2451 lines
95 KiB
ReStructuredText
2451 lines
95 KiB
ReStructuredText
.. XXX: reference/datamodel and this have quite a few overlaps!
|
|
|
|
|
|
.. _bltin-types:
|
|
|
|
**************
|
|
Built-in Types
|
|
**************
|
|
|
|
The following sections describe the standard types that are built into the
|
|
interpreter.
|
|
|
|
.. index:: pair: built-in; types
|
|
|
|
The principal built-in types are numerics, sequences, mappings, files, classes,
|
|
instances and exceptions.
|
|
|
|
Some operations are supported by several object types; in particular,
|
|
practically all objects can be compared, tested for truth value, and converted
|
|
to a string (with the :func:`repr` function or the slightly different
|
|
:func:`str` function). The latter function is implicitly used when an object is
|
|
written by the :func:`print` function.
|
|
|
|
|
|
.. _truth:
|
|
|
|
Truth Value Testing
|
|
===================
|
|
|
|
.. index::
|
|
statement: if
|
|
statement: while
|
|
pair: truth; value
|
|
pair: Boolean; operations
|
|
single: false
|
|
|
|
Any object can be tested for truth value, for use in an :keyword:`if` or
|
|
:keyword:`while` condition or as operand of the Boolean operations below. The
|
|
following values are considered false:
|
|
|
|
.. index:: single: None (Built-in object)
|
|
|
|
* ``None``
|
|
|
|
.. index:: single: False (Built-in object)
|
|
|
|
* ``False``
|
|
|
|
* zero of any numeric type, for example, ``0``, ``0L``, ``0.0``, ``0j``.
|
|
|
|
* any empty sequence, for example, ``''``, ``()``, ``[]``.
|
|
|
|
* any empty mapping, for example, ``{}``.
|
|
|
|
* instances of user-defined classes, if the class defines a :meth:`__bool__` or
|
|
:meth:`__len__` method, when that method returns the integer zero or
|
|
:class:`bool` value ``False``. [#]_
|
|
|
|
.. index:: single: true
|
|
|
|
All other values are considered true --- so objects of many types are always
|
|
true.
|
|
|
|
.. index::
|
|
operator: or
|
|
operator: and
|
|
single: False
|
|
single: True
|
|
|
|
Operations and built-in functions that have a Boolean result always return ``0``
|
|
or ``False`` for false and ``1`` or ``True`` for true, unless otherwise stated.
|
|
(Important exception: the Boolean operations ``or`` and ``and`` always return
|
|
one of their operands.)
|
|
|
|
|
|
.. _boolean:
|
|
|
|
Boolean Operations --- :keyword:`and`, :keyword:`or`, :keyword:`not`
|
|
====================================================================
|
|
|
|
.. index:: pair: Boolean; operations
|
|
|
|
These are the Boolean operations, ordered by ascending priority:
|
|
|
|
+-------------+---------------------------------+-------+
|
|
| Operation | Result | Notes |
|
|
+=============+=================================+=======+
|
|
| ``x or y`` | if *x* is false, then *y*, else | \(1) |
|
|
| | *x* | |
|
|
+-------------+---------------------------------+-------+
|
|
| ``x and y`` | if *x* is false, then *x*, else | \(2) |
|
|
| | *y* | |
|
|
+-------------+---------------------------------+-------+
|
|
| ``not x`` | if *x* is false, then ``True``, | \(3) |
|
|
| | else ``False`` | |
|
|
+-------------+---------------------------------+-------+
|
|
|
|
.. index::
|
|
operator: and
|
|
operator: or
|
|
operator: not
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
This is a short-circuit operator, so it only evaluates the second
|
|
argument if the first one is :const:`False`.
|
|
|
|
(2)
|
|
This is a short-circuit operator, so it only evaluates the second
|
|
argument if the first one is :const:`True`.
|
|
|
|
(3)
|
|
``not`` has a lower priority than non-Boolean operators, so ``not a == b`` is
|
|
interpreted as ``not (a == b)``, and ``a == not b`` is a syntax error.
|
|
|
|
|
|
.. _stdcomparisons:
|
|
|
|
Comparisons
|
|
===========
|
|
|
|
.. index:: pair: chaining; comparisons
|
|
|
|
There are eight comparison operations in Python. They all have the same
|
|
priority (which is higher than that of the Boolean operations). Comparisons can
|
|
be chained arbitrarily; for example, ``x < y <= z`` is equivalent to ``x < y and
|
|
y <= z``, except that *y* is evaluated only once (but in both cases *z* is not
|
|
evaluated at all when ``x < y`` is found to be false).
|
|
|
|
.. index::
|
|
pair: operator; comparison
|
|
operator: ==
|
|
operator: <
|
|
operator: >
|
|
operator: <=
|
|
operator: >=
|
|
operator: !=
|
|
operator: is
|
|
operator: is not
|
|
|
|
This table summarizes the comparison operations:
|
|
|
|
+------------+-------------------------+
|
|
| Operation | Meaning |
|
|
+============+=========================+
|
|
| ``<`` | strictly less than |
|
|
+------------+-------------------------+
|
|
| ``<=`` | less than or equal |
|
|
+------------+-------------------------+
|
|
| ``>`` | strictly greater than |
|
|
+------------+-------------------------+
|
|
| ``>=`` | greater than or equal |
|
|
+------------+-------------------------+
|
|
| ``==`` | equal |
|
|
+------------+-------------------------+
|
|
| ``!=`` | not equal |
|
|
+------------+-------------------------+
|
|
| ``is`` | object identity |
|
|
+------------+-------------------------+
|
|
| ``is not`` | negated object identity |
|
|
+------------+-------------------------+
|
|
|
|
.. index::
|
|
pair: object; numeric
|
|
pair: objects; comparing
|
|
|
|
Objects of different types, except different numeric types, never compare equal.
|
|
Furthermore, some types (for example, file objects) support only a degenerate
|
|
notion of comparison where any two objects of that type are unequal. The ``<``,
|
|
``<=``, ``>`` and ``>=`` operators will raise a :exc:`TypeError` exception when
|
|
any operand is a complex number, the objects are of different types that cannot
|
|
be compared, or other cases where there is no defined ordering.
|
|
|
|
.. index::
|
|
single: __cmp__() (instance method)
|
|
single: __eq__() (instance method)
|
|
single: __ne__() (instance method)
|
|
single: __lt__() (instance method)
|
|
single: __le__() (instance method)
|
|
single: __gt__() (instance method)
|
|
single: __ge__() (instance method)
|
|
|
|
Instances of a class normally compare as non-equal unless the class defines the
|
|
:meth:`__eq__` or :meth:`__cmp__` method.
|
|
|
|
Instances of a class cannot be ordered with respect to other instances of the
|
|
same class, or other types of object, unless the class defines enough of the
|
|
methods :meth:`__cmp__`, :meth:`__lt__`, :meth:`__le__`, :meth:`__gt__`, and
|
|
:meth:`__ge__` (in general, either :meth:`__cmp__` or both :meth:`__lt__` and
|
|
:meth:`__eq__` are sufficient, if you want the conventional meanings of the
|
|
comparison operators).
|
|
|
|
The behavior of the :keyword:`is` and :keyword:`is not` operators cannot be
|
|
customized; also they can be applied to any two objects and never raise an
|
|
exception.
|
|
|
|
.. index::
|
|
operator: in
|
|
operator: not in
|
|
|
|
Two more operations with the same syntactic priority, ``in`` and ``not in``, are
|
|
supported only by sequence types (below).
|
|
|
|
|
|
.. _typesnumeric:
|
|
|
|
Numeric Types --- :class:`int`, :class:`float`, :class:`complex`
|
|
================================================================
|
|
|
|
.. index::
|
|
object: numeric
|
|
object: Boolean
|
|
object: integer
|
|
object: floating point
|
|
object: complex number
|
|
pair: C; language
|
|
|
|
There are three distinct numeric types: :dfn:`integers`, :dfn:`floating point
|
|
numbers`, and :dfn:`complex numbers`. In addition, Booleans are a subtype of
|
|
plain integers. Integers have unlimited precision. Floating point numbers are
|
|
implemented using :ctype:`double` in C. All bets on their precision are off
|
|
unless you happen to know the machine you are working with.
|
|
|
|
Complex numbers have a real and imaginary part, which are each implemented using
|
|
:ctype:`double` in C. To extract these parts from a complex number *z*, use
|
|
``z.real`` and ``z.imag``.
|
|
|
|
.. index::
|
|
pair: numeric; literals
|
|
pair: integer; literals
|
|
pair: floating point; literals
|
|
pair: complex number; literals
|
|
pair: hexadecimal; literals
|
|
pair: octal; literals
|
|
pair: binary; literals
|
|
|
|
Numbers are created by numeric literals or as the result of built-in functions
|
|
and operators. Unadorned integer literals (including hex, octal and binary
|
|
numbers) yield integers. Numeric literals containing a decimal point or an
|
|
exponent sign yield floating point numbers. Appending ``'j'`` or ``'J'`` to a
|
|
numeric literal yields an imaginary number (a complex number with a zero real
|
|
part) which you can add to an integer or float to get a complex number with real
|
|
and imaginary parts.
|
|
|
|
.. index::
|
|
single: arithmetic
|
|
builtin: int
|
|
builtin: float
|
|
builtin: complex
|
|
|
|
Python fully supports mixed arithmetic: when a binary arithmetic operator has
|
|
operands of different numeric types, the operand with the "narrower" type is
|
|
widened to that of the other, where integer is narrower than floating point,
|
|
which is narrower than complex. Comparisons between numbers of mixed type use
|
|
the same rule. [#]_ The constructors :func:`int`, :func:`float`, and
|
|
:func:`complex` can be used to produce numbers of a specific type.
|
|
|
|
All numeric types (except complex) support the following operations, sorted by
|
|
ascending priority (operations in the same box have the same priority; all
|
|
numeric operations have a higher priority than comparison operations):
|
|
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| Operation | Result | Notes | Full documentation |
|
|
+=====================+=================================+=======+====================+
|
|
| ``x + y`` | sum of *x* and *y* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x - y`` | difference of *x* and *y* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x * y`` | product of *x* and *y* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x / y`` | quotient of *x* and *y* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x // y`` | floored quotient of *x* and | \(1) | |
|
|
| | *y* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x % y`` | remainder of ``x / y`` | \(2) | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``-x`` | *x* negated | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``+x`` | *x* unchanged | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``abs(x)`` | absolute value or magnitude of | | :func:`abs` |
|
|
| | *x* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``int(x)`` | *x* converted to integer | \(3) | :func:`int` |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``float(x)`` | *x* converted to floating point | \(4) | :func:`float` |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``complex(re, im)`` | a complex number with real part | | :func:`complex` |
|
|
| | *re*, imaginary part *im*. | | |
|
|
| | *im* defaults to zero. | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``c.conjugate()`` | conjugate of the complex number | | |
|
|
| | *c* | | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``divmod(x, y)`` | the pair ``(x // y, x % y)`` | \(2) | :func:`divmod` |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``pow(x, y)`` | *x* to the power *y* | \(5) | :func:`pow` |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
| ``x ** y`` | *x* to the power *y* | \(5) | |
|
|
+---------------------+---------------------------------+-------+--------------------+
|
|
|
|
.. index::
|
|
triple: operations on; numeric; types
|
|
single: conjugate() (complex number method)
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
Also referred to as integer division. The resultant value is a whole
|
|
integer, though the result's type is not necessarily int. The result is
|
|
always rounded towards minus infinity: ``1//2`` is ``0``, ``(-1)//2`` is
|
|
``-1``, ``1//(-2)`` is ``-1``, and ``(-1)//(-2)`` is ``0``.
