885 lines
28 KiB
C++
885 lines
28 KiB
C++
/*
|
|
* Copyright (c) 2001-2012 Python Software Foundation. All Rights Reserved.
|
|
* Modified and extended by Stefan Krah.
|
|
*/
|
|
|
|
|
|
#ifndef DOCSTRINGS_H
|
|
#define DOCSTRINGS_H
|
|
|
|
|
|
#include "pymacro.h"
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Module */
|
|
/******************************************************************************/
|
|
|
|
|
|
PyDoc_STRVAR(doc__decimal,
|
|
"C decimal arithmetic module");
|
|
|
|
PyDoc_STRVAR(doc_getcontext,
|
|
"getcontext($module, /)\n--\n\n\
|
|
Get the current default context.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_setcontext,
|
|
"setcontext($module, context, /)\n--\n\n\
|
|
Set a new default context.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_localcontext,
|
|
"localcontext($module, /, ctx=None)\n--\n\n\
|
|
Return a context manager that will set the default context to a copy of ctx\n\
|
|
on entry to the with-statement and restore the previous default context when\n\
|
|
exiting the with-statement. If no context is specified, a copy of the current\n\
|
|
default context is used.\n\
|
|
\n");
|
|
|
|
#ifdef EXTRA_FUNCTIONALITY
|
|
PyDoc_STRVAR(doc_ieee_context,
|
|
"IEEEContext($module, bits, /)\n--\n\n\
|
|
Return a context object initialized to the proper values for one of the\n\
|
|
IEEE interchange formats. The argument must be a multiple of 32 and less\n\
|
|
than IEEE_CONTEXT_MAX_BITS. For the most common values, the constants\n\
|
|
DECIMAL32, DECIMAL64 and DECIMAL128 are provided.\n\
|
|
\n");
|
|
#endif
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Decimal Object and Methods */
|
|
/******************************************************************************/
|
|
|
|
PyDoc_STRVAR(doc_decimal,
|
|
"Decimal(value=\"0\", context=None)\n--\n\n\
|
|
Construct a new Decimal object. 'value' can be an integer, string, tuple,\n\
|
|
or another Decimal object. If no value is given, return Decimal('0'). The\n\
|
|
context does not affect the conversion and is only passed to determine if\n\
|
|
the InvalidOperation trap is active.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_adjusted,
|
|
"adjusted($self, /)\n--\n\n\
|
|
Return the adjusted exponent of the number. Defined as exp + digits - 1.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_as_tuple,
|
|
"as_tuple($self, /)\n--\n\n\
|
|
Return a tuple representation of the number.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_as_integer_ratio,
|
|
"as_integer_ratio($self, /)\n--\n\n\
|
|
Decimal.as_integer_ratio() -> (int, int)\n\
|
|
\n\
|
|
Return a pair of integers, whose ratio is exactly equal to the original\n\
|
|
Decimal and with a positive denominator. The ratio is in lowest terms.\n\
|
|
Raise OverflowError on infinities and a ValueError on NaNs.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_canonical,
|
|
"canonical($self, /)\n--\n\n\
|
|
Return the canonical encoding of the argument. Currently, the encoding\n\
|
|
of a Decimal instance is always canonical, so this operation returns its\n\
|
|
argument unchanged.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_compare,
|
|
"compare($self, /, other, context=None)\n--\n\n\
|
|
Compare self to other. Return a decimal value:\n\
|
|
\n\
|
|
a or b is a NaN ==> Decimal('NaN')\n\
|
|
a < b ==> Decimal('-1')\n\
|
|
a == b ==> Decimal('0')\n\
|
|
a > b ==> Decimal('1')\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_compare_signal,
|
|
"compare_signal($self, /, other, context=None)\n--\n\n\
|
|
Identical to compare, except that all NaNs signal.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_compare_total,
|
|
"compare_total($self, /, other, context=None)\n--\n\n\
|
|
Compare two operands using their abstract representation rather than\n\
|
|
their numerical value. Similar to the compare() method, but the result\n\
|
|
gives a total ordering on Decimal instances. Two Decimal instances with\n\
|
|
the same numeric value but different representations compare unequal\n\
|
|
in this ordering:\n\
|
|
\n\
|
|
>>> Decimal('12.0').compare_total(Decimal('12'))\n\
|
|
Decimal('-1')\n\
