cpython/Include/cpython/abstract.h

272 lines
11 KiB
C

#ifndef Py_CPYTHON_ABSTRACTOBJECT_H
# error "this header file must not be included directly"
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* === Object Protocol ================================================== */
#ifdef PY_SSIZE_T_CLEAN
# define _PyObject_CallMethodId _PyObject_CallMethodId_SizeT
#endif
/* Convert keyword arguments from the FASTCALL (stack: C array, kwnames: tuple)
format to a Python dictionary ("kwargs" dict).
The type of kwnames keys is not checked. The final function getting
arguments is responsible to check if all keys are strings, for example using
PyArg_ParseTupleAndKeywords() or PyArg_ValidateKeywordArguments().
Duplicate keys are merged using the last value. If duplicate keys must raise
an exception, the caller is responsible to implement an explicit keys on
kwnames. */
PyAPI_FUNC(PyObject *) _PyStack_AsDict(
PyObject *const *values,
PyObject *kwnames);
/* Convert (args, nargs, kwargs: dict) into a (stack, nargs, kwnames: tuple).
Return 0 on success, raise an exception and return -1 on error.
Write the new stack into *p_stack. If *p_stack is differen than args, it
must be released by PyMem_Free().
The stack uses borrowed references.
The type of keyword keys is not checked, these checks should be done
later (ex: _PyArg_ParseStackAndKeywords). */
PyAPI_FUNC(int) _PyStack_UnpackDict(
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwargs,
PyObject *const **p_stack,
PyObject **p_kwnames);
/* Suggested size (number of positional arguments) for arrays of PyObject*
allocated on a C stack to avoid allocating memory on the heap memory. Such
array is used to pass positional arguments to call functions of the
_PyObject_FastCall() family.
The size is chosen to not abuse the C stack and so limit the risk of stack
overflow. The size is also chosen to allow using the small stack for most
function calls of the Python standard library. On 64-bit CPU, it allocates
40 bytes on the stack. */
#define _PY_FASTCALL_SMALL_STACK 5
/* Return 1 if callable supports FASTCALL calling convention for positional
arguments: see _PyObject_FastCallDict() and _PyObject_FastCallKeywords() */
PyAPI_FUNC(int) _PyObject_HasFastCall(PyObject *callable);
/* Call the callable object 'callable' with the "fast call" calling convention:
args is a C array for positional arguments (nargs is the number of
positional arguments), kwargs is a dictionary for keyword arguments.
If nargs is equal to zero, args can be NULL. kwargs can be NULL.
nargs must be greater or equal to zero.
Return the result on success. Raise an exception on return NULL on
error. */
PyAPI_FUNC(PyObject *) _PyObject_FastCallDict(
PyObject *callable,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwargs);
/* Call the callable object 'callable' with the "fast call" calling convention:
args is a C array for positional arguments followed by values of
keyword arguments. Keys of keyword arguments are stored as a tuple
of strings in kwnames. nargs is the number of positional parameters at
the beginning of stack. The size of kwnames gives the number of keyword
values in the stack after positional arguments.
kwnames must only contains str strings, no subclass, and all keys must
be unique.
If nargs is equal to zero and there is no keyword argument (kwnames is
NULL or its size is zero), args can be NULL.
Return the result on success. Raise an exception and return NULL on
error. */
PyAPI_FUNC(PyObject *) _PyObject_FastCallKeywords(
PyObject *callable,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames);
#define _PyObject_FastCall(func, args, nargs) \
_PyObject_FastCallDict((func), (args), (nargs), NULL)
#define _PyObject_CallNoArg(func) \
_PyObject_FastCallDict((func), NULL, 0, NULL)
PyAPI_FUNC(PyObject *) _PyObject_Call_Prepend(
PyObject *callable,
PyObject *obj,
PyObject *args,
PyObject *kwargs);
PyAPI_FUNC(PyObject *) _PyObject_FastCall_Prepend(
PyObject *callable,
PyObject *obj,
PyObject *const *args,
Py_ssize_t nargs);
PyAPI_FUNC(PyObject *) _Py_CheckFunctionResult(PyObject *callable,
PyObject *result,
const char *where);
/* Like PyObject_CallMethod(), but expect a _Py_Identifier*
as the method name. */
PyAPI_FUNC(PyObject *) _PyObject_CallMethodId(PyObject *obj,
_Py_Identifier *name,
const char *format, ...);
PyAPI_FUNC(PyObject *) _PyObject_CallMethodId_SizeT(PyObject *obj,
_Py_Identifier *name,
const char *format,
...);
PyAPI_FUNC(PyObject *) _PyObject_CallMethodIdObjArgs(
PyObject *obj,
struct _Py_Identifier *name,
...);
PyAPI_FUNC(int) _PyObject_HasLen(PyObject *o);
/* Guess the size of object 'o' using len(o) or o.__length_hint__().