|
|
|
|
(2)
|
|
Not for complex numbers. Instead convert to floats using :func:`abs` if
|
|
appropriate.
|
|
|
|
(3)
|
|
.. index::
|
|
module: math
|
|
single: floor() (in module math)
|
|
single: ceil() (in module math)
|
|
pair: numeric; conversions
|
|
pair: C; language
|
|
|
|
Conversion from floating point to integer may round or truncate
|
|
as in C; see functions :func:`floor` and :func:`ceil` in the :mod:`math` module
|
|
for well-defined conversions.
|
|
|
|
(4)
|
|
float also accepts the strings "nan" and "inf" with an optional prefix "+"
|
|
or "-" for Not a Number (NaN) and positive or negative infinity.
|
|
|
|
(5)
|
|
Python defines ``pow(0, 0)`` and ``0 ** 0`` to be ``1``, as is common for
|
|
programming languages.
|
|
|
|
|
|
|
|
All :class:`numbers.Real` types (:class:`int` and
|
|
:class:`float`) also include the following operations:
|
|
|
|
+--------------------+--------------------------------+--------+
|
|
| Operation | Result | Notes |
|
|
+====================+================================+========+
|
|
| ``trunc(x)`` | *x* truncated to Integral | |
|
|
+--------------------+--------------------------------+--------+
|
|
| ``round(x[, n])`` | *x* rounded to n digits, | |
|
|
| | rounding half to even. If n is | |
|
|
| | omitted, it defaults to 0. | |
|
|
+--------------------+--------------------------------+--------+
|
|
| ``math.floor(x)`` | the greatest Integral <= *x* | |
|
|
+--------------------+--------------------------------+--------+
|
|
| ``math.ceil(x)`` | the least Integral >= *x* | |
|
|
+--------------------+--------------------------------+--------+
|
|
|
|
.. XXXJH exceptions: overflow (when? what operations?) zerodivision
|
|
|
|
|
|
.. _bitstring-ops:
|
|
|
|
Bit-string Operations on Integer Types
|
|
--------------------------------------
|
|
|
|
.. _bit-string-operations:
|
|
|
|
Integers support additional operations that make sense only for bit-strings.
|
|
Negative numbers are treated as their 2's complement value (this assumes a
|
|
sufficiently large number of bits that no overflow occurs during the operation).
|
|
|
|
The priorities of the binary bitwise operations are all lower than the numeric
|
|
operations and higher than the comparisons; the unary operation ``~`` has the
|
|
same priority as the other unary numeric operations (``+`` and ``-``).
|
|
|
|
This table lists the bit-string operations sorted in ascending priority
|
|
(operations in the same box have the same priority):
|
|
|
|
+------------+--------------------------------+----------+
|
|
| Operation | Result | Notes |
|
|
+============+================================+==========+
|
|
| ``x | y`` | bitwise :dfn:`or` of *x* and | |
|
|
| | *y* | |
|
|
+------------+--------------------------------+----------+
|
|
| ``x ^ y`` | bitwise :dfn:`exclusive or` of | |
|
|
| | *x* and *y* | |
|
|
+------------+--------------------------------+----------+
|
|
| ``x & y`` | bitwise :dfn:`and` of *x* and | |
|
|
| | *y* | |
|
|
+------------+--------------------------------+----------+
|
|
| ``x << n`` | *x* shifted left by *n* bits | (1)(2) |
|
|
+------------+--------------------------------+----------+
|
|
| ``x >> n`` | *x* shifted right by *n* bits | (1)(3) |
|
|
+------------+--------------------------------+----------+
|
|
| ``~x`` | the bits of *x* inverted | |
|
|
+------------+--------------------------------+----------+
|
|
|
|
.. index::
|
|
triple: operations on; integer; types
|
|
pair: bit-string; operations
|
|
pair: shifting; operations
|
|
pair: masking; operations
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
Negative shift counts are illegal and cause a :exc:`ValueError` to be raised.
|
|
|
|
(2)
|
|
A left shift by *n* bits is equivalent to multiplication by ``pow(2, n)``
|
|
without overflow check.
|
|
|
|
(3)
|
|
A right shift by *n* bits is equivalent to division by ``pow(2, n)`` without
|
|
overflow check.
|
|
|
|
|
|
.. _typeiter:
|
|
|
|
Iterator Types
|
|
==============
|
|
|
|
.. index::
|
|
single: iterator protocol
|
|
single: protocol; iterator
|
|
single: sequence; iteration
|
|
single: container; iteration over
|
|
|
|
Python supports a concept of iteration over containers. This is implemented
|
|
using two distinct methods; these are used to allow user-defined classes to
|
|
support iteration. Sequences, described below in more detail, always support
|
|
the iteration methods.
|
|
|
|
One method needs to be defined for container objects to provide iteration
|
|
support:
|
|
|
|
.. XXX duplicated in reference/datamodel!
|
|
|
|
.. method:: container.__iter__()
|
|
|
|
Return an iterator object. The object is required to support the iterator
|
|
protocol described below. If a container supports different types of
|
|
iteration, additional methods can be provided to specifically request
|
|
iterators for those iteration types. (An example of an object supporting
|
|
multiple forms of iteration would be a tree structure which supports both
|
|
breadth-first and depth-first traversal.) This method corresponds to the
|
|
:attr:`tp_iter` slot of the type structure for Python objects in the Python/C
|
|
API.
|
|
|
|
The iterator objects themselves are required to support the following two
|
|
methods, which together form the :dfn:`iterator protocol`:
|
|
|
|
|
|
.. method:: iterator.__iter__()
|
|
|
|
Return the iterator object itself. This is required to allow both containers
|
|
and iterators to be used with the :keyword:`for` and :keyword:`in` statements.
|
|
This method corresponds to the :attr:`tp_iter` slot of the type structure for
|
|
Python objects in the Python/C API.
|
|
|
|
|
|
.. method:: iterator.__next__()
|
|
|
|
Return the next item from the container. If there are no further items, raise
|
|
the :exc:`StopIteration` exception. This method corresponds to the
|
|
:attr:`tp_iternext` slot of the type structure for Python objects in the
|
|
Python/C API.
|
|
|
|
Python defines several iterator objects to support iteration over general and
|
|
specific sequence types, dictionaries, and other more specialized forms. The
|
|
specific types are not important beyond their implementation of the iterator
|
|
protocol.
|
|
|
|
Once an iterator's :meth:`__next__` method raises :exc:`StopIteration`, it must
|
|
continue to do so on subsequent calls. Implementations that do not obey this
|
|
property are deemed broken.
|
|
|
|
Python's :term:`generator`\s provide a convenient way to implement the iterator
|
|
protocol. If a container object's :meth:`__iter__` method is implemented as a
|
|
generator, it will automatically return an iterator object (technically, a
|
|
generator object) supplying the :meth:`__iter__` and :meth:`__next__` methods.
|
|
|
|
|
|
.. _typesseq:
|
|
|
|
Sequence Types --- :class:`str`, :class:`bytes`, :class:`bytearray`, :class:`list`, :class:`tuple`, :class:`range`
|
|
==================================================================================================================
|
|
|
|
There are five sequence types: strings, byte sequences, byte arrays, lists,
|
|
tuples, and range objects. (For other containers see the built-in
|
|
:class:`dict`, :class:`list`, :class:`set`, and :class:`tuple` classes, and the
|
|
:mod:`collections` module.)
|
|
|
|
.. index::
|
|
object: sequence
|
|
object: string
|
|
object: bytes
|
|
object: buffer
|
|
object: tuple
|
|
object: list
|
|
object: range
|
|
|
|
Strings contain Unicode characters. Their literals are written in single or
|
|
double quotes: ``'xyzzy'``, ``"frobozz"``. See :ref:`strings` for more about
|
|
string literals. In addition to the functionality described here, there are
|
|
also string-specific methods described in the :ref:`string-methods` section.
|
|
|
|
Bytes and bytearray objects contain single bytes -- the former is immutable
|
|
while the latter is a mutable sequence. Bytes objects can be constructed from
|
|
literals too; use a ``b`` prefix with normal string syntax: ``b'xyzzy'``. To
|
|
construct byte arrays, use the :func:`bytearray` function.
|
|
|
|
.. warning::
|
|
|
|
While string objects are sequences of characters (represented by strings of
|
|
length 1), bytes and bytearray objects are sequences of *integers* (between 0
|
|
and 255), representing the ASCII value of single bytes. That means that for
|
|
a bytes or bytearray object *b*, ``b[0]`` will be an integer, while ``b[0:1]``
|
|
will be a bytes or bytearray object of length 1.
|
|
|
|
Also, while in previous Python versions, byte strings and Unicode strings
|
|
could be exchanged for each other rather freely (barring encoding issues),
|
|
strings and bytes are now completely separate concepts. There's no implicit
|
|
en-/decoding if you pass and object of the wrong type. A string always
|
|
compares unequal to a bytes or bytearray object.
|
|
|
|
Lists are constructed with square brackets, separating items with commas: ``[a,
|
|
b, c]``. Tuples are constructed by the comma operator (not within square
|
|
brackets), with or without enclosing parentheses, but an empty tuple must have
|
|
the enclosing parentheses, such as ``a, b, c`` or ``()``. A single item tuple
|
|
must have a trailing comma, such as ``(d,)``.
|
|
|
|
Objects of type range are created using the :func:`range` function. They don't
|
|
support slicing, concatenation or repetition, and using ``in``, ``not in``,
|
|
:func:`min` or :func:`max` on them is inefficient.
|
|
|
|
Most sequence types support the following operations. The ``in`` and ``not in``
|
|
operations have the same priorities as the comparison operations. The ``+`` and
|
|
``*`` operations have the same priority as the corresponding numeric operations.
|
|
[#]_ Additional methods are provided for :ref:`typesseq-mutable`.
|
|
|
|
This table lists the sequence operations sorted in ascending priority
|
|
(operations in the same box have the same priority). In the table, *s* and *t*
|
|
are sequences of the same type; *n*, *i* and *j* are integers:
|
|
|
|
+------------------+--------------------------------+----------+
|
|
| Operation | Result | Notes |
|
|
+==================+================================+==========+
|
|
| ``x in s`` | ``True`` if an item of *s* is | \(1) |
|
|
| | equal to *x*, else ``False`` | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``x not in s`` | ``False`` if an item of *s* is | \(1) |
|
|
| | equal to *x*, else ``True`` | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``s + t`` | the concatenation of *s* and | \(6) |
|
|
| | *t* | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``s * n, n * s`` | *n* shallow copies of *s* | \(2) |
|
|
| | concatenated | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``s[i]`` | *i*'th item of *s*, origin 0 | \(3) |
|
|
+------------------+--------------------------------+----------+
|
|
| ``s[i:j]`` | slice of *s* from *i* to *j* | (3)(4) |
|
|
+------------------+--------------------------------+----------+
|
|
| ``s[i:j:k]`` | slice of *s* from *i* to *j* | (3)(5) |
|
|
| | with step *k* | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``len(s)`` | length of *s* | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``min(s)`` | smallest item of *s* | |
|
|
+------------------+--------------------------------+----------+
|
|
| ``max(s)`` | largest item of *s* | |
|
|
+------------------+--------------------------------+----------+
|
|
|
|
Sequence types also support comparisons. In particular, tuples and lists are
|
|
compared lexicographically by comparing corresponding elements. This means that
|
|
to compare equal, every element must compare equal and the two sequences must be
|
|
of the same type and have the same length. (For full details see
|
|
:ref:`comparisons` in the language reference.)
