392 lines
13 KiB
TeX
392 lines
13 KiB
TeX
\section{\module{collections} ---
|
|
High-performance container datatypes}
|
|
|
|
\declaremodule{standard}{collections}
|
|
\modulesynopsis{High-performance datatypes}
|
|
\moduleauthor{Raymond Hettinger}{python@rcn.com}
|
|
\sectionauthor{Raymond Hettinger}{python@rcn.com}
|
|
\versionadded{2.4}
|
|
|
|
|
|
This module implements high-performance container datatypes. Currently,
|
|
there are two datatypes, deque and defaultdict, and one datatype factory
|
|
function, \function{NamedTuple}.
|
|
Future additions may include balanced trees and ordered dictionaries.
|
|
\versionchanged[Added defaultdict]{2.5}
|
|
\versionchanged[Added NamedTuple]{2.6}
|
|
|
|
\subsection{\class{deque} objects \label{deque-objects}}
|
|
|
|
\begin{classdesc}{deque}{\optional{iterable}}
|
|
Returns a new deque object initialized left-to-right (using
|
|
\method{append()}) with data from \var{iterable}. If \var{iterable}
|
|
is not specified, the new deque is empty.
|
|
|
|
Deques are a generalization of stacks and queues (the name is pronounced
|
|
``deck'' and is short for ``double-ended queue''). Deques support
|
|
thread-safe, memory efficient appends and pops from either side of the deque
|
|
with approximately the same \code{O(1)} performance in either direction.
|
|
|
|
Though \class{list} objects support similar operations, they are optimized
|
|
for fast fixed-length operations and incur \code{O(n)} memory movement costs
|
|
for \samp{pop(0)} and \samp{insert(0, v)} operations which change both the
|
|
size and position of the underlying data representation.
|
|
\versionadded{2.4}
|
|
\end{classdesc}
|
|
|
|
Deque objects support the following methods:
|
|
|
|
\begin{methoddesc}{append}{x}
|
|
Add \var{x} to the right side of the deque.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{appendleft}{x}
|
|
Add \var{x} to the left side of the deque.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{clear}{}
|
|
Remove all elements from the deque leaving it with length 0.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{extend}{iterable}
|
|
Extend the right side of the deque by appending elements from
|
|
the iterable argument.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{extendleft}{iterable}
|
|
Extend the left side of the deque by appending elements from
|
|
\var{iterable}. Note, the series of left appends results in
|
|
reversing the order of elements in the iterable argument.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{pop}{}
|
|
Remove and return an element from the right side of the deque.
|
|
If no elements are present, raises an \exception{IndexError}.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{popleft}{}
|
|
Remove and return an element from the left side of the deque.
|
|
If no elements are present, raises an \exception{IndexError}.
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{remove}{value}
|
|
Removed the first occurrence of \var{value}. If not found,
|
|
raises a \exception{ValueError}.
|
|
\versionadded{2.5}
|
|
\end{methoddesc}
|
|
|
|
\begin{methoddesc}{rotate}{n}
|
|
Rotate the deque \var{n} steps to the right. If \var{n} is
|
|
negative, rotate to the left. Rotating one step to the right
|
|
is equivalent to: \samp{d.appendleft(d.pop())}.
|
|
\end{methoddesc}
|
|
|
|
In addition to the above, deques support iteration, pickling, \samp{len(d)},
|
|
\samp{reversed(d)}, \samp{copy.copy(d)}, \samp{copy.deepcopy(d)},
|
|
membership testing with the \keyword{in} operator, and subscript references
|
|
such as \samp{d[-1]}.