If neither of those return a non-negative value, then return the default
value. If one of the calls fails, this function returns -1. */
PyAPI_FUNC(Py_ssize_t) PyObject_LengthHint(PyObject *o, Py_ssize_t);
/* === New Buffer API ============================================ */
/* Return 1 if the getbuffer function is available, otherwise return 0. */
#define PyObject_CheckBuffer(obj) \
(((obj)->ob_type->tp_as_buffer != NULL) && \
((obj)->ob_type->tp_as_buffer->bf_getbuffer != NULL))
/* This is a C-API version of the getbuffer function call. It checks
to make sure object has the required function pointer and issues the
call.
Returns -1 and raises an error on failure and returns 0 on success. */
PyAPI_FUNC(int) PyObject_GetBuffer(PyObject *obj, Py_buffer *view,
int flags);
/* Get the memory area pointed to by the indices for the buffer given.
Note that view->ndim is the assumed size of indices. */
PyAPI_FUNC(void *) PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices);
/* Return the implied itemsize of the data-format area from a
struct-style description. */
PyAPI_FUNC(int) PyBuffer_SizeFromFormat(const char *);
/* Implementation in memoryobject.c */
PyAPI_FUNC(int) PyBuffer_ToContiguous(void *buf, Py_buffer *view,
Py_ssize_t len, char order);
PyAPI_FUNC(int) PyBuffer_FromContiguous(Py_buffer *view, void *buf,
Py_ssize_t len, char order);
/* Copy len bytes of data from the contiguous chunk of memory
pointed to by buf into the buffer exported by obj. Return
0 on success and return -1 and raise a PyBuffer_Error on
error (i.e. the object does not have a buffer interface or
it is not working).
If fort is 'F', then if the object is multi-dimensional,
then the data will be copied into the array in
Fortran-style (first dimension varies the fastest). If
fort is 'C', then the data will be copied into the array
in C-style (last dimension varies the fastest). If fort
is 'A', then it does not matter and the copy will be made
in whatever way is more efficient. */
PyAPI_FUNC(int) PyObject_CopyData(PyObject *dest, PyObject *src);
/* Copy the data from the src buffer to the buffer of destination. */
PyAPI_FUNC(int) PyBuffer_IsContiguous(const Py_buffer *view, char fort);
/*Fill the strides array with byte-strides of a contiguous
(Fortran-style if fort is 'F' or C-style otherwise)
array of the given shape with the given number of bytes
per element. */
PyAPI_FUNC(void) PyBuffer_FillContiguousStrides(int ndims,
Py_ssize_t *shape,
Py_ssize_t *strides,
int itemsize,
char fort);
/* Fills in a buffer-info structure correctly for an exporter
that can only share a contiguous chunk of memory of
"unsigned bytes" of the given length.
Returns 0 on success and -1 (with raising an error) on error. */
PyAPI_FUNC(int) PyBuffer_FillInfo(Py_buffer *view, PyObject *o, void *buf,
Py_ssize_t len, int readonly,
int flags);
/* Releases a Py_buffer obtained from getbuffer ParseTuple's "s*". */
PyAPI_FUNC(void) PyBuffer_Release(Py_buffer *view);
/* ==== Iterators ================================================ */
#define PyIter_Check(obj) \
((obj)->ob_type->tp_iternext != NULL && \
(obj)->ob_type->tp_iternext != &_PyObject_NextNotImplemented)
/* === Number Protocol ================================================== */
#define PyIndex_Check(obj) \
((obj)->ob_type->tp_as_number != NULL && \
(obj)->ob_type->tp_as_number->nb_index != NULL)
/* === Sequence protocol ================================================ */
/* Assume tp_as_sequence and sq_item exist and that 'i' does not
need to be corrected for a negative index. */
#define PySequence_ITEM(o, i)\
( Py_TYPE(o)->tp_as_sequence->sq_item(o, i) )
#define PY_ITERSEARCH_COUNT 1
#define PY_ITERSEARCH_INDEX 2
#define PY_ITERSEARCH_CONTAINS 3
/* Iterate over seq.
Result depends on the operation:
PY_ITERSEARCH_COUNT: return # of times obj appears in seq; -1 if
error.
PY_ITERSEARCH_INDEX: return 0-based index of first occurrence of
obj in seq; set ValueError and return -1 if none found;
also return -1 on error.
PY_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on
error. */
PyAPI_FUNC(Py_ssize_t) _PySequence_IterSearch(PyObject *seq,
PyObject *obj, int operation);
/* === Mapping protocol ================================================= */
PyAPI_FUNC(int) _PyObject_RealIsInstance(PyObject *inst, PyObject *cls);
PyAPI_FUNC(int) _PyObject_RealIsSubclass(PyObject *derived, PyObject *cls);
PyAPI_FUNC(char *const *) _PySequence_BytesToCharpArray(PyObject* self);
PyAPI_FUNC(void) _Py_FreeCharPArray(char *const array[]);
/* For internal use by buffer API functions */
PyAPI_FUNC(void) _Py_add_one_to_index_F(int nd, Py_ssize_t *index,
const Py_ssize_t *shape);
PyAPI_FUNC(void) _Py_add_one_to_index_C(int nd, Py_ssize_t *index,
const Py_ssize_t *shape);
/* Convert Python int to Py_ssize_t. Do nothing if the argument is None. */
PyAPI_FUNC(int) _Py_convert_optional_to_ssize_t(PyObject *, void *);
#ifdef __cplusplus
}
#endif