|
|
\n\
|
|
Quiet and signaling NaNs are also included in the total ordering. The result\n\
|
|
of this function is Decimal('0') if both operands have the same representation,\n\
|
|
Decimal('-1') if the first operand is lower in the total order than the second,\n\
|
|
and Decimal('1') if the first operand is higher in the total order than the\n\
|
|
second operand. See the specification for details of the total order.\n\
|
|
\n\
|
|
This operation is unaffected by context and is quiet: no flags are changed\n\
|
|
and no rounding is performed. As an exception, the C version may raise\n\
|
|
InvalidOperation if the second operand cannot be converted exactly.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_compare_total_mag,
|
|
"compare_total_mag($self, /, other, context=None)\n--\n\n\
|
|
Compare two operands using their abstract representation rather than their\n\
|
|
value as in compare_total(), but ignoring the sign of each operand.\n\
|
|
\n\
|
|
x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()).\n\
|
|
\n\
|
|
This operation is unaffected by context and is quiet: no flags are changed\n\
|
|
and no rounding is performed. As an exception, the C version may raise\n\
|
|
InvalidOperation if the second operand cannot be converted exactly.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_conjugate,
|
|
"conjugate($self, /)\n--\n\n\
|
|
Return self.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_copy_abs,
|
|
"copy_abs($self, /)\n--\n\n\
|
|
Return the absolute value of the argument. This operation is unaffected by\n\
|
|
context and is quiet: no flags are changed and no rounding is performed.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_copy_negate,
|
|
"copy_negate($self, /)\n--\n\n\
|
|
Return the negation of the argument. This operation is unaffected by context\n\
|
|
and is quiet: no flags are changed and no rounding is performed.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_copy_sign,
|
|
"copy_sign($self, /, other, context=None)\n--\n\n\
|
|
Return a copy of the first operand with the sign set to be the same as the\n\
|
|
sign of the second operand. For example:\n\
|
|
\n\
|
|
>>> Decimal('2.3').copy_sign(Decimal('-1.5'))\n\
|
|
Decimal('-2.3')\n\
|
|
\n\
|
|
This operation is unaffected by context and is quiet: no flags are changed\n\
|
|
and no rounding is performed. As an exception, the C version may raise\n\
|
|
InvalidOperation if the second operand cannot be converted exactly.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_exp,
|
|
"exp($self, /, context=None)\n--\n\n\
|
|
Return the value of the (natural) exponential function e**x at the given\n\
|
|
number. The function always uses the ROUND_HALF_EVEN mode and the result\n\
|
|
is correctly rounded.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_from_float,
|
|
"from_float($type, f, /)\n--\n\n\
|
|
Class method that converts a float to a decimal number, exactly.\n\
|
|
Since 0.1 is not exactly representable in binary floating point,\n\
|
|
Decimal.from_float(0.1) is not the same as Decimal('0.1').\n\
|
|
\n\
|
|
>>> Decimal.from_float(0.1)\n\
|
|
Decimal('0.1000000000000000055511151231257827021181583404541015625')\n\
|
|
>>> Decimal.from_float(float('nan'))\n\
|
|
Decimal('NaN')\n\
|
|
>>> Decimal.from_float(float('inf'))\n\
|
|
Decimal('Infinity')\n\
|
|
>>> Decimal.from_float(float('-inf'))\n\
|
|
Decimal('-Infinity')\n\
|
|
\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_fma,
|
|
"fma($self, /, other, third, context=None)\n--\n\n\
|
|
Fused multiply-add. Return self*other+third with no rounding of the\n\
|
|
intermediate product self*other.\n\
|
|
\n\
|
|
>>> Decimal(2).fma(3, 5)\n\
|
|
Decimal('11')\n\
|
|
\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_canonical,
|
|
"is_canonical($self, /)\n--\n\n\
|
|
Return True if the argument is canonical and False otherwise. Currently,\n\
|
|
a Decimal instance is always canonical, so this operation always returns\n\
|
|
True.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_finite,
|
|
"is_finite($self, /)\n--\n\n\
|
|
Return True if the argument is a finite number, and False if the argument\n\