|
|
|
|
.. index::
|
|
triple: operations on; sequence; types
|
|
builtin: len
|
|
builtin: min
|
|
builtin: max
|
|
pair: concatenation; operation
|
|
pair: repetition; operation
|
|
pair: subscript; operation
|
|
pair: slice; operation
|
|
operator: in
|
|
operator: not in
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
When *s* is a string object, the ``in`` and ``not in`` operations act like a
|
|
substring test.
|
|
|
|
(2)
|
|
Values of *n* less than ``0`` are treated as ``0`` (which yields an empty
|
|
sequence of the same type as *s*). Note also that the copies are shallow;
|
|
nested structures are not copied. This often haunts new Python programmers;
|
|
consider::
|
|
|
|
>>> lists = [[]] * 3
|
|
>>> lists
|
|
[[], [], []]
|
|
>>> lists[0].append(3)
|
|
>>> lists
|
|
[[3], [3], [3]]
|
|
|
|
What has happened is that ``[[]]`` is a one-element list containing an empty
|
|
list, so all three elements of ``[[]] * 3`` are (pointers to) this single
|
|
empty list. Modifying any of the elements of ``lists`` modifies this single
|
|
list. You can create a list of different lists this way::
|
|
|
|
>>> lists = [[] for i in range(3)]
|
|
>>> lists[0].append(3)
|
|
>>> lists[1].append(5)
|
|
>>> lists[2].append(7)
|
|
>>> lists
|
|
[[3], [5], [7]]
|
|
|
|
(3)
|
|
If *i* or *j* is negative, the index is relative to the end of the string:
|
|
``len(s) + i`` or ``len(s) + j`` is substituted. But note that ``-0`` is
|
|
still ``0``.
|
|
|
|
(4)
|
|
The slice of *s* from *i* to *j* is defined as the sequence of items with index
|
|
*k* such that ``i <= k < j``. If *i* or *j* is greater than ``len(s)``, use
|
|
``len(s)``. If *i* is omitted or ``None``, use ``0``. If *j* is omitted or
|
|
``None``, use ``len(s)``. If *i* is greater than or equal to *j*, the slice is
|
|
empty.
|
|
|
|
(5)
|
|
The slice of *s* from *i* to *j* with step *k* is defined as the sequence of
|
|
items with index ``x = i + n*k`` such that ``0 <= n < (j-i)/k``. In other words,
|
|
the indices are ``i``, ``i+k``, ``i+2*k``, ``i+3*k`` and so on, stopping when
|
|
*j* is reached (but never including *j*). If *i* or *j* is greater than
|
|
``len(s)``, use ``len(s)``. If *i* or *j* are omitted or ``None``, they become
|
|
"end" values (which end depends on the sign of *k*). Note, *k* cannot be zero.
|
|
If *k* is ``None``, it is treated like ``1``.
|
|
|
|
(6)
|
|
If *s* and *t* are both strings, some Python implementations such as CPython can
|
|
usually perform an in-place optimization for assignments of the form ``s=s+t``
|
|
or ``s+=t``. When applicable, this optimization makes quadratic run-time much
|
|
less likely. This optimization is both version and implementation dependent.
|
|
For performance sensitive code, it is preferable to use the :meth:`str.join`
|
|
method which assures consistent linear concatenation performance across versions
|
|
and implementations.
|
|
|
|
|
|
.. _string-methods:
|
|
|
|
String Methods
|
|
--------------
|
|
|
|
.. index:: pair: string; methods
|
|
|
|
String objects support the methods listed below. Note that none of these
|
|
methods take keyword arguments.
|
|
|
|
In addition, Python's strings support the sequence type methods described in
|
|
the :ref:`typesseq` section. To output formatted strings, see the
|
|
:ref:`string-formatting` section. Also, see the :mod:`re` module for string
|
|
functions based on regular expressions.
|
|
|
|
.. method:: str.capitalize()
|
|
|
|
Return a copy of the string with only its first character capitalized.
|
|
|
|
|
|
.. method:: str.center(width[, fillchar])
|
|
|
|
Return centered in a string of length *width*. Padding is done using the
|
|
specified *fillchar* (default is a space).
|
|
|
|
|
|
.. method:: str.count(sub[, start[, end]])
|
|
|
|
Return the number of occurrences of substring *sub* in the range [*start*,
|
|
*end*]. Optional arguments *start* and *end* are interpreted as in slice
|
|
notation.
|
|
|
|
|
|
.. method:: str.encode([encoding[, errors]])
|
|
|
|
Return an encoded version of the string. Default encoding is the current
|
|
default string encoding. *errors* may be given to set a different error
|
|
handling scheme. The default for *errors* is ``'strict'``, meaning that
|
|
encoding errors raise a :exc:`UnicodeError`. Other possible values are
|
|
``'ignore'``, ``'replace'``, ``'xmlcharrefreplace'``, ``'backslashreplace'`` and
|
|
any other name registered via :func:`codecs.register_error`, see section
|
|
:ref:`codec-base-classes`. For a list of possible encodings, see section
|
|
:ref:`standard-encodings`.
|
|
|
|
|
|
.. method:: str.endswith(suffix[, start[, end]])
|
|
|
|
Return ``True`` if the string ends with the specified *suffix*, otherwise return
|
|
``False``. *suffix* can also be a tuple of suffixes to look for. With optional
|
|
*start*, test beginning at that position. With optional *end*, stop comparing
|
|
at that position.
|
|
|
|
|
|
.. method:: str.expandtabs([tabsize])
|
|
|
|
Return a copy of the string where all tab characters are replaced by one or
|
|
more spaces, depending on the current column and the given tab size. The
|
|
column number is reset to zero after each newline occurring in the string.
|
|
If *tabsize* is not given, a tab size of ``8`` characters is assumed. This
|
|
doesn't understand other non-printing characters or escape sequences.
|
|
|
|
|
|
.. method:: str.find(sub[, start[, end]])
|
|
|
|
Return the lowest index in the string where substring *sub* is found, such that
|
|
*sub* is contained in the range [*start*, *end*]. Optional arguments *start*
|
|
and *end* are interpreted as in slice notation. Return ``-1`` if *sub* is not
|
|
found.
|
|
|
|
|
|
.. method:: str.format(format_string, *args, **ksargs)
|
|
|
|
Perform a string formatting operation. The *format_string* argument can
|
|
contain literal text or replacement fields delimited by braces ``{}``. Each
|
|
replacement field contains either the numeric index of a positional argument,
|
|
or the name of a keyword argument. Returns a copy of *format_string* where
|
|
each replacement field is replaced with the string value of the corresponding
|
|
argument.
|
|
|
|
>>> "The sum of 1 + 2 is {0}".format(1+2)
|
|
'The sum of 1 + 2 is 3'
|
|
|
|
See :ref:`formatstrings` for a description of the various formatting options
|
|
that can be specified in format strings.
|
|
|
|
|
|
.. method:: str.index(sub[, start[, end]])
|
|
|
|
Like :meth:`find`, but raise :exc:`ValueError` when the substring is not found.
|
|
|
|
|
|
.. method:: str.isalnum()
|
|
|
|
Return true if all characters in the string are alphanumeric and there is at
|
|
least one character, false otherwise.
|
|
|
|
|
|
.. method:: str.isalpha()
|
|
|
|
Return true if all characters in the string are alphabetic and there is at least
|
|
one character, false otherwise.
|
|
|
|
|
|
.. method:: str.isdigit()
|
|
|
|
Return true if all characters in the string are digits and there is at least one
|
|
character, false otherwise.
|
|
|
|
|
|
.. method:: str.isidentifier()
|
|
|
|
Return true if the string is a valid identifier according to the language
|
|
definition, section :ref:`identifiers`.
|
|
|
|
|
|
.. method:: str.islower()
|
|
|
|
Return true if all cased characters in the string are lowercase and there is at
|
|
least one cased character, false otherwise.
|
|
|
|
|
|
.. method:: str.isspace()
|
|
|
|
Return true if there are only whitespace characters in the string and there is
|
|
at least one character, false otherwise.
|
|
|
|
|
|
.. method:: str.istitle()
|
|
|
|
Return true if the string is a titlecased string and there is at least one
|
|
character, for example uppercase characters may only follow uncased characters
|
|
and lowercase characters only cased ones. Return false otherwise.
|
|
|
|
|
|
.. method:: str.isupper()
|
|
|
|
Return true if all cased characters in the string are uppercase and there is at
|
|
least one cased character, false otherwise.
|
|
|
|
|
|
.. method:: str.join(seq)
|
|
|
|
Return a string which is the concatenation of the values in the sequence
|
|
*seq*. Non-string values in *seq* will be converted to a string using their
|
|
respective ``str()`` value. If there are any :class:`bytes` objects in
|
|
*seq*, a :exc:`TypeError` will be raised. The separator between elements is
|
|
the string providing this method.
|
|
|
|
|
|
.. method:: str.ljust(width[, fillchar])
|
|
|
|
Return the string left justified in a string of length *width*. Padding is done
|
|
using the specified *fillchar* (default is a space). The original string is
|
|
returned if *width* is less than ``len(s)``.
|
|
|
|
|
|
.. method:: str.lower()
|
|
|
|
Return a copy of the string converted to lowercase.
|
|
|
|
|
|
.. method:: str.lstrip([chars])
|
|
|
|
Return a copy of the string with leading characters removed. The *chars*
|
|
argument is a string specifying the set of characters to be removed. If omitted
|
|
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
|
|
argument is not a prefix; rather, all combinations of its values are stripped::
|
|
|
|
>>> ' spacious '.lstrip()
|
|
'spacious '
|
|
>>> 'www.example.com'.lstrip('cmowz.')
|
|
'example.com'
|
|
|
|
|
|
.. method:: str.maketrans(x[, y[, z]])
|
|
|
|
This static method returns a translation table usable for :meth:`str.translate`.
|
|
|
|
If there is only one argument, it must be a dictionary mapping Unicode
|
|
ordinals (integers) or characters (strings of length 1) to Unicode ordinals,
|
|
strings (of arbitrary lengths) or None. Character keys will then be
|
|
converted to ordinals.
|
|
|
|
If there are two arguments, they must be strings of equal length, and in the
|
|
resulting dictionary, each character in x will be mapped to the character at
|
|
the same position in y. If there is a third argument, it must be a string,
|
|
whose characters will be mapped to None in the result.
|
|
|
|
|
|
.. method:: str.partition(sep)
|
|
|
|
Split the string at the first occurrence of *sep*, and return a 3-tuple
|
|
containing the part before the separator, the separator itself, and the part
|
|
after the separator. If the separator is not found, return a 3-tuple containing
|
|
the string itself, followed by two empty strings.
|
|
|
|
|
|
.. method:: str.replace(old, new[, count])
|
|
|
|
Return a copy of the string with all occurrences of substring *old* replaced by
|
|
*new*. If the optional argument *count* is given, only the first *count*
|
|
occurrences are replaced.
|
|
|
|
|
|
.. method:: str.rfind(sub[, start[, end]])
|
|
|
|
Return the highest index in the string where substring *sub* is found, such that
|
|
*sub* is contained within s[start,end]. Optional arguments *start* and *end*
|
|
are interpreted as in slice notation. Return ``-1`` on failure.
|
|
|
|
|
|
.. method:: str.rindex(sub[, start[, end]])
|
|
|
|
Like :meth:`rfind` but raises :exc:`ValueError` when the substring *sub* is not
|
|
found.
|
|
|
|
|
|
.. method:: str.rjust(width[, fillchar])
|
|
|
|
Return the string right justified in a string of length *width*. Padding is done
|
|
using the specified *fillchar* (default is a space). The original string is
|
|
returned if *width* is less than ``len(s)``.
|
|
|
|
|
|
.. method:: str.rpartition(sep)
|
|
|
|
Split the string at the last occurrence of *sep*, and return a 3-tuple
|
|
containing the part before the separator, the separator itself, and the part
|
|
after the separator. If the separator is not found, return a 3-tuple containing
|
|
two empty strings, followed by the string itself.