|
|
|
|
Example:
|
|
|
|
\begin{verbatim}
|
|
>>> from collections import deque
|
|
>>> d = deque('ghi') # make a new deque with three items
|
|
>>> for elem in d: # iterate over the deque's elements
|
|
... print elem.upper()
|
|
G
|
|
H
|
|
I
|
|
|
|
>>> d.append('j') # add a new entry to the right side
|
|
>>> d.appendleft('f') # add a new entry to the left side
|
|
>>> d # show the representation of the deque
|
|
deque(['f', 'g', 'h', 'i', 'j'])
|
|
|
|
>>> d.pop() # return and remove the rightmost item
|
|
'j'
|
|
>>> d.popleft() # return and remove the leftmost item
|
|
'f'
|
|
>>> list(d) # list the contents of the deque
|
|
['g', 'h', 'i']
|
|
>>> d[0] # peek at leftmost item
|
|
'g'
|
|
>>> d[-1] # peek at rightmost item
|
|
'i'
|
|
|
|
>>> list(reversed(d)) # list the contents of a deque in reverse
|
|
['i', 'h', 'g']
|
|
>>> 'h' in d # search the deque
|
|
True
|
|
>>> d.extend('jkl') # add multiple elements at once
|
|
>>> d
|
|
deque(['g', 'h', 'i', 'j', 'k', 'l'])
|
|
>>> d.rotate(1) # right rotation
|
|
>>> d
|
|
deque(['l', 'g', 'h', 'i', 'j', 'k'])
|
|
>>> d.rotate(-1) # left rotation
|
|
>>> d
|
|
deque(['g', 'h', 'i', 'j', 'k', 'l'])
|
|
|
|
>>> deque(reversed(d)) # make a new deque in reverse order
|
|
deque(['l', 'k', 'j', 'i', 'h', 'g'])
|
|
>>> d.clear() # empty the deque
|
|
>>> d.pop() # cannot pop from an empty deque
|
|
Traceback (most recent call last):
|
|
File "<pyshell#6>", line 1, in -toplevel-
|
|
d.pop()
|
|
IndexError: pop from an empty deque
|
|
|
|
>>> d.extendleft('abc') # extendleft() reverses the input order
|
|
>>> d
|
|
deque(['c', 'b', 'a'])
|
|
\end{verbatim}
|
|
|
|
\subsubsection{Recipes \label{deque-recipes}}
|
|
|
|
This section shows various approaches to working with deques.
|
|
|
|
The \method{rotate()} method provides a way to implement \class{deque}
|
|
slicing and deletion. For example, a pure python implementation of
|
|
\code{del d[n]} relies on the \method{rotate()} method to position
|
|
elements to be popped:
|
|
|
|
\begin{verbatim}
|
|
def delete_nth(d, n):
|
|
d.rotate(-n)
|
|
d.popleft()
|
|
d.rotate(n)
|
|
\end{verbatim}
|
|
|
|
To implement \class{deque} slicing, use a similar approach applying
|
|
\method{rotate()} to bring a target element to the left side of the deque.
|
|
Remove old entries with \method{popleft()}, add new entries with
|
|
\method{extend()}, and then reverse the rotation.
|
|
|
|
With minor variations on that approach, it is easy to implement Forth style
|
|
stack manipulations such as \code{dup}, \code{drop}, \code{swap}, \code{over},
|
|
\code{pick}, \code{rot}, and \code{roll}.
|
|
|
|
A roundrobin task server can be built from a \class{deque} using
|
|
\method{popleft()} to select the current task and \method{append()}
|
|
to add it back to the tasklist if the input stream is not exhausted:
|
|
|
|
\begin{verbatim}
|
|
def roundrobin(*iterables):
|
|
pending = deque(iter(i) for i in iterables)
|
|
while pending:
|
|
task = pending.popleft()
|
|
try:
|
|
yield task.next()
|
|
except StopIteration:
|
|
continue
|
|
pending.append(task)
|
|
|
|
>>> for value in roundrobin('abc', 'd', 'efgh'):
|
|
... print value
|
|
|
|
a
|
|
d
|
|
e
|
|
b
|
|
f
|
|
c
|
|
g
|
|
h
|
|
|
|
\end{verbatim}
|
|
|
|
|
|
Multi-pass data reduction algorithms can be succinctly expressed and
|
|
efficiently coded by extracting elements with multiple calls to
|
|
\method{popleft()}, applying the reduction function, and calling
|
|
\method{append()} to add the result back to the queue.