|
|
is infinite or a NaN.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_infinite,
|
|
"is_infinite($self, /)\n--\n\n\
|
|
Return True if the argument is either positive or negative infinity and\n\
|
|
False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_nan,
|
|
"is_nan($self, /)\n--\n\n\
|
|
Return True if the argument is a (quiet or signaling) NaN and False\n\
|
|
otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_normal,
|
|
"is_normal($self, /, context=None)\n--\n\n\
|
|
Return True if the argument is a normal finite non-zero number with an\n\
|
|
adjusted exponent greater than or equal to Emin. Return False if the\n\
|
|
argument is zero, subnormal, infinite or a NaN.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_qnan,
|
|
"is_qnan($self, /)\n--\n\n\
|
|
Return True if the argument is a quiet NaN, and False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_signed,
|
|
"is_signed($self, /)\n--\n\n\
|
|
Return True if the argument has a negative sign and False otherwise.\n\
|
|
Note that both zeros and NaNs can carry signs.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_snan,
|
|
"is_snan($self, /)\n--\n\n\
|
|
Return True if the argument is a signaling NaN and False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_subnormal,
|
|
"is_subnormal($self, /, context=None)\n--\n\n\
|
|
Return True if the argument is subnormal, and False otherwise. A number is\n\
|
|
subnormal if it is non-zero, finite, and has an adjusted exponent less\n\
|
|
than Emin.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_is_zero,
|
|
"is_zero($self, /)\n--\n\n\
|
|
Return True if the argument is a (positive or negative) zero and False\n\
|
|
otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ln,
|
|
"ln($self, /, context=None)\n--\n\n\
|
|
Return the natural (base e) logarithm of the operand. The function always\n\
|
|
uses the ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_log10,
|
|
"log10($self, /, context=None)\n--\n\n\
|
|
Return the base ten logarithm of the operand. The function always uses the\n\
|
|
ROUND_HALF_EVEN mode and the result is correctly rounded.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_logb,
|
|
"logb($self, /, context=None)\n--\n\n\
|
|
For a non-zero number, return the adjusted exponent of the operand as a\n\
|
|
Decimal instance. If the operand is a zero, then Decimal('-Infinity') is\n\
|
|
returned and the DivisionByZero condition is raised. If the operand is\n\
|
|
an infinity then Decimal('Infinity') is returned.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_logical_and,
|
|
"logical_and($self, /, other, context=None)\n--\n\n\
|
|
Return the digit-wise 'and' of the two (logical) operands.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_logical_invert,
|
|
"logical_invert($self, /, context=None)\n--\n\n\
|
|
Return the digit-wise inversion of the (logical) operand.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_logical_or,
|
|
"logical_or($self, /, other, context=None)\n--\n\n\
|
|
Return the digit-wise 'or' of the two (logical) operands.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_logical_xor,
|
|
"logical_xor($self, /, other, context=None)\n--\n\n\
|
|
Return the digit-wise 'exclusive or' of the two (logical) operands.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_max,
|
|
"max($self, /, other, context=None)\n--\n\n\
|
|
Maximum of self and other. If one operand is a quiet NaN and the other is\n\
|
|
numeric, the numeric operand is returned.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_max_mag,
|
|
"max_mag($self, /, other, context=None)\n--\n\n\
|
|
Similar to the max() method, but the comparison is done using the absolute\n\
|
|
values of the operands.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_min,
|
|
"min($self, /, other, context=None)\n--\n\n\
|
|
Minimum of self and other. If one operand is a quiet NaN and the other is\n\
|
|
numeric, the numeric operand is returned.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_min_mag,
|
|
"min_mag($self, /, other, context=None)\n--\n\n\
|
|