|
|
|
|
|
|
.. method:: str.rsplit([sep[, maxsplit]])
|
|
|
|
Return a list of the words in the string, using *sep* as the delimiter string.
|
|
If *maxsplit* is given, at most *maxsplit* splits are done, the *rightmost*
|
|
ones. If *sep* is not specified or ``None``, any whitespace string is a
|
|
separator. Except for splitting from the right, :meth:`rsplit` behaves like
|
|
:meth:`split` which is described in detail below.
|
|
|
|
|
|
.. method:: str.rstrip([chars])
|
|
|
|
Return a copy of the string with trailing characters removed. The *chars*
|
|
argument is a string specifying the set of characters to be removed. If omitted
|
|
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
|
|
argument is not a suffix; rather, all combinations of its values are stripped::
|
|
|
|
>>> ' spacious '.rstrip()
|
|
' spacious'
|
|
>>> 'mississippi'.rstrip('ipz')
|
|
'mississ'
|
|
|
|
|
|
.. method:: str.split([sep[, maxsplit]])
|
|
|
|
Return a list of the words in the string, using *sep* as the delimiter
|
|
string. If *maxsplit* is given, at most *maxsplit* splits are done (thus,
|
|
the list will have at most ``maxsplit+1`` elements). If *maxsplit* is not
|
|
specified, then there is no limit on the number of splits (all possible
|
|
splits are made).
|
|
|
|
If *sep* is given, consecutive delimiters are not grouped together and are
|
|
deemed to delimit empty strings (for example, ``'1,,2'.split(',')`` returns
|
|
``['1', '', '2']``). The *sep* argument may consist of multiple characters
|
|
(for example, ``'1<>2<>3'.split('<>')`` returns ``['1', '2', '3']``).
|
|
Splitting an empty string with a specified separator returns ``['']``.
|
|
|
|
If *sep* is not specified or is ``None``, a different splitting algorithm is
|
|
applied: runs of consecutive whitespace are regarded as a single separator,
|
|
and the result will contain no empty strings at the start or end if the
|
|
string has leading or trailing whitespace. Consequently, splitting an empty
|
|
string or a string consisting of just whitespace with a ``None`` separator
|
|
returns ``[]``.
|
|
|
|
For example, ``' 1 2 3 '.split()`` returns ``['1', '2', '3']``, and
|
|
``' 1 2 3 '.split(None, 1)`` returns ``['1', '2 3 ']``.
|
|
|
|
|
|
.. method:: str.splitlines([keepends])
|
|
|
|
Return a list of the lines in the string, breaking at line boundaries. Line
|
|
breaks are not included in the resulting list unless *keepends* is given and
|
|
true.
|
|
|
|
|
|
.. method:: str.startswith(prefix[, start[, end]])
|
|
|
|
Return ``True`` if string starts with the *prefix*, otherwise return ``False``.
|
|
*prefix* can also be a tuple of prefixes to look for. With optional *start*,
|
|
test string beginning at that position. With optional *end*, stop comparing
|
|
string at that position.
|
|
|
|
|
|
.. method:: str.strip([chars])
|
|
|
|
Return a copy of the string with the leading and trailing characters removed.
|
|
The *chars* argument is a string specifying the set of characters to be removed.
|
|
If omitted or ``None``, the *chars* argument defaults to removing whitespace.
|
|
The *chars* argument is not a prefix or suffix; rather, all combinations of its
|
|
values are stripped::
|
|
|
|
>>> ' spacious '.strip()
|
|
'spacious'
|
|
>>> 'www.example.com'.strip('cmowz.')
|
|
'example'
|
|
|
|
|
|
.. method:: str.swapcase()
|
|
|
|
Return a copy of the string with uppercase characters converted to lowercase and
|
|
vice versa.
|
|
|
|
|
|
.. method:: str.title()
|
|
|
|
Return a titlecased version of the string: words start with uppercase
|
|
characters, all remaining cased characters are lowercase.
|
|
|
|
|
|
.. method:: str.translate(map)
|
|
|
|
Return a copy of the *s* where all characters have been mapped through the
|
|
*map* which must be a dictionary of Unicode ordinals(integers) to Unicode
|
|
ordinals, strings or ``None``. Unmapped characters are left untouched.
|
|
Characters mapped to ``None`` are deleted.
|
|
|
|
A *map* for :meth:`translate` is usually best created by
|
|
:meth:`str.maketrans`.
|
|
|
|
.. note::
|
|
|
|
An even more flexible approach is to create a custom character mapping
|
|
codec using the :mod:`codecs` module (see :mod:`encodings.cp1251` for an
|
|
example).
|
|
|
|
|
|
.. method:: str.upper()
|
|
|
|
Return a copy of the string converted to uppercase.
|
|
|
|
|
|
.. method:: str.zfill(width)
|
|
|
|
Return the numeric string left filled with zeros in a string of length
|
|
*width*. A sign prefix is handled correctly. The original string is
|
|
returned if *width* is less than ``len(s)``.
|
|
|
|
|
|
.. method:: str.isnumeric()
|
|
|
|
Return ``True`` if there are only numeric characters in S, ``False``
|
|
otherwise. Numeric characters include digit characters, and all characters
|
|
that have the Unicode numeric value property, e.g. U+2155,
|
|
VULGAR FRACTION ONE FIFTH.
|
|
|
|
|
|
.. method:: str.isdecimal()
|
|
|
|
Return ``True`` if there are only decimal characters in S, ``False``
|
|
otherwise. Decimal characters include digit characters, and all characters
|
|
that that can be used to form decimal-radix numbers, e.g. U+0660,
|
|
ARABIC-INDIC DIGIT ZERO.
|
|
|
|
|
|
|
|
.. _old-string-formatting:
|
|
|
|
Old String Formatting Operations
|
|
--------------------------------
|
|
|
|
.. index::
|
|
single: formatting, string (%)
|
|
single: interpolation, string (%)
|
|
single: string; formatting
|
|
single: string; interpolation
|
|
single: printf-style formatting
|
|
single: sprintf-style formatting
|
|
single: % formatting
|
|
single: % interpolation
|
|
|
|
.. XXX is the note enough?
|
|
|
|
.. note::
|
|
|
|
The formatting operations described here are obsolete and may go away in future
|
|
versions of Python. Use the new :ref:`string-formatting` in new code.
|
|
|
|
String objects have one unique built-in operation: the ``%`` operator (modulo).
|
|
This is also known as the string *formatting* or *interpolation* operator.
|
|
Given ``format % values`` (where *format* is a string), ``%`` conversion
|
|
specifications in *format* are replaced with zero or more elements of *values*.
|
|
The effect is similar to the using :cfunc:`sprintf` in the C language.
|
|
|
|
If *format* requires a single argument, *values* may be a single non-tuple
|
|
object. [#]_ Otherwise, *values* must be a tuple with exactly the number of
|
|
items specified by the format string, or a single mapping object (for example, a
|
|
dictionary).
|
|
|
|
A conversion specifier contains two or more characters and has the following
|
|
components, which must occur in this order:
|
|
|
|
#. The ``'%'`` character, which marks the start of the specifier.
|
|
|
|
#. Mapping key (optional), consisting of a parenthesised sequence of characters
|
|
(for example, ``(somename)``).
|
|
|
|
#. Conversion flags (optional), which affect the result of some conversion
|
|
types.
|
|
|
|
#. Minimum field width (optional). If specified as an ``'*'`` (asterisk), the
|
|
actual width is read from the next element of the tuple in *values*, and the
|
|
object to convert comes after the minimum field width and optional precision.
|
|
|
|
#. Precision (optional), given as a ``'.'`` (dot) followed by the precision. If
|
|
specified as ``'*'`` (an asterisk), the actual width is read from the next
|
|
element of the tuple in *values*, and the value to convert comes after the
|
|
precision.
|
|
|
|
#. Length modifier (optional).
|
|
|
|
#. Conversion type.
|
|
|
|
When the right argument is a dictionary (or other mapping type), then the
|
|
formats in the string *must* include a parenthesised mapping key into that
|
|
dictionary inserted immediately after the ``'%'`` character. The mapping key
|
|
selects the value to be formatted from the mapping. For example::
|
|
|
|
>>> print('%(language)s has %(#)03d quote types.' %
|
|
{'language': "Python", "#": 2})
|
|
Python has 002 quote types.
|
|
|
|
In this case no ``*`` specifiers may occur in a format (since they require a
|
|
sequential parameter list).
|
|
|
|
The conversion flag characters are:
|
|
|
|
+---------+---------------------------------------------------------------------+
|
|
| Flag | Meaning |
|
|
+=========+=====================================================================+
|
|
| ``'#'`` | The value conversion will use the "alternate form" (where defined |
|
|
| | below). |
|
|
+---------+---------------------------------------------------------------------+
|
|
| ``'0'`` | The conversion will be zero padded for numeric values. |
|
|
+---------+---------------------------------------------------------------------+
|
|
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'`` |
|
|
| | conversion if both are given). |
|
|
+---------+---------------------------------------------------------------------+
|
|
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
|
|
| | string) produced by a signed conversion. |
|
|
+---------+---------------------------------------------------------------------+
|
|
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion |
|
|
| | (overrides a "space" flag). |
|
|
+---------+---------------------------------------------------------------------+
|
|
|
|
A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
|
|
is not necessary for Python.
|
|
|
|
The conversion types are:
|
|
|
|
+------------+-----------------------------------------------------+-------+
|
|
| Conversion | Meaning | Notes |
|
|
+============+=====================================================+=======+
|
|
| ``'d'`` | Signed integer decimal. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'i'`` | Signed integer decimal. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'o'`` | Unsigned octal. | \(1) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'u'`` | Unsigned decimal. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'x'`` | Unsigned hexadecimal (lowercase). | \(2) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'X'`` | Unsigned hexadecimal (uppercase). | \(2) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'e'`` | Floating point exponential format (lowercase). | \(3) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'E'`` | Floating point exponential format (uppercase). | \(3) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'f'`` | Floating point decimal format. | \(3) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'F'`` | Floating point decimal format. | \(3) |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'g'`` | Floating point format. Uses exponential format if | \(4) |
|
|
| | exponent is greater than -4 or less than precision, | |
|
|
| | decimal format otherwise. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'G'`` | Floating point format. Uses exponential format if | \(4) |
|
|
| | exponent is greater than -4 or less than precision, | |
|
|
| | decimal format otherwise. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'c'`` | Single character (accepts integer or single | |
|
|
| | character string). | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'r'`` | String (converts any python object using | \(5) |
|
|
| | :func:`repr`). | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'s'`` | String (converts any python object using | |
|
|
| | :func:`str`). | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
| ``'%'`` | No argument is converted, results in a ``'%'`` | |
|
|
| | character in the result. | |
|
|
+------------+-----------------------------------------------------+-------+
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
The alternate form causes a leading zero (``'0'``) to be inserted between
|
|
left-hand padding and the formatting of the number if the leading character
|
|
of the result is not already a zero.
|
|
|
|
(2)
|
|
The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
|
|
the ``'x'`` or ``'X'`` format was used) to be inserted between left-hand padding
|
|
and the formatting of the number if the leading character of the result is not
|
|
already a zero.
|
|
|
|
(3)
|
|
The alternate form causes the result to always contain a decimal point, even if
|
|
no digits follow it.
|
|
|
|
The precision determines the number of digits after the decimal point and
|
|
defaults to 6.
|
|
|
|
(4)
|
|
The alternate form causes the result to always contain a decimal point, and
|
|
trailing zeroes are not removed as they would otherwise be.