|
|
|
|
For example, building a balanced binary tree of nested lists entails
|
|
reducing two adjacent nodes into one by grouping them in a list:
|
|
|
|
\begin{verbatim}
|
|
def maketree(iterable):
|
|
d = deque(iterable)
|
|
while len(d) > 1:
|
|
pair = [d.popleft(), d.popleft()]
|
|
d.append(pair)
|
|
return list(d)
|
|
|
|
>>> print maketree('abcdefgh')
|
|
[[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
|
|
|
|
\end{verbatim}
|
|
|
|
|
|
|
|
\subsection{\class{defaultdict} objects \label{defaultdict-objects}}
|
|
|
|
\begin{funcdesc}{defaultdict}{\optional{default_factory\optional{, ...}}}
|
|
Returns a new dictionary-like object. \class{defaultdict} is a subclass
|
|
of the builtin \class{dict} class. It overrides one method and adds one
|
|
writable instance variable. The remaining functionality is the same as
|
|
for the \class{dict} class and is not documented here.
|
|
|
|
The first argument provides the initial value for the
|
|
\member{default_factory} attribute; it defaults to \code{None}.
|
|
All remaining arguments are treated the same as if they were
|
|
passed to the \class{dict} constructor, including keyword arguments.
|
|
|
|
\versionadded{2.5}
|
|
\end{funcdesc}
|
|
|
|
\class{defaultdict} objects support the following method in addition to
|
|
the standard \class{dict} operations:
|
|
|
|
\begin{methoddesc}{__missing__}{key}
|
|
If the \member{default_factory} attribute is \code{None}, this raises
|
|
an \exception{KeyError} exception with the \var{key} as argument.
|
|
|
|
If \member{default_factory} is not \code{None}, it is called without
|
|
arguments to provide a default value for the given \var{key}, this
|
|
value is inserted in the dictionary for the \var{key}, and returned.
|
|
|
|
If calling \member{default_factory} raises an exception this exception
|
|
is propagated unchanged.
|
|
|
|
This method is called by the \method{__getitem__} method of the
|
|
\class{dict} class when the requested key is not found; whatever it
|
|
returns or raises is then returned or raised by \method{__getitem__}.
|
|
\end{methoddesc}
|
|
|
|
\class{defaultdict} objects support the following instance variable:
|
|
|
|
\begin{datadesc}{default_factory}
|
|
This attribute is used by the \method{__missing__} method; it is initialized
|
|
from the first argument to the constructor, if present, or to \code{None},
|
|
if absent.
|
|
\end{datadesc}
|
|
|
|
|
|
\subsubsection{\class{defaultdict} Examples \label{defaultdict-examples}}
|
|
|
|
Using \class{list} as the \member{default_factory}, it is easy to group
|
|
a sequence of key-value pairs into a dictionary of lists:
|
|
|
|
\begin{verbatim}
|
|
>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
|
|
>>> d = defaultdict(list)
|
|
>>> for k, v in s:
|
|
d[k].append(v)
|
|
|
|
>>> d.items()
|
|
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
|
|
\end{verbatim}
|
|
|
|
When each key is encountered for the first time, it is not already in the
|
|
mapping; so an entry is automatically created using the
|
|
\member{default_factory} function which returns an empty \class{list}. The
|
|
\method{list.append()} operation then attaches the value to the new list. When
|
|
keys are encountered again, the look-up proceeds normally (returning the list
|
|
for that key) and the \method{list.append()} operation adds another value to
|
|
the list. This technique is simpler and faster than an equivalent technique
|
|
using \method{dict.setdefault()}:
|
|
|
|
\begin{verbatim}
|
|
>>> d = {}
|
|
>>> for k, v in s:
|
|
d.setdefault(k, []).append(v)
|
|
|
|
>>> d.items()
|
|
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
|
|
\end{verbatim}
|
|
|
|
Setting the \member{default_factory} to \class{int} makes the
|
|
\class{defaultdict} useful for counting (like a bag or multiset in other
|
|
languages):
|
|
|
|
\begin{verbatim}
|
|
>>> s = 'mississippi'
|
|
>>> d = defaultdict(int)
|
|
>>> for k in s:
|
|
d[k] += 1
|
|
|
|
>>> d.items()
|
|
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]
|
|
\end{verbatim}
|
|
|
|
When a letter is first encountered, it is missing from the mapping, so the
|
|
\member{default_factory} function calls \function{int()} to supply a default
|
|
count of zero. The increment operation then builds up the count for each
|
|
letter.