Similar to the min() method, but the comparison is done using the absolute\n\
|
|
values of the operands.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_next_minus,
|
|
"next_minus($self, /, context=None)\n--\n\n\
|
|
Return the largest number representable in the given context (or in the\n\
|
|
current default context if no context is given) that is smaller than the\n\
|
|
given operand.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_next_plus,
|
|
"next_plus($self, /, context=None)\n--\n\n\
|
|
Return the smallest number representable in the given context (or in the\n\
|
|
current default context if no context is given) that is larger than the\n\
|
|
given operand.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_next_toward,
|
|
"next_toward($self, /, other, context=None)\n--\n\n\
|
|
If the two operands are unequal, return the number closest to the first\n\
|
|
operand in the direction of the second operand. If both operands are\n\
|
|
numerically equal, return a copy of the first operand with the sign set\n\
|
|
to be the same as the sign of the second operand.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_normalize,
|
|
"normalize($self, /, context=None)\n--\n\n\
|
|
Normalize the number by stripping the rightmost trailing zeros and\n\
|
|
converting any result equal to Decimal('0') to Decimal('0e0'). Used\n\
|
|
for producing canonical values for members of an equivalence class.\n\
|
|
For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize\n\
|
|
to the equivalent value Decimal('32.1').\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_number_class,
|
|
"number_class($self, /, context=None)\n--\n\n\
|
|
Return a string describing the class of the operand. The returned value\n\
|
|
is one of the following ten strings:\n\
|
|
\n\
|
|
* '-Infinity', indicating that the operand is negative infinity.\n\
|
|
* '-Normal', indicating that the operand is a negative normal number.\n\
|
|
* '-Subnormal', indicating that the operand is negative and subnormal.\n\
|
|
* '-Zero', indicating that the operand is a negative zero.\n\
|
|
* '+Zero', indicating that the operand is a positive zero.\n\
|
|
* '+Subnormal', indicating that the operand is positive and subnormal.\n\
|
|
* '+Normal', indicating that the operand is a positive normal number.\n\
|
|
* '+Infinity', indicating that the operand is positive infinity.\n\
|
|
* 'NaN', indicating that the operand is a quiet NaN (Not a Number).\n\
|
|
* 'sNaN', indicating that the operand is a signaling NaN.\n\
|
|
\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_quantize,
|
|
"quantize($self, /, exp, rounding=None, context=None)\n--\n\n\
|
|
Return a value equal to the first operand after rounding and having the\n\
|
|
exponent of the second operand.\n\
|
|
\n\
|
|
>>> Decimal('1.41421356').quantize(Decimal('1.000'))\n\
|
|
Decimal('1.414')\n\
|
|
\n\
|
|
Unlike other operations, if the length of the coefficient after the quantize\n\
|
|
operation would be greater than precision, then an InvalidOperation is signaled.\n\
|
|
This guarantees that, unless there is an error condition, the quantized exponent\n\
|
|
is always equal to that of the right-hand operand.\n\
|
|
\n\
|
|
Also unlike other operations, quantize never signals Underflow, even if the\n\
|
|
result is subnormal and inexact.\n\
|
|
\n\
|
|
If the exponent of the second operand is larger than that of the first, then\n\
|
|
rounding may be necessary. In this case, the rounding mode is determined by the\n\
|
|
rounding argument if given, else by the given context argument; if neither\n\
|
|
argument is given, the rounding mode of the current thread's context is used.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_radix,
|
|
"radix($self, /)\n--\n\n\
|
|
Return Decimal(10), the radix (base) in which the Decimal class does\n\
|
|
all its arithmetic. Included for compatibility with the specification.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_remainder_near,
|
|
"remainder_near($self, /, other, context=None)\n--\n\n\
|
|
Return the remainder from dividing self by other. This differs from\n\
|
|
self % other in that the sign of the remainder is chosen so as to minimize\n\