|
|
|
|
The precision determines the number of significant digits before and after the
|
|
decimal point and defaults to 6.
|
|
|
|
(5)
|
|
The precision determines the maximal number of characters used.
|
|
|
|
|
|
Since Python strings have an explicit length, ``%s`` conversions do not assume
|
|
that ``'\0'`` is the end of the string.
|
|
|
|
.. XXX Examples?
|
|
|
|
For safety reasons, floating point precisions are clipped to 50; ``%f``
|
|
conversions for numbers whose absolute value is over 1e25 are replaced by ``%g``
|
|
conversions. [#]_ All other errors raise exceptions.
|
|
|
|
.. index::
|
|
module: string
|
|
module: re
|
|
|
|
Additional string operations are defined in standard modules :mod:`string` and
|
|
:mod:`re`.
|
|
|
|
|
|
.. _typesseq-range:
|
|
|
|
Range Type
|
|
----------
|
|
|
|
.. index:: object: range
|
|
|
|
The :class:`range` type is an immutable sequence which is commonly used for
|
|
looping. The advantage of the :class:`range` type is that an :class:`range`
|
|
object will always take the same amount of memory, no matter the size of the
|
|
range it represents. There are no consistent performance advantages.
|
|
|
|
Range objects have very little behavior: they only support indexing, iteration,
|
|
and the :func:`len` function.
|
|
|
|
|
|
.. _typesseq-mutable:
|
|
|
|
Mutable Sequence Types
|
|
----------------------
|
|
|
|
.. index::
|
|
triple: mutable; sequence; types
|
|
object: list
|
|
object: bytearray
|
|
|
|
List and bytearray objects support additional operations that allow in-place
|
|
modification of the object. Other mutable sequence types (when added to the
|
|
language) should also support these operations. Strings and tuples are
|
|
immutable sequence types: such objects cannot be modified once created. The
|
|
following operations are defined on mutable sequence types (where *x* is an
|
|
arbitrary object).
|
|
|
|
Note that while lists allow their items to be of any type, bytearray object
|
|
"items" are all integers in the range 0 <= x < 256.
|
|
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| Operation | Result | Notes |
|
|
+==============================+================================+=====================+
|
|
| ``s[i] = x`` | item *i* of *s* is replaced by | |
|
|
| | *x* | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s[i:j] = t`` | slice of *s* from *i* to *j* | |
|
|
| | is replaced by the contents of | |
|
|
| | the iterable *t* | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``del s[i:j]`` | same as ``s[i:j] = []`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s[i:j:k] = t`` | the elements of ``s[i:j:k]`` | \(1) |
|
|
| | are replaced by those of *t* | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``del s[i:j:k]`` | removes the elements of | |
|
|
| | ``s[i:j:k]`` from the list | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.append(x)`` | same as ``s[len(s):len(s)] = | |
|
|
| | [x]`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.extend(x)`` | same as ``s[len(s):len(s)] = | \(2) |
|
|
| | x`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.count(x)`` | return number of *i*'s for | |
|
|
| | which ``s[i] == x`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.index(x[, i[, j]])`` | return smallest *k* such that | \(3) |
|
|
| | ``s[k] == x`` and ``i <= k < | |
|
|
| | j`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.insert(i, x)`` | same as ``s[i:i] = [x]`` | \(4) |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.pop([i])`` | same as ``x = s[i]; del s[i]; | \(5) |
|
|
| | return x`` | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.remove(x)`` | same as ``del s[s.index(x)]`` | \(3) |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.reverse()`` | reverses the items of *s* in | \(6) |
|
|
| | place | |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
| ``s.sort([key[, reverse]])`` | sort the items of *s* in place | (6), (7), (8) |
|
|
+------------------------------+--------------------------------+---------------------+
|
|
|
|
.. index::
|
|
triple: operations on; sequence; types
|
|
triple: operations on; list; type
|
|
pair: subscript; assignment
|
|
pair: slice; assignment
|
|
statement: del
|
|
single: append() (sequence method)
|
|
single: extend() (sequence method)
|
|
single: count() (sequence method)
|
|
single: index() (sequence method)
|
|
single: insert() (sequence method)
|
|
single: pop() (sequence method)
|
|
single: remove() (sequence method)
|
|
single: reverse() (sequence method)
|
|
single: sort() (sequence method)
|
|
|
|
Notes:
|
|
|
|
(1)
|
|
*t* must have the same length as the slice it is replacing.
|
|
|
|
(2)
|
|
*x* can be any iterable object.
|
|
|
|
(3)
|
|
Raises :exc:`ValueError` when *x* is not found in *s*. When a negative index is
|
|
passed as the second or third parameter to the :meth:`index` method, the sequence
|
|
length is added, as for slice indices. If it is still negative, it is truncated
|
|
to zero, as for slice indices.
|
|
|
|
(4)
|
|
When a negative index is passed as the first parameter to the :meth:`insert`
|
|
method, the sequence length is added, as for slice indices. If it is still
|
|
negative, it is truncated to zero, as for slice indices.
|
|
|
|
(5)
|
|
The optional argument *i* defaults to ``-1``, so that by default the last
|
|
item is removed and returned.
|
|
|
|
(6)
|
|
The :meth:`sort` and :meth:`reverse` methods modify the sequence in place for
|
|
economy of space when sorting or reversing a large sequence. To remind you
|
|
that they operate by side effect, they don't return the sorted or reversed
|
|
sequence.
|
|
|
|
(7)
|
|
The :meth:`sort` method takes optional arguments for controlling the
|
|
comparisons. Each must be specified as a keyword argument.
|
|
|
|
*key* specifies a function of one argument that is used to extract a comparison
|
|
key from each list element: ``key=str.lower``. The default value is ``None``.
|
|
|
|
*reverse* is a boolean value. If set to ``True``, then the list elements are
|
|
sorted as if each comparison were reversed.
|
|
|
|
The :meth:`sort` method is guaranteed to be stable. A
|
|
sort is stable if it guarantees not to change the relative order of elements
|
|
that compare equal --- this is helpful for sorting in multiple passes (for
|
|
example, sort by department, then by salary grade).
|
|
|
|
While a list is being sorted, the effect of attempting to mutate, or even
|
|
inspect, the list is undefined. The C implementation
|
|
makes the list appear empty for the duration, and raises :exc:`ValueError` if it
|
|
can detect that the list has been mutated during a sort.
|
|
|
|
(8)
|
|
:meth:`sort` is not supported by :class:`bytearray` objects.
|
|
|
|
.. _bytes-methods:
|
|
|
|
Bytes and Byte Array Methods
|
|
----------------------------
|
|
|
|
.. index:: pair: bytes; methods
|
|
pair: bytearray; methods
|
|
|
|
Bytes and bytearray objects, being "strings of bytes", have all methods found on
|
|
strings, with the exception of :func:`encode`, :func:`format` and
|
|
:func:`isidentifier`, which do not make sense with these types. For converting
|
|
the objects to strings, they have a :func:`decode` method.
|
|
|
|
Wherever one of these methods needs to interpret the bytes as characters
|
|
(e.g. the :func:`is...` methods), the ASCII character set is assumed.
|
|
|
|
.. note::
|
|
|
|
The methods on bytes and bytearray objects don't accept strings as their
|
|
arguments, just as the methods on strings don't accept bytes as their
|
|
arguments. For example, you have to write ::
|
|
|
|
a = "abc"
|
|
b = a.replace("a", "f")
|
|
|
|
and ::
|
|
|
|
a = b"abc"
|
|
b = a.replace(b"a", b"f")
|
|
|
|
|
|
The bytes and bytearray types have an additional class method:
|
|
|
|
.. method:: bytes.fromhex(string)
|
|
|
|
This :class:`bytes` class method returns a bytes object, decoding the given
|
|
string object. The string must contain two hexadecimal digits per byte, spaces
|
|
are ignored.
|
|
|
|
Example::
|
|
|
|
>>> bytes.fromhex('f0 f1f2 ')
|
|
b'\xf0\xf1\xf2'
|
|
|
|
.. XXX verify/document translate() semantics!
|
|
|
|
.. method:: bytes.translate(table[, delete])
|
|
|
|
Return a copy of the bytes object where all bytes occurring in the optional
|
|
argument *delete* are removed, and the remaining bytes have been mapped
|
|
through the given translation table, which must be a bytes object of length
|
|
256.
|
|
|
|
You can use the :func:`maketrans` helper function in the :mod:`string` module to
|
|
create a translation table.
|
|
|
|
.. XXX a None table doesn't seem to be supported
|
|
Set the *table* argument to ``None`` for translations that only delete characters::
|
|
|
|
>>> 'read this short text'.translate(None, 'aeiou')
|
|
'rd ths shrt txt'
|
|
|
|
|
|
.. _types-set:
|
|
|
|
Set Types --- :class:`set`, :class:`frozenset`
|
|
==============================================
|
|
|
|
.. index:: object: set
|
|
|
|
A :dfn:`set` object is an unordered collection of distinct :term:`hashable` objects.
|
|
Common uses include membership testing, removing duplicates from a sequence, and
|
|
computing mathematical operations such as intersection, union, difference, and
|
|
symmetric difference.
|
|
(For other containers see the built in :class:`dict`, :class:`list`,
|
|
and :class:`tuple` classes, and the :mod:`collections` module.)
|
|
|
|
Like other collections, sets support ``x in set``, ``len(set)``, and ``for x in
|
|
set``. Being an unordered collection, sets do not record element position or
|
|
order of insertion. Accordingly, sets do not support indexing, slicing, or
|
|
other sequence-like behavior.
|
|
|
|
There are currently two builtin set types, :class:`set` and :class:`frozenset`.
|
|
The :class:`set` type is mutable --- the contents can be changed using methods
|
|
like :meth:`add` and :meth:`remove`. Since it is mutable, it has no hash value
|
|
and cannot be used as either a dictionary key or as an element of another set.
|
|
The :class:`frozenset` type is immutable and :term:`hashable` --- its contents cannot be
|
|
altered after it is created; it can therefore be used as a dictionary key or as
|
|
an element of another set.
|
|
|
|
The constructors for both classes work the same:
|
|
|
|
.. class:: set([iterable])
|
|
frozenset([iterable])
|
|
|
|
Return a new set or frozenset object whose elements are taken from
|
|
*iterable*. The elements of a set must be hashable. To represent sets of
|
|
sets, the inner sets must be :class:`frozenset` objects. If *iterable* is
|
|
not specified, a new empty set is returned.
|
|
|
|
Instances of :class:`set` and :class:`frozenset` provide the following
|
|
operations:
|
|
|
|
.. describe:: len(s)
|
|
|
|
Return the cardinality of set *s*.
|
|
|
|
.. describe:: x in s
|
|
|
|
Test *x* for membership in *s*.
|
|
|
|
.. describe:: x not in s
|
|
|
|
Test *x* for non-membership in *s*.
|
|
|
|
.. method:: set.isdisjoint(other)
|
|
|
|
Return True if the set has no elements in common with *other*.
|
|
Sets are disjoint if and only if their interesection is the empty set.
|
|
|
|
.. method:: set.issubset(other)
|
|
set <= other
|
|
|
|
Test whether every element in the set is in *other*.
|
|
|
|
.. method:: set < other
|
|
|
|
Test whether the set is a true subset of *other*, that is,
|
|
``set <= other and set != other``.
|
|
|
|
.. method:: set.issuperset(other)
|
|
set >= other
|
|
|
|
Test whether every element in *other* is in the set.
|
|
|
|
.. method:: set > other
|
|
|
|
Test whether the set is a true superset of *other*, that is,
|
|
``set >= other and set != other``.
|
|
|
|
.. method:: set.union(other)
|
|
set | other
|
|
|
|
Return a new set with elements from both sets.
