|
|
|
r = Py_False;
|
|
i = NULL;
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
|
|
&r, &i))
|
|
return NULL;
|
|
|
|
/* Special-case for a single argument when type(arg) is complex. */
|
|
if (PyComplex_CheckExact(r) && i == NULL &&
|
|
type == &PyComplex_Type) {
|
|
/* Note that we can't know whether it's safe to return
|
|
a complex *subclass* instance as-is, hence the restriction
|
|
to exact complexes here. If either the input or the
|
|
output is a complex subclass, it will be handled below
|
|
as a non-orthogonal vector. */
|
|
Py_INCREF(r);
|
|
return r;
|
|
}
|
|
if (PyString_Check(r) || PyUnicode_Check(r)) {
|
|
if (i != NULL) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() can't take second arg"
|
|
" if first is a string");
|
|
return NULL;
|
|
}
|
|
return complex_subtype_from_string(type, r);
|
|
}
|
|
if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() second arg can't be a string");
|
|
return NULL;
|
|
}
|
|
|
|
/* XXX Hack to support classes with __complex__ method */
|
|
if (complexstr == NULL) {
|
|
complexstr = PyUnicode_InternFromString("__complex__");
|
|
if (complexstr == NULL)
|
|
return NULL;
|
|
}
|
|
f = PyObject_GetAttr(r, complexstr);
|
|
if (f == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
PyObject *args = PyTuple_New(0);
|
|
if (args == NULL)
|
|
return NULL;
|
|
r = PyEval_CallObject(f, args);
|
|
Py_DECREF(args);
|
|
Py_DECREF(f);
|
|
if (r == NULL)
|
|
return NULL;
|
|
own_r = 1;
|
|
}
|
|
nbr = r->ob_type->tp_as_number;
|
|
if (i != NULL)
|
|
nbi = i->ob_type->tp_as_number;
|
|
if (nbr == NULL || nbr->nb_float == NULL ||
|
|
((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() argument must be a string or a number");
|
|
if (own_r) {
|
|
Py_DECREF(r);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* If we get this far, then the "real" and "imag" parts should
|
|
both be treated as numbers, and the constructor should return a
|
|
complex number equal to (real + imag*1j).
|
|
|
|
Note that we do NOT assume the input to already be in canonical
|
|
form; the "real" and "imag" parts might themselves be complex
|
|
numbers, which slightly complicates the code below. */
|
|
if (PyComplex_Check(r)) {
|
|
/* Note that if r is of a complex subtype, we're only
|
|
retaining its real & imag parts here, and the return
|
|
value is (properly) of the builtin complex type. */
|
|
cr = ((PyComplexObject*)r)->cval;
|
|
if (own_r) {
|
|
Py_DECREF(r);
|
|
}
|
|
}
|
|
else {
|
|
/* The "real" part really is entirely real, and contributes
|
|
nothing in the imaginary direction.
|
|
Just treat it as a double. */
|
|
cr.imag = 0.0;
|
|
tmp = PyNumber_Float(r);
|
|
if (own_r) {
|
|
/* r was a newly created complex number, rather
|
|
than the original "real" argument. */
|
|
Py_DECREF(r);
|
|
}
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
if (!PyFloat_Check(tmp)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"float(r) didn't return a float");
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
cr.real = PyFloat_AsDouble(tmp);
|
|
Py_DECREF(tmp);
|
|
}
|
|
if (i == NULL) {
|
|
ci.real = 0.0;
|
|
ci.imag = 0.0;
|
|
}
|
|
else if (PyComplex_Check(i))
|
|
ci = ((PyComplexObject*)i)->cval;
|
|
else {
|
|
/* The "imag" part really is entirely imaginary, and
|
|
contributes nothing in the real direction.
|
|
Just treat it as a double. */
|
|
ci.imag = 0.0;
|
|
tmp = (*nbi->nb_float)(i);
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
ci.real = PyFloat_AsDouble(tmp);
|
|
Py_DECREF(tmp);
|
|
}
|
|
/* If the input was in canonical form, then the "real" and "imag"
|
|
parts are real numbers, so that ci.real and cr.imag are zero.
|
|
We need this correction in case they were not real numbers. */
|
|
cr.real -= ci.imag;
|
|
cr.imag += ci.real;
|
|
return complex_subtype_from_c_complex(type, cr);
|
|
}
|
|
|
|
PyDoc_STRVAR(complex_doc,
|
|
"complex(real[, imag]) -> complex number\n"
|
|
"\n"
|
|
"Create a complex number from a real part and an optional imaginary part.\n"
|
|
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
|
|
|
|
static PyNumberMethods complex_as_number = {
|
|
(binaryfunc)complex_add, /* nb_add */
|
|
(binaryfunc)complex_sub, /* nb_subtract */
|
|
(binaryfunc)complex_mul, /* nb_multiply */
|
|
(binaryfunc)complex_remainder, /* nb_remainder */
|
|
(binaryfunc)complex_divmod, /* nb_divmod */
|
|
(ternaryfunc)complex_pow, /* nb_power */
|
|
(unaryfunc)complex_neg, /* nb_negative */
|
|
(unaryfunc)complex_pos, /* nb_positive */
|
|
(unaryfunc)complex_abs, /* nb_absolute */
|
|
(inquiry)complex_bool, /* nb_bool */
|
|
0, /* nb_invert */
|
|
0, /* nb_lshift */
|
|
0, /* nb_rshift */
|
|
0, /* nb_and */
|
|
0, /* nb_xor */
|
|
0, /* nb_or */
|
|
(coercion)0, /* nb_coerce */
|
|
complex_int, /* nb_int */
|
|
complex_long, /* nb_long */
|
|
complex_float, /* nb_float */
|
|
0, /* nb_oct */
|
|
0, /* nb_hex */
|
|
0, /* nb_inplace_add */
|
|
0, /* nb_inplace_subtract */
|
|
0, /* nb_inplace_multiply*/
|
|
0, /* nb_inplace_remainder */
|
|
0, /* nb_inplace_power */
|
|
0, /* nb_inplace_lshift */
|
|
0, /* nb_inplace_rshift */
|
|
0, /* nb_inplace_and */
|
|
0, /* nb_inplace_xor */
|
|
0, /* nb_inplace_or */
|
|
(binaryfunc)complex_int_div, /* nb_floor_divide */
|
|
(binaryfunc)complex_div, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
};
|
|
|
|
PyTypeObject PyComplex_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"complex",
|
|
sizeof(PyComplexObject),
|
|
0,
|
|
complex_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_compare */
|
|
(reprfunc)complex_repr, /* tp_repr */
|
|
&complex_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)complex_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)complex_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
complex_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
complex_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
complex_methods, /* tp_methods */
|
|
complex_members, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
complex_new, /* tp_new */
|
|
PyObject_Del, /* tp_free */
|
|
};
|
|
|
|
#endif
|