|
|
its absolute value. More precisely, the return value is self - n * other\n\
|
|
where n is the integer nearest to the exact value of self / other, and\n\
|
|
if two integers are equally near then the even one is chosen.\n\
|
|
\n\
|
|
If the result is zero then its sign will be the sign of self.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_rotate,
|
|
"rotate($self, /, other, context=None)\n--\n\n\
|
|
Return the result of rotating the digits of the first operand by an amount\n\
|
|
specified by the second operand. The second operand must be an integer in\n\
|
|
the range -precision through precision. The absolute value of the second\n\
|
|
operand gives the number of places to rotate. If the second operand is\n\
|
|
positive then rotation is to the left; otherwise rotation is to the right.\n\
|
|
The coefficient of the first operand is padded on the left with zeros to\n\
|
|
length precision if necessary. The sign and exponent of the first operand are\n\
|
|
unchanged.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_same_quantum,
|
|
"same_quantum($self, /, other, context=None)\n--\n\n\
|
|
Test whether self and other have the same exponent or whether both are NaN.\n\
|
|
\n\
|
|
This operation is unaffected by context and is quiet: no flags are changed\n\
|
|
and no rounding is performed. As an exception, the C version may raise\n\
|
|
InvalidOperation if the second operand cannot be converted exactly.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_scaleb,
|
|
"scaleb($self, /, other, context=None)\n--\n\n\
|
|
Return the first operand with the exponent adjusted the second. Equivalently,\n\
|
|
return the first operand multiplied by 10**other. The second operand must be\n\
|
|
an integer.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_shift,
|
|
"shift($self, /, other, context=None)\n--\n\n\
|
|
Return the result of shifting the digits of the first operand by an amount\n\
|
|
specified by the second operand. The second operand must be an integer in\n\
|
|
the range -precision through precision. The absolute value of the second\n\
|
|
operand gives the number of places to shift. If the second operand is\n\
|
|
positive, then the shift is to the left; otherwise the shift is to the\n\
|
|
right. Digits shifted into the coefficient are zeros. The sign and exponent\n\
|
|
of the first operand are unchanged.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_sqrt,
|
|
"sqrt($self, /, context=None)\n--\n\n\
|
|
Return the square root of the argument to full precision. The result is\n\
|
|
correctly rounded using the ROUND_HALF_EVEN rounding mode.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_to_eng_string,
|
|
"to_eng_string($self, /, context=None)\n--\n\n\
|
|
Convert to an engineering-type string. Engineering notation has an exponent\n\
|
|
which is a multiple of 3, so there are up to 3 digits left of the decimal\n\
|
|
place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3').\n\
|
|
\n\
|
|
The value of context.capitals determines whether the exponent sign is lower\n\
|
|
or upper case. Otherwise, the context does not affect the operation.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_to_integral,
|
|
"to_integral($self, /, rounding=None, context=None)\n--\n\n\
|
|
Identical to the to_integral_value() method. The to_integral() name has been\n\
|
|
kept for compatibility with older versions.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_to_integral_exact,
|
|
"to_integral_exact($self, /, rounding=None, context=None)\n--\n\n\
|
|
Round to the nearest integer, signaling Inexact or Rounded as appropriate if\n\
|
|
rounding occurs. The rounding mode is determined by the rounding parameter\n\
|
|
if given, else by the given context. If neither parameter is given, then the\n\
|
|
rounding mode of the current default context is used.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_to_integral_value,
|
|
"to_integral_value($self, /, rounding=None, context=None)\n--\n\n\
|
|
Round to the nearest integer without signaling Inexact or Rounded. The\n\
|
|