|
|
|
|
.. method:: set.intersection(other)
|
|
set & other
|
|
|
|
Return a new set with elements common to both sets.
|
|
|
|
.. method:: set.difference(other)
|
|
set - other
|
|
|
|
Return a new set with elements in the set that are not in *other*.
|
|
|
|
.. method:: set.symmetric_difference(other)
|
|
set ^ other
|
|
|
|
Return a new set with elements in either the set or *other* but not both.
|
|
|
|
.. method:: set.copy()
|
|
|
|
Return a new set with a shallow copy of *s*.
|
|
|
|
|
|
Note, the non-operator versions of :meth:`union`, :meth:`intersection`,
|
|
:meth:`difference`, and :meth:`symmetric_difference`, :meth:`issubset`, and
|
|
:meth:`issuperset` methods will accept any iterable as an argument. In
|
|
contrast, their operator based counterparts require their arguments to be sets.
|
|
This precludes error-prone constructions like ``set('abc') & 'cbs'`` in favor of
|
|
the more readable ``set('abc').intersection('cbs')``.
|
|
|
|
Both :class:`set` and :class:`frozenset` support set to set comparisons. Two
|
|
sets are equal if and only if every element of each set is contained in the
|
|
other (each is a subset of the other). A set is less than another set if and
|
|
only if the first set is a proper subset of the second set (is a subset, but is
|
|
not equal). A set is greater than another set if and only if the first set is a
|
|
proper superset of the second set (is a superset, but is not equal).
|
|
|
|
Instances of :class:`set` are compared to instances of :class:`frozenset` based
|
|
on their members. For example, ``set('abc') == frozenset('abc')`` returns
|
|
``True``.
|
|
|
|
The subset and equality comparisons do not generalize to a complete ordering
|
|
function. For example, any two disjoint sets are not equal and are not subsets
|
|
of each other, so *all* of the following return ``False``: ``a<b``, ``a==b``,
|
|
or ``a>b``. Accordingly, sets do not implement the :meth:`__cmp__` method.
|
|
|
|
Since sets only define partial ordering (subset relationships), the output of
|
|
the :meth:`list.sort` method is undefined for lists of sets.
|
|
|
|
Set elements, like dictionary keys, must be :term:`hashable`.
|
|
|
|
Binary operations that mix :class:`set` instances with :class:`frozenset` return
|
|
the type of the first operand. For example: ``frozenset('ab') | set('bc')``
|
|
returns an instance of :class:`frozenset`.
|
|
|
|
The following table lists operations available for :class:`set` that do not
|
|
apply to immutable instances of :class:`frozenset`:
|
|
|
|
.. method:: set.update(other)
|
|
set |= other
|
|
|
|
Update the set, adding elements from *other*.
|
|
|
|
.. method:: set.intersection_update(other)
|
|
set &= other
|
|
|
|
Update the set, keeping only elements found in it and *other*.
|
|
|
|
.. method:: set.difference_update(other)
|
|
set -= other
|
|
|
|
Update the set, removing elements found in *other*.
|
|
|
|
.. method:: set.symmetric_difference_update(other)
|
|
set ^= other
|
|
|
|
Update the set, keeping only elements found in either set, but not in both.
|
|
|
|
.. method:: set.add(el)
|
|
|
|
Add element *el* to the set.
|
|
|
|
.. method:: set.remove(el)
|
|
|
|
Remove element *el* from the set. Raises :exc:`KeyError` if *el* is not
|
|
contained in the set.
|
|
|
|
.. method:: set.discard(el)
|
|
|
|
Remove element *el* from the set if it is present.
|
|
|
|
.. method:: set.pop()
|
|
|
|
Remove and return an arbitrary element from the set. Raises :exc:`KeyError`
|
|
if the set is empty.
|
|
|
|
.. method:: set.clear()
|
|
|
|
Remove all elements from the set.
|
|
|
|
|
|
Note, the non-operator versions of the :meth:`update`,
|
|
:meth:`intersection_update`, :meth:`difference_update`, and
|
|
:meth:`symmetric_difference_update` methods will accept any iterable as an
|
|
argument.
|
|
|
|
|
|
.. _typesmapping:
|
|
|
|
Mapping Types --- :class:`dict`
|
|
===============================
|
|
|
|
.. index::
|
|
object: mapping
|
|
object: dictionary
|
|
triple: operations on; mapping; types
|
|
triple: operations on; dictionary; type
|
|
statement: del
|
|
builtin: len
|
|
|
|
A :dfn:`mapping` object maps :term:`hashable` values to arbitrary objects.
|
|
Mappings are mutable objects. There is currently only one standard mapping
|
|
type, the :dfn:`dictionary`. (For other containers see the built in
|
|
:class:`list`, :class:`set`, and :class:`tuple` classes, and the
|
|
:mod:`collections` module.)
|
|
|
|
A dictionary's keys are *almost* arbitrary values. Values that are not
|
|
:term:`hashable`, that is, values containing lists, dictionaries or other
|
|
mutable types (that are compared by value rather than by object identity) may
|
|
not be used as keys. Numeric types used for keys obey the normal rules for
|
|
numeric comparison: if two numbers compare equal (such as ``1`` and ``1.0``)
|
|
then they can be used interchangeably to index the same dictionary entry. (Note
|
|
however, that since computers store floating-point numbers as approximations it
|
|
is usually unwise to use them as dictionary keys.)
|
|
|
|
Dictionaries can be created by placing a comma-separated list of ``key: value``
|
|
pairs within braces, for example: ``{'jack': 4098, 'sjoerd': 4127}`` or ``{4098:
|
|
'jack', 4127: 'sjoerd'}``, or by the :class:`dict` constructor.
|
|
|
|
.. class:: dict([arg])
|
|
|
|
Return a new dictionary initialized from an optional positional argument or
|
|
from a set of keyword arguments. If no arguments are given, return a new
|
|
empty dictionary. If the positional argument *arg* is a mapping object,
|
|
return a dictionary mapping the same keys to the same values as does the
|
|
mapping object. Otherwise the positional argument must be a sequence, a
|
|
container that supports iteration, or an iterator object. The elements of
|
|
the argument must each also be of one of those kinds, and each must in turn
|
|
contain exactly two objects. The first is used as a key in the new
|
|
dictionary, and the second as the key's value. If a given key is seen more
|
|
than once, the last value associated with it is retained in the new
|
|
dictionary.
|
|
|
|
If keyword arguments are given, the keywords themselves with their associated
|
|
values are added as items to the dictionary. If a key is specified both in
|
|
the positional argument and as a keyword argument, the value associated with
|
|
the keyword is retained in the dictionary. For example, these all return a
|
|
dictionary equal to ``{"one": 2, "two": 3}``:
|
|
|
|
* ``dict(one=2, two=3)``
|
|
* ``dict({'one': 2, 'two': 3})``
|
|
* ``dict(zip(('one', 'two'), (2, 3)))``
|
|
* ``dict([['two', 3], ['one', 2]])``
|
|
|
|
The first example only works for keys that are valid Python identifiers; the
|
|
others work with any valid keys.
|
|
|
|
|
|
These are the operations that dictionaries support (and therefore, custom mapping
|
|
types should support too):
|
|
|
|
.. describe:: len(d)
|
|
|
|
Return the number of items in the dictionary *d*.
|
|
|
|
.. describe:: d[key]
|
|
|
|
Return the item of *d* with key *key*. Raises a :exc:`KeyError` if *key* is
|
|
not in the map.
|
|
|
|
If a subclass of dict defines a method :meth:`__missing__`, if the key *key*
|
|
is not present, the ``d[key]`` operation calls that method with the key *key*
|
|
as argument. The ``d[key]`` operation then returns or raises whatever is
|
|
returned or raised by the ``__missing__(key)`` call if the key is not
|
|
present. No other operations or methods invoke :meth:`__missing__`. If
|
|
:meth:`__missing__` is not defined, :exc:`KeyError` is raised.
|
|
:meth:`__missing__` must be a method; it cannot be an instance variable. For
|
|
an example, see :class:`collections.defaultdict`.
|
|
|
|
.. describe:: d[key] = value
|
|
|
|
Set ``d[key]`` to *value*.
|
|
|
|
.. describe:: del d[key]
|
|
|
|
Remove ``d[key]`` from *d*. Raises a :exc:`KeyError` if *key* is not in the
|
|
map.
|
|
|
|
.. describe:: key in d
|
|
|
|
Return ``True`` if *d* has a key *key*, else ``False``.
|
|
|
|
.. describe:: key not in d
|
|
|
|
Equivalent to ``not key in d``.
|
|
|
|
.. method:: dict.clear()
|
|
|
|
Remove all items from the dictionary.
|
|
|
|
.. method:: dict.copy()
|
|
|
|
Return a shallow copy of the dictionary.
|
|
|
|
.. method:: dict.fromkeys(seq[, value])
|
|
|
|
Create a new dictionary with keys from *seq* and values set to *value*.
|
|
|
|
:func:`fromkeys` is a class method that returns a new dictionary. *value*
|
|
defaults to ``None``.
|
|
|
|
.. method:: dict.get(key[, default])
|
|
|
|
Return the value for *key* if *key* is in the dictionary, else *default*. If
|
|
*default* is not given, it defaults to ``None``, so that this method never
|
|
raises a :exc:`KeyError`.
|
|
|
|
.. method:: dict.items()
|
|
|
|
Return a new view of the dictionary's items (``(key, value)`` pairs). See
|
|
below for documentation of view objects.
|
|
|
|
.. method:: dict.keys()
|
|
|
|
Return a new view of the dictionary's keys. See below for documentation of
|
|
view objects.
|
|
|
|
.. method:: dict.pop(key[, default])
|
|
|
|
If *key* is in the dictionary, remove it and return its value, else return
|
|
*default*. If *default* is not given and *key* is not in the dictionary, a
|
|
:exc:`KeyError` is raised.
|
|
|
|
.. method:: dict.popitem()
|
|
|
|
Remove and return an arbitrary ``(key, value)`` pair from the dictionary.
|
|
|
|
:func:`popitem` is useful to destructively iterate over a dictionary, as
|
|
often used in set algorithms. If the dictionary is empty, calling
|
|
:func:`popitem` raises a :exc:`KeyError`.
|
|
|
|
.. method:: dict.setdefault(key[, default])
|
|
|
|
If *key* is in the dictionary, return its value. If not, insert *key* with
|
|
a value of *default* and return *default*. *default* defaults to ``None``.
|
|
|
|
.. method:: dict.update([other])
|
|
|
|
Update the dictionary with the key/value pairs from *other*, overwriting
|
|
existing keys. Return ``None``.
|
|
|
|
:func:`update` accepts either another dictionary object or an iterable of
|
|
key/value pairs (as a tuple or other iterable of length two). If keyword
|
|
arguments are specified, the dictionary is then is updated with those
|
|
key/value pairs: ``d.update(red=1, blue=2)``.
|
|
|
|
.. method:: dict.values()
|
|
|
|
Return a new view of the dictionary's values. See below for documentation of
|
|
view objects.
|
|
|
|
|
|
Dictionary view objects
|
|
-----------------------
|
|
|
|
The objects returned by :meth:`dict.keys`, :meth:`dict.values` and
|
|
:meth:`dict.items` are *view objects*. They provide a dynamic view on the
|
|
dictionary's entries, which means that when the dictionary changes, the view
|
|
reflects these changes. The keys and items views have a set-like character
|
|
since their entries
|
|
|
|
Dictionary views can be iterated over to yield their respective data, and
|
|
support membership tests:
|
|
|
|
.. describe:: len(dictview)
|
|
|
|
Return the number of entries in the dictionary.