|
|
|
|
The function \function{int()} which always returns zero is just a special
|
|
case of constant functions. A faster and more flexible way to create
|
|
constant functions is to use \function{itertools.repeat()} which can supply
|
|
any constant value (not just zero):
|
|
|
|
\begin{verbatim}
|
|
>>> def constant_factory(value):
|
|
... return itertools.repeat(value).next
|
|
>>> d = defaultdict(constant_factory('<missing>'))
|
|
>>> d.update(name='John', action='ran')
|
|
>>> '%(name)s %(action)s to %(object)s' % d
|
|
'John ran to <missing>'
|
|
\end{verbatim}
|
|
|
|
Setting the \member{default_factory} to \class{set} makes the
|
|
\class{defaultdict} useful for building a dictionary of sets:
|
|
|
|
\begin{verbatim}
|
|
>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
|
|
>>> d = defaultdict(set)
|
|
>>> for k, v in s:
|
|
d[k].add(v)
|
|
|
|
>>> d.items()
|
|
[('blue', set([2, 4])), ('red', set([1, 3]))]
|
|
\end{verbatim}
|
|
|
|
|
|
|
|
\subsection{\function{NamedTuple} datatype factory function \label{named-tuple-factory}}
|
|
|
|
\begin{funcdesc}{NamedTuple}{typename, fieldnames}
|
|
Returns a new tuple subclass named \var{typename}. The new subclass is used
|
|
to create tuple-like objects that have fields accessable by attribute
|
|
lookup as well as being indexable and iterable. Instances of the subclass
|
|
also have a helpful docstring (with typename and fieldnames) and a helpful
|
|
\method{__repr__()} method which lists the tuple contents in a \code{name=value}
|
|
format.
|
|
\versionadded{2.6}
|
|
|
|
The \var{fieldnames} are specified in a single string and are separated by spaces.
|
|
Any valid Python identifier may be used for a field name.
|
|
|
|
Example:
|
|
\begin{verbatim}
|
|
>>> Point = NamedTuple('Point', 'x y')
|
|
>>> Point.__doc__ # docstring for the new datatype
|
|
'Point(x, y)'
|
|
>>> p = Point(11, y=22) # instantiate with positional or keyword arguments
|
|
>>> p[0] + p[1] # works just like the tuple (11, 22)
|
|
33
|
|
>>> x, y = p # unpacks just like a tuple
|
|
>>> x, y
|
|
(11, 22)
|
|
>>> p.x + p.y # fields also accessable by name
|
|
33
|
|
>>> p # readable __repr__ with name=value style
|
|
Point(x=11, y=22)
|
|
\end{verbatim}
|
|
|
|
The use cases are the same as those for tuples. The named factories
|
|
assign meaning to each tuple position and allow for more readable,
|
|
self-documenting code. Named tuples can also be used to assign field names
|
|
to tuples
|
|
returned by the \module{csv} or \module{sqlite3} modules. For example:
|
|
|
|
\begin{verbatim}
|
|
import csv
|
|
EmployeeRecord = NamedTuple('EmployeeRecord', 'name age title department paygrade')
|
|
for tup in csv.reader(open("employees.csv", "rb")):
|
|
print EmployeeRecord(*tup)
|
|
\end{verbatim}
|
|
|
|
\end{funcdesc}
|