rounding mode is determined by the rounding parameter if given, else by\n\
|
|
the given context. If neither parameter is given, then the rounding mode\n\
|
|
of the current default context is used.\n\
|
|
\n");
|
|
|
|
|
|
/******************************************************************************/
|
|
/* Context Object and Methods */
|
|
/******************************************************************************/
|
|
|
|
PyDoc_STRVAR(doc_context,
|
|
"Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)\n--\n\n\
|
|
The context affects almost all operations and controls rounding,\n\
|
|
Over/Underflow, raising of exceptions and much more. A new context\n\
|
|
can be constructed as follows:\n\
|
|
\n\
|
|
>>> c = Context(prec=28, Emin=-425000000, Emax=425000000,\n\
|
|
... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1,\n\
|
|
... traps=[InvalidOperation, DivisionByZero, Overflow],\n\
|
|
... flags=[])\n\
|
|
>>>\n\
|
|
\n\
|
|
\n");
|
|
|
|
#ifdef EXTRA_FUNCTIONALITY
|
|
PyDoc_STRVAR(doc_ctx_apply,
|
|
"apply($self, x, /)\n--\n\n\
|
|
Apply self to Decimal x.\n\
|
|
\n");
|
|
#endif
|
|
|
|
PyDoc_STRVAR(doc_ctx_clear_flags,
|
|
"clear_flags($self, /)\n--\n\n\
|
|
Reset all flags to False.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_clear_traps,
|
|
"clear_traps($self, /)\n--\n\n\
|
|
Set all traps to False.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_copy,
|
|
"copy($self, /)\n--\n\n\
|
|
Return a duplicate of the context with all flags cleared.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_copy_decimal,
|
|
"copy_decimal($self, x, /)\n--\n\n\
|
|
Return a copy of Decimal x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_create_decimal,
|
|
"create_decimal($self, num=\"0\", /)\n--\n\n\
|
|
Create a new Decimal instance from num, using self as the context. Unlike the\n\
|
|
Decimal constructor, this function observes the context limits.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_create_decimal_from_float,
|
|
"create_decimal_from_float($self, f, /)\n--\n\n\
|
|
Create a new Decimal instance from float f. Unlike the Decimal.from_float()\n\
|
|
class method, this function observes the context limits.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_Etiny,
|
|
"Etiny($self, /)\n--\n\n\
|
|
Return a value equal to Emin - prec + 1, which is the minimum exponent value\n\
|
|
for subnormal results. When underflow occurs, the exponent is set to Etiny.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_Etop,
|
|
"Etop($self, /)\n--\n\n\
|
|
Return a value equal to Emax - prec + 1. This is the maximum exponent\n\
|
|
if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop()\n\
|
|
must not be negative.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_abs,
|
|
"abs($self, x, /)\n--\n\n\
|
|
Return the absolute value of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_add,
|
|
"add($self, x, y, /)\n--\n\n\
|
|
Return the sum of x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_canonical,
|
|
"canonical($self, x, /)\n--\n\n\
|
|
Return a new instance of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_compare,
|
|
"compare($self, x, y, /)\n--\n\n\
|
|
Compare x and y numerically.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_compare_signal,
|
|
"compare_signal($self, x, y, /)\n--\n\n\
|
|
Compare x and y numerically. All NaNs signal.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_compare_total,
|
|
"compare_total($self, x, y, /)\n--\n\n\
|
|
Compare x and y using their abstract representation.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_compare_total_mag,
|
|
"compare_total_mag($self, x, y, /)\n--\n\n\
|
|
Compare x and y using their abstract representation, ignoring sign.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_copy_abs,
|
|
"copy_abs($self, x, /)\n--\n\n\
|
|
Return a copy of x with the sign set to 0.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_copy_negate,
|
|
"copy_negate($self, x, /)\n--\n\n\
|
|
Return a copy of x with the sign inverted.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_copy_sign,
|
|
"copy_sign($self, x, y, /)\n--\n\n\
|
|