|
|
|
|
.. describe:: iter(dictview)
|
|
|
|
Return an iterator over the keys, values or items (represented as tuples of
|
|
``(key, value)``) in the dictionary.
|
|
|
|
Keys and values are iterated over in an arbitrary order which is non-random,
|
|
varies across Python implementations, and depends on the dictionary's history
|
|
of insertions and deletions. If keys, values and items views are iterated
|
|
over with no intervening modifications to the dictionary, the order of items
|
|
will directly correspond. This allows the creation of ``(value, key)`` pairs
|
|
using :func:`zip`: ``pairs = zip(d.values(), d.keys())``. Another way to
|
|
create the same list is ``pairs = [(v, k) for (k, v) in d.items()]``.
|
|
|
|
.. describe:: x in dictview
|
|
|
|
Return ``True`` if *x* is in the underlying dictionary's keys, values or
|
|
items (in the latter case, *x* should be a ``(key, value)`` tuple).
|
|
|
|
|
|
The keys and items views also provide set-like operations ("other" here refers
|
|
to another dictionary view or a set):
|
|
|
|
.. describe:: dictview & other
|
|
|
|
Return the intersection of the dictview and the other object as a new set.
|
|
|
|
.. describe:: dictview | other
|
|
|
|
Return the union of the dictview and the other object as a new set.
|
|
|
|
.. describe:: dictview - other
|
|
|
|
Return the difference between the dictview and the other object (all elements
|
|
in *dictview* that aren't in *other*) as a new set.
|
|
|
|
.. describe:: dictview ^ other
|
|
|
|
Return the symmetric difference (all elements either in *dictview* or
|
|
*other*, but not in both) of the dictview and the other object as a new set.
|
|
|
|
.. warning::
|
|
|
|
Since a dictionary's values are not required to be hashable, any of these
|
|
four operations will fail if an involved dictionary contains such a value.
|
|
|
|
|
|
An example of dictionary view usage::
|
|
|
|
>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
|
|
>>> keys = dishes.keys()
|
|
>>> values = dishes.values()
|
|
|
|
>>> # iteration
|
|
>>> n = 0
|
|
>>> for val in values:
|
|
... n += val
|
|
>>> print(n)
|
|
504
|
|
|
|
>>> # keys and values are iterated over in the same order
|
|
>>> list(keys)
|
|
['eggs', 'bacon', 'sausage', 'spam']
|
|
>>> list(values)
|
|
[2, 1, 1, 500]
|
|
|
|
>>> # view objects are dynamic and reflect dict changes
|
|
>>> del dishes['eggs']
|
|
>>> del dishes['sausage']
|
|
>>> list(keys)
|
|
['spam', 'bacon']
|
|
|
|
>>> # set operations
|
|
>>> keys & {'eggs', 'bacon', 'salad'}
|
|
{'eggs', 'bacon'}
|
|
|
|
|
|
.. _bltin-file-objects:
|
|
|
|
File Objects
|
|
============
|
|
|
|
.. index::
|
|
object: file
|
|
builtin: file
|
|
module: os
|
|
module: socket
|
|
|
|
.. XXX this is quite out of date, must be updated with "io" module
|
|
|
|
File objects are implemented using C's ``stdio`` package and can be
|
|
created with the built-in :func:`open` function. File
|
|
objects are also returned by some other built-in functions and methods,
|
|
such as :func:`os.popen` and :func:`os.fdopen` and the :meth:`makefile`
|
|
method of socket objects. Temporary files can be created using the
|
|
:mod:`tempfile` module, and high-level file operations such as copying,
|
|
moving, and deleting files and directories can be achieved with the
|
|
:mod:`shutil` module.
|
|
|
|
When a file operation fails for an I/O-related reason, the exception
|
|
:exc:`IOError` is raised. This includes situations where the operation is not
|
|
defined for some reason, like :meth:`seek` on a tty device or writing a file
|
|
opened for reading.
|
|
|
|
Files have the following methods:
|
|
|
|
|
|
.. method:: file.close()
|
|
|
|
Close the file. A closed file cannot be read or written any more. Any operation
|
|
which requires that the file be open will raise a :exc:`ValueError` after the
|
|
file has been closed. Calling :meth:`close` more than once is allowed.
|
|
|
|
As of Python 2.5, you can avoid having to call this method explicitly if you use
|
|
the :keyword:`with` statement. For example, the following code will
|
|
automatically close *f* when the :keyword:`with` block is exited::
|
|
|
|
from __future__ import with_statement
|
|
|
|
with open("hello.txt") as f:
|
|
for line in f:
|
|
print(line)
|
|
|
|
In older versions of Python, you would have needed to do this to get the same
|
|
effect::
|
|
|
|
f = open("hello.txt")
|
|
try:
|
|
for line in f:
|
|
print(line)
|
|
finally:
|
|
f.close()
|
|
|
|
.. note::
|
|
|
|
Not all "file-like" types in Python support use as a context manager for the
|
|
:keyword:`with` statement. If your code is intended to work with any file-like
|
|
object, you can use the function :func:`contextlib.closing` instead of using
|
|
the object directly.
|
|
|
|
|
|
.. method:: file.flush()
|
|
|
|
Flush the internal buffer, like ``stdio``'s :cfunc:`fflush`. This may be a
|
|
no-op on some file-like objects.
|
|
|
|
|
|
.. method:: file.fileno()
|
|
|
|
.. index::
|
|
pair: file; descriptor
|
|
module: fcntl
|
|
|
|
Return the integer "file descriptor" that is used by the underlying
|
|
implementation to request I/O operations from the operating system. This can be
|
|
useful for other, lower level interfaces that use file descriptors, such as the
|
|
:mod:`fcntl` module or :func:`os.read` and friends.
|
|
|
|
.. note::
|
|
|
|
File-like objects which do not have a real file descriptor should *not* provide
|
|
this method!
|
|
|
|
|
|
.. method:: file.isatty()
|
|
|
|
Return ``True`` if the file is connected to a tty(-like) device, else ``False``.
|
|
|
|
.. note::
|
|
|
|
If a file-like object is not associated with a real file, this method should
|
|
*not* be implemented.
|
|
|
|
|
|
.. method:: file.__next__()
|
|
|
|
A file object is its own iterator, for example ``iter(f)`` returns *f* (unless
|
|
*f* is closed). When a file is used as an iterator, typically in a
|
|
:keyword:`for` loop (for example, ``for line in f: print(line)``), the
|
|
:meth:`__next__` method is called repeatedly. This method returns the next
|
|
input line, or raises :exc:`StopIteration` when EOF is hit when the file is open
|
|
for reading (behavior is undefined when the file is open for writing). In order
|
|
to make a :keyword:`for` loop the most efficient way of looping over the lines
|
|
of a file (a very common operation), the :meth:`__next__` method uses a hidden
|
|
read-ahead buffer. As a consequence of using a read-ahead buffer, combining
|
|
:meth:`__next__` with other file methods (like :meth:`readline`) does not work
|
|
right. However, using :meth:`seek` to reposition the file to an absolute
|
|
position will flush the read-ahead buffer.
|
|
|
|
|
|
.. method:: file.read([size])
|
|
|
|
Read at most *size* bytes from the file (less if the read hits EOF before
|
|
obtaining *size* bytes). If the *size* argument is negative or omitted, read
|
|
all data until EOF is reached. The bytes are returned as a string object. An
|
|
empty string is returned when EOF is encountered immediately. (For certain
|
|
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note
|
|
that this method may call the underlying C function :cfunc:`fread` more than
|
|
once in an effort to acquire as close to *size* bytes as possible. Also note
|
|
that when in non-blocking mode, less data than what was requested may be
|
|
returned, even if no *size* parameter was given.
|
|
|
|
|
|
.. method:: file.readline([size])
|
|
|
|
Read one entire line from the file. A trailing newline character is kept in the
|
|
string (but may be absent when a file ends with an incomplete line). [#]_ If
|
|
the *size* argument is present and non-negative, it is a maximum byte count
|
|
(including the trailing newline) and an incomplete line may be returned. An
|
|
empty string is returned *only* when EOF is encountered immediately.
|
|
|
|
.. note::
|
|
|
|
Unlike ``stdio``'s :cfunc:`fgets`, the returned string contains null characters
|
|
(``'\0'``) if they occurred in the input.
|
|
|
|
|
|
.. method:: file.readlines([sizehint])
|
|
|
|
Read until EOF using :meth:`readline` and return a list containing the lines
|
|
thus read. If the optional *sizehint* argument is present, instead of
|
|
reading up to EOF, whole lines totalling approximately *sizehint* bytes
|
|
(possibly after rounding up to an internal buffer size) are read. Objects
|
|
implementing a file-like interface may choose to ignore *sizehint* if it
|
|
cannot be implemented, or cannot be implemented efficiently.
|
|
|
|
|
|
.. method:: file.seek(offset[, whence])
|
|
|
|
Set the file's current position, like ``stdio``'s :cfunc:`fseek`. The *whence*
|
|
argument is optional and defaults to ``os.SEEK_SET`` or ``0`` (absolute file
|
|
positioning); other values are ``os.SEEK_CUR`` or ``1`` (seek relative to the
|
|
current position) and ``os.SEEK_END`` or ``2`` (seek relative to the file's
|
|
end). There is no return value.
|
|
|
|
For example, ``f.seek(2, os.SEEK_CUR)`` advances the position by two and
|
|
``f.seek(-3, os.SEEK_END)`` sets the position to the third to last.
|
|
|
|
Note that if the file is opened for appending
|
|
(mode ``'a'`` or ``'a+'``), any :meth:`seek` operations will be undone at the
|
|
next write. If the file is only opened for writing in append mode (mode
|
|
``'a'``), this method is essentially a no-op, but it remains useful for files
|
|
opened in append mode with reading enabled (mode ``'a+'``). If the file is
|
|
opened in text mode (without ``'b'``), only offsets returned by :meth:`tell` are
|
|
legal. Use of other offsets causes undefined behavior.
|
|
|
|
Note that not all file objects are seekable.
|
|
|
|
|
|
.. method:: file.tell()
|
|
|
|
Return the file's current position, like ``stdio``'s :cfunc:`ftell`.
|
|
|
|
.. note::
|
|
|
|
On Windows, :meth:`tell` can return illegal values (after an :cfunc:`fgets`)
|
|
when reading files with Unix-style line-endings. Use binary mode (``'rb'``) to
|
|
circumvent this problem.
|
|
|
|
|
|
.. method:: file.truncate([size])
|
|
|
|
Truncate the file's size. If the optional *size* argument is present, the file
|
|
is truncated to (at most) that size. The size defaults to the current position.
|
|
The current file position is not changed. Note that if a specified size exceeds
|
|
the file's current size, the result is platform-dependent: possibilities
|
|
include that the file may remain unchanged, increase to the specified size as if
|
|
zero-filled, or increase to the specified size with undefined new content.
|
|
Availability: Windows, many Unix variants.
|
|
|
|
|
|
.. method:: file.write(str)
|
|
|
|
Write a string to the file. Due to buffering, the string may not actually
|
|
show up in the file until the :meth:`flush` or :meth:`close` method is
|
|
called.
|
|
|
|
The meaning of the return value is not defined for every file-like object.
|
|
Some (mostly low-level) file-like objects may return the number of bytes
|
|
actually written, others return ``None``.
|
|
|
|
|
|
.. method:: file.writelines(sequence)
|
|
|
|
Write a sequence of strings to the file. The sequence can be any iterable
|
|
object producing strings, typically a list of strings. There is no return value.
|
|
(The name is intended to match :meth:`readlines`; :meth:`writelines` does not
|
|
add line separators.)
