132 lines
4.5 KiB
C
132 lines
4.5 KiB
C
/* statistics accelerator C extension: _statistics module. */
|
||
|
||
#include "Python.h"
|
||
#include "structmember.h"
|
||
#include "clinic/_statisticsmodule.c.h"
|
||
|
||
/*[clinic input]
|
||
module _statistics
|
||
|
||
[clinic start generated code]*/
|
||
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/
|
||
|
||
/*
|
||
* There is no closed-form solution to the inverse CDF for the normal
|
||
* distribution, so we use a rational approximation instead:
|
||
* Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||
* Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||
* (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||
*/
|
||
|
||
/*[clinic input]
|
||
_statistics._normal_dist_inv_cdf -> double
|
||
p: double
|
||
mu: double
|
||
sigma: double
|
||
/
|
||
[clinic start generated code]*/
|
||
|
||
static double
|
||
_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu,
|
||
double sigma)
|
||
/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/
|
||
{
|
||
double q, num, den, r, x;
|
||
q = p - 0.5;
|
||
// Algorithm AS 241: The Percentage Points of the Normal Distribution
|
||
if(fabs(q) <= 0.425) {
|
||
r = 0.180625 - q * q;
|
||
// Hash sum-55.8831928806149014439
|
||
num = (((((((2.5090809287301226727e+3 * r +
|
||
3.3430575583588128105e+4) * r +
|
||
6.7265770927008700853e+4) * r +
|
||
4.5921953931549871457e+4) * r +
|
||
1.3731693765509461125e+4) * r +
|
||
1.9715909503065514427e+3) * r +
|
||
1.3314166789178437745e+2) * r +
|
||
3.3871328727963666080e+0) * q;
|
||
den = (((((((5.2264952788528545610e+3 * r +
|
||
2.8729085735721942674e+4) * r +
|
||
3.9307895800092710610e+4) * r +
|
||
2.1213794301586595867e+4) * r +
|
||
5.3941960214247511077e+3) * r +
|
||
6.8718700749205790830e+2) * r +
|
||
4.2313330701600911252e+1) * r +
|
||
1.0);
|
||
x = num / den;
|
||
return mu + (x * sigma);
|
||
}
|
||
r = (q <= 0.0) ? p : (1.0 - p);
|
||
r = sqrt(-log(r));
|
||
if (r <= 5.0) {
|
||
r = r - 1.6;
|
||
// Hash sum-49.33206503301610289036
|
||
num = (((((((7.74545014278341407640e-4 * r +
|
||
2.27238449892691845833e-2) * r +
|
||
2.41780725177450611770e-1) * r +
|
||
1.27045825245236838258e+0) * r +
|
||
3.64784832476320460504e+0) * r +
|
||
5.76949722146069140550e+0) * r +
|
||
4.63033784615654529590e+0) * r +
|
||
1.42343711074968357734e+0);
|
||
den = (((((((1.05075007164441684324e-9 * r +
|
||
5.47593808499534494600e-4) * r +
|
||
1.51986665636164571966e-2) * r +
|
||
1.48103976427480074590e-1) * r +
|
||
6.89767334985100004550e-1) * r +
|
||
1.67638483018380384940e+0) * r +
|
||
2.05319162663775882187e+0) * r +
|
||
1.0);
|
||
} else {
|
||
r -= 5.0;
|
||
// Hash sum-47.52583317549289671629
|
||
num = (((((((2.01033439929228813265e-7 * r +
|
||
2.71155556874348757815e-5) * r +
|
||
1.24266094738807843860e-3) * r +
|
||
2.65321895265761230930e-2) * r +
|
||
2.96560571828504891230e-1) * r +
|
||
1.78482653991729133580e+0) * r +
|
||
5.46378491116411436990e+0) * r +
|
||
6.65790464350110377720e+0);
|
||
den = (((((((2.04426310338993978564e-15 * r +
|
||
1.42151175831644588870e-7) * r +
|
||
1.84631831751005468180e-5) * r +
|
||
7.86869131145613259100e-4) * r +
|
||
1.48753612908506148525e-2) * r +
|
||
1.36929880922735805310e-1) * r +
|
||
5.99832206555887937690e-1) * r +
|
||
1.0);
|
||
}
|
||
x = num / den;
|
||
if (q < 0.0) {
|
||
x = -x;
|
||
}
|
||
return mu + (x * sigma);
|
||
}
|
||
|
||
|
||
static PyMethodDef statistics_methods[] = {
|
||
_STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF
|
||
{NULL, NULL, 0, NULL}
|
||
};
|
||
|
||
static struct PyModuleDef statisticsmodule = {
|
||
PyModuleDef_HEAD_INIT,
|
||
"_statistics",
|
||
_statistics__normal_dist_inv_cdf__doc__,
|
||
-1,
|
||
statistics_methods,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL
|
||
};
|
||
|
||
PyMODINIT_FUNC
|
||
PyInit__statistics(void)
|
||
{
|
||
PyObject *m = PyModule_Create(&statisticsmodule);
|
||
if (!m) return NULL;
|
||
return m;
|
||
}
|