Copy the sign from y to x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_divide,
|
|
"divide($self, x, y, /)\n--\n\n\
|
|
Return x divided by y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_divide_int,
|
|
"divide_int($self, x, y, /)\n--\n\n\
|
|
Return x divided by y, truncated to an integer.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_divmod,
|
|
"divmod($self, x, y, /)\n--\n\n\
|
|
Return quotient and remainder of the division x / y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_exp,
|
|
"exp($self, x, /)\n--\n\n\
|
|
Return e ** x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_fma,
|
|
"fma($self, x, y, z, /)\n--\n\n\
|
|
Return x multiplied by y, plus z.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_canonical,
|
|
"is_canonical($self, x, /)\n--\n\n\
|
|
Return True if x is canonical, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_finite,
|
|
"is_finite($self, x, /)\n--\n\n\
|
|
Return True if x is finite, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_infinite,
|
|
"is_infinite($self, x, /)\n--\n\n\
|
|
Return True if x is infinite, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_nan,
|
|
"is_nan($self, x, /)\n--\n\n\
|
|
Return True if x is a qNaN or sNaN, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_normal,
|
|
"is_normal($self, x, /)\n--\n\n\
|
|
Return True if x is a normal number, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_qnan,
|
|
"is_qnan($self, x, /)\n--\n\n\
|
|
Return True if x is a quiet NaN, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_signed,
|
|
"is_signed($self, x, /)\n--\n\n\
|
|
Return True if x is negative, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_snan,
|
|
"is_snan($self, x, /)\n--\n\n\
|
|
Return True if x is a signaling NaN, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_subnormal,
|
|
"is_subnormal($self, x, /)\n--\n\n\
|
|
Return True if x is subnormal, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_is_zero,
|
|
"is_zero($self, x, /)\n--\n\n\
|
|
Return True if x is a zero, False otherwise.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_ln,
|
|
"ln($self, x, /)\n--\n\n\
|
|
Return the natural (base e) logarithm of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_log10,
|
|
"log10($self, x, /)\n--\n\n\
|
|
Return the base 10 logarithm of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_logb,
|
|
"logb($self, x, /)\n--\n\n\
|
|
Return the exponent of the magnitude of the operand's MSD.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_logical_and,
|
|
"logical_and($self, x, y, /)\n--\n\n\
|
|
Digit-wise and of x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_logical_invert,
|
|
"logical_invert($self, x, /)\n--\n\n\
|
|
Invert all digits of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_logical_or,
|
|
"logical_or($self, x, y, /)\n--\n\n\
|
|
Digit-wise or of x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_logical_xor,
|
|
"logical_xor($self, x, y, /)\n--\n\n\
|
|
Digit-wise xor of x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_max,
|
|
"max($self, x, y, /)\n--\n\n\
|
|
Compare the values numerically and return the maximum.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_max_mag,
|
|
"max_mag($self, x, y, /)\n--\n\n\
|
|
Compare the values numerically with their sign ignored.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_min,
|
|
"min($self, x, y, /)\n--\n\n\
|
|
Compare the values numerically and return the minimum.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_min_mag,
|
|
"min_mag($self, x, y, /)\n--\n\n\
|
|
Compare the values numerically with their sign ignored.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_minus,
|
|
"minus($self, x, /)\n--\n\n\
|
|
Minus corresponds to the unary prefix minus operator in Python, but applies\n\
|
|
the context to the result.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_multiply,
|
|
"multiply($self, x, y, /)\n--\n\n\
|
|
Return the product of x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_next_minus,
|
|
"next_minus($self, x, /)\n--\n\n\
|
|
Return the largest representable number smaller than x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_next_plus,
|
|
"next_plus($self, x, /)\n--\n\n\
|
|
Return the smallest representable number larger than x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_next_toward,
|
|
"next_toward($self, x, y, /)\n--\n\n\
|
|
Return the number closest to x, in the direction towards y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_normalize,
|
|
"normalize($self, x, /)\n--\n\n\
|
|
Reduce x to its simplest form. Alias for reduce(x).\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_number_class,
|
|
"number_class($self, x, /)\n--\n\n\
|
|
Return an indication of the class of x.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_plus,
|
|
"plus($self, x, /)\n--\n\n\
|
|
Plus corresponds to the unary prefix plus operator in Python, but applies\n\
|
|
the context to the result.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_power,
|
|
"power($self, /, a, b, modulo=None)\n--\n\n\
|
|
Compute a**b. If 'a' is negative, then 'b' must be integral. The result\n\
|
|
will be inexact unless 'a' is integral and the result is finite and can\n\
|
|
be expressed exactly in 'precision' digits. In the Python version the\n\
|
|
result is always correctly rounded, in the C version the result is almost\n\
|
|
always correctly rounded.\n\
|
|
\n\
|
|
If modulo is given, compute (a**b) % modulo. The following restrictions\n\
|
|
hold:\n\
|
|
\n\
|
|
* all three arguments must be integral\n\
|
|
* 'b' must be nonnegative\n\
|
|
* at least one of 'a' or 'b' must be nonzero\n\
|
|
* modulo must be nonzero and less than 10**prec in absolute value\n\
|
|
\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_quantize,
|
|
"quantize($self, x, y, /)\n--\n\n\
|
|
Return a value equal to x (rounded), having the exponent of y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_radix,
|
|
"radix($self, /)\n--\n\n\
|
|
Return 10.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_remainder,
|
|
"remainder($self, x, y, /)\n--\n\n\
|
|
Return the remainder from integer division. The sign of the result,\n\
|
|
if non-zero, is the same as that of the original dividend.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_remainder_near,
|
|
"remainder_near($self, x, y, /)\n--\n\n\
|
|
Return x - y * n, where n is the integer nearest the exact value of x / y\n\
|
|
(if the result is 0 then its sign will be the sign of x).\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_rotate,
|
|
"rotate($self, x, y, /)\n--\n\n\
|
|
Return a copy of x, rotated by y places.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_same_quantum,
|
|
"same_quantum($self, x, y, /)\n--\n\n\
|
|
Return True if the two operands have the same exponent.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_scaleb,
|
|
"scaleb($self, x, y, /)\n--\n\n\
|
|
Return the first operand after adding the second value to its exp.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_shift,
|
|
"shift($self, x, y, /)\n--\n\n\
|
|
Return a copy of x, shifted by y places.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_sqrt,
|
|
"sqrt($self, x, /)\n--\n\n\
|
|
Square root of a non-negative number to context precision.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_subtract,
|
|
"subtract($self, x, y, /)\n--\n\n\
|
|
Return the difference between x and y.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_to_eng_string,
|
|
"to_eng_string($self, x, /)\n--\n\n\
|
|
Convert a number to a string, using engineering notation.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_to_integral,
|
|
"to_integral($self, x, /)\n--\n\n\
|
|
Identical to to_integral_value(x).\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_to_integral_exact,
|
|
"to_integral_exact($self, x, /)\n--\n\n\
|
|
Round to an integer. Signal if the result is rounded or inexact.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_to_integral_value,
|
|
"to_integral_value($self, x, /)\n--\n\n\
|
|
Round to an integer.\n\
|
|
\n");
|
|
|
|
PyDoc_STRVAR(doc_ctx_to_sci_string,
|
|
"to_sci_string($self, x, /)\n--\n\n\
|
|
Convert a number to a string using scientific notation.\n\
|
|
\n");
|
|
|
|
|
|
#endif /* DOCSTRINGS_H */
|
|
|
|
|
|
|