|
|
|
|
Files support the iterator protocol. Each iteration returns the same result as
|
|
``file.readline()``, and iteration ends when the :meth:`readline` method returns
|
|
an empty string.
|
|
|
|
File objects also offer a number of other interesting attributes. These are not
|
|
required for file-like objects, but should be implemented if they make sense for
|
|
the particular object.
|
|
|
|
|
|
.. attribute:: file.closed
|
|
|
|
bool indicating the current state of the file object. This is a read-only
|
|
attribute; the :meth:`close` method changes the value. It may not be available
|
|
on all file-like objects.
|
|
|
|
|
|
.. XXX does this still apply?
|
|
.. attribute:: file.encoding
|
|
|
|
The encoding that this file uses. When strings are written to a file,
|
|
they will be converted to byte strings using this encoding. In addition, when
|
|
the file is connected to a terminal, the attribute gives the encoding that the
|
|
terminal is likely to use (that information might be incorrect if the user has
|
|
misconfigured the terminal). The attribute is read-only and may not be present
|
|
on all file-like objects. It may also be ``None``, in which case the file uses
|
|
the system default encoding for converting strings.
|
|
|
|
|
|
.. attribute:: file.mode
|
|
|
|
The I/O mode for the file. If the file was created using the :func:`open`
|
|
built-in function, this will be the value of the *mode* parameter. This is a
|
|
read-only attribute and may not be present on all file-like objects.
|
|
|
|
|
|
.. attribute:: file.name
|
|
|
|
If the file object was created using :func:`open`, the name of the file.
|
|
Otherwise, some string that indicates the source of the file object, of the
|
|
form ``<...>``. This is a read-only attribute and may not be present on all
|
|
file-like objects.
|
|
|
|
|
|
.. attribute:: file.newlines
|
|
|
|
If Python was built with the :option:`--with-universal-newlines` option to
|
|
:program:`configure` (the default) this read-only attribute exists, and for
|
|
files opened in universal newline read mode it keeps track of the types of
|
|
newlines encountered while reading the file. The values it can take are
|
|
``'\r'``, ``'\n'``, ``'\r\n'``, ``None`` (unknown, no newlines read yet) or a
|
|
tuple containing all the newline types seen, to indicate that multiple newline
|
|
conventions were encountered. For files not opened in universal newline read
|
|
mode the value of this attribute will be ``None``.
|
|
|
|
|
|
.. _typecontextmanager:
|
|
|
|
Context Manager Types
|
|
=====================
|
|
|
|
.. index::
|
|
single: context manager
|
|
single: context management protocol
|
|
single: protocol; context management
|
|
|
|
Python's :keyword:`with` statement supports the concept of a runtime context
|
|
defined by a context manager. This is implemented using two separate methods
|
|
that allow user-defined classes to define a runtime context that is entered
|
|
before the statement body is executed and exited when the statement ends.
|
|
|
|
The :dfn:`context management protocol` consists of a pair of methods that need
|
|
to be provided for a context manager object to define a runtime context:
|
|
|
|
|
|
.. method:: contextmanager.__enter__()
|
|
|
|
Enter the runtime context and return either this object or another object
|
|
related to the runtime context. The value returned by this method is bound to
|
|
the identifier in the :keyword:`as` clause of :keyword:`with` statements using
|
|
this context manager.
|
|
|
|
An example of a context manager that returns itself is a file object. File
|
|
objects return themselves from __enter__() to allow :func:`open` to be used as
|
|
the context expression in a :keyword:`with` statement.
|
|
|
|
An example of a context manager that returns a related object is the one
|
|
returned by :func:`decimal.localcontext`. These managers set the active
|
|
decimal context to a copy of the original decimal context and then return the
|
|
copy. This allows changes to be made to the current decimal context in the body
|
|
of the :keyword:`with` statement without affecting code outside the
|
|
:keyword:`with` statement.
|
|
|
|
|
|
.. method:: contextmanager.__exit__(exc_type, exc_val, exc_tb)
|
|
|
|
Exit the runtime context and return a Boolean flag indicating if any exception
|
|
that occurred should be suppressed. If an exception occurred while executing the
|
|
body of the :keyword:`with` statement, the arguments contain the exception type,
|
|
value and traceback information. Otherwise, all three arguments are ``None``.
|
|
|
|
Returning a true value from this method will cause the :keyword:`with` statement
|
|
to suppress the exception and continue execution with the statement immediately
|
|
following the :keyword:`with` statement. Otherwise the exception continues
|
|
propagating after this method has finished executing. Exceptions that occur
|
|
during execution of this method will replace any exception that occurred in the
|
|
body of the :keyword:`with` statement.
|
|
|
|
The exception passed in should never be reraised explicitly - instead, this
|
|
method should return a false value to indicate that the method completed
|
|
successfully and does not want to suppress the raised exception. This allows
|
|
context management code (such as ``contextlib.nested``) to easily detect whether
|
|
or not an :meth:`__exit__` method has actually failed.
|
|
|
|
Python defines several context managers to support easy thread synchronisation,
|
|
prompt closure of files or other objects, and simpler manipulation of the active
|
|
decimal arithmetic context. The specific types are not treated specially beyond
|
|
their implementation of the context management protocol. See the
|
|
:mod:`contextlib` module for some examples.
|
|
|
|
Python's :term:`generator`\s and the ``contextlib.contextfactory`` :term:`decorator`
|
|
provide a convenient way to implement these protocols. If a generator function is
|
|
decorated with the ``contextlib.contextfactory`` decorator, it will return a
|
|
context manager implementing the necessary :meth:`__enter__` and
|
|
:meth:`__exit__` methods, rather than the iterator produced by an undecorated
|
|
generator function.
|
|
|
|
Note that there is no specific slot for any of these methods in the type
|
|
structure for Python objects in the Python/C API. Extension types wanting to
|
|
define these methods must provide them as a normal Python accessible method.
|
|
Compared to the overhead of setting up the runtime context, the overhead of a
|
|
single class dictionary lookup is negligible.
|
|
|
|
|
|
.. _typesother:
|
|
|
|
Other Built-in Types
|
|
====================
|
|
|
|
The interpreter supports several other kinds of objects. Most of these support
|
|
only one or two operations.
|
|
|
|
|
|
.. _typesmodules:
|
|
|
|
Modules
|
|
-------
|
|
|
|
The only special operation on a module is attribute access: ``m.name``, where
|
|
*m* is a module and *name* accesses a name defined in *m*'s symbol table.
|
|
Module attributes can be assigned to. (Note that the :keyword:`import`
|
|
statement is not, strictly speaking, an operation on a module object; ``import
|
|
foo`` does not require a module object named *foo* to exist, rather it requires
|
|
an (external) *definition* for a module named *foo* somewhere.)
|
|
|
|
A special member of every module is :attr:`__dict__`. This is the dictionary
|
|
containing the module's symbol table. Modifying this dictionary will actually
|
|
change the module's symbol table, but direct assignment to the :attr:`__dict__`
|
|
attribute is not possible (you can write ``m.__dict__['a'] = 1``, which defines
|
|
``m.a`` to be ``1``, but you can't write ``m.__dict__ = {}``). Modifying
|
|
:attr:`__dict__` directly is not recommended.
|
|
|
|
Modules built into the interpreter are written like this: ``<module 'sys'
|
|
(built-in)>``. If loaded from a file, they are written as ``<module 'os' from
|
|
'/usr/local/lib/pythonX.Y/os.pyc'>``.
|
|
|
|
|
|
.. _typesobjects:
|
|
|
|
Classes and Class Instances
|
|
---------------------------
|
|
|
|
See :ref:`objects` and :ref:`class` for these.
|
|
|
|
|
|
.. _typesfunctions:
|
|
|
|
Functions
|
|
---------
|
|
|
|
Function objects are created by function definitions. The only operation on a
|
|
function object is to call it: ``func(argument-list)``.
|
|
|
|
There are really two flavors of function objects: built-in functions and
|
|
user-defined functions. Both support the same operation (to call the function),
|
|
but the implementation is different, hence the different object types.
|
|
|
|
See :ref:`function` for more information.
|
|
|
|
|
|
.. _typesmethods:
|
|
|
|
Methods
|
|
-------
|
|
|
|
.. index:: object: method
|
|
|
|
Methods are functions that are called using the attribute notation. There are
|
|
two flavors: built-in methods (such as :meth:`append` on lists) and class
|
|
instance methods. Built-in methods are described with the types that support
|
|
them.
|
|
|
|
If you access a method (a function defined in a class namespace) through an
|
|
instance, you get a special object: a :dfn:`bound method` (also called
|
|
:dfn:`instance method`) object. When called, it will add the ``self`` argument
|
|
to the argument list. Bound methods have two special read-only attributes:
|
|
``m.__self__`` is the object on which the method operates, and ``m.__func__`` is
|
|
the function implementing the method. Calling ``m(arg-1, arg-2, ..., arg-n)``
|
|
is completely equivalent to calling ``m.__func__(m.__self__, arg-1, arg-2, ...,
|
|
arg-n)``.
|
|
|
|
Like function objects, bound method objects support getting arbitrary
|
|
attributes. However, since method attributes are actually stored on the
|
|
underlying function object (``meth.__func__``), setting method attributes on
|
|
bound methods is disallowed. Attempting to set a method attribute results in a
|
|
:exc:`TypeError` being raised. In order to set a method attribute, you need to
|
|
explicitly set it on the underlying function object::
|
|
|
|
class C:
|
|
def method(self):
|
|
pass
|
|
|
|
c = C()
|
|
c.method.__func__.whoami = 'my name is c'
|
|
|
|
See :ref:`types` for more information.
|
|
|
|
|
|
.. _bltin-code-objects:
|
|
|
|
Code Objects
|
|
------------
|
|
|
|
.. index:: object: code
|
|
|
|
.. index::
|
|
builtin: compile
|
|
single: __code__ (function object attribute)
|
|
|
|
Code objects are used by the implementation to represent "pseudo-compiled"
|
|
executable Python code such as a function body. They differ from function
|
|
objects because they don't contain a reference to their global execution
|
|
environment. Code objects are returned by the built-in :func:`compile` function
|
|
and can be extracted from function objects through their :attr:`__code__`
|
|
attribute. See also the :mod:`code` module.
|
|
|
|
.. index::
|
|
builtin: exec
|
|
builtin: eval
|
|
|
|
A code object can be executed or evaluated by passing it (instead of a source
|
|
string) to the :func:`exec` or :func:`eval` built-in functions.
|
|
|
|
See :ref:`types` for more information.
|
|
|
|
|
|
.. _bltin-type-objects:
|
|
|
|
Type Objects
|
|
------------
|
|
|
|
.. index::
|
|
builtin: type
|
|
module: types
|
|
|
|
Type objects represent the various object types. An object's type is accessed
|
|
by the built-in function :func:`type`. There are no special operations on
|
|
types. The standard module :mod:`types` defines names for all standard built-in
|
|
types.
|
|
|
|
Types are written like this: ``<type 'int'>``.
|
|
|
|
|
|
.. _bltin-null-object:
|
|
|
|
The Null Object
|
|
---------------
|
|
|
|
This object is returned by functions that don't explicitly return a value. It
|
|
supports no special operations. There is exactly one null object, named
|
|
``None`` (a built-in name).
|
|
|
|
It is written as ``None``.
|
|
|
|
|
|
.. _bltin-ellipsis-object:
|
|
|
|
The Ellipsis Object
|
|
-------------------
|
|
|
|
This object is commonly used by slicing (see :ref:`slicings`). It supports no
|
|
special operations. There is exactly one ellipsis object, named
|
|
:const:`Ellipsis` (a built-in name).
|
|
|
|
It is written as ``Ellipsis`` or ``...``.
|
|
|
|
|
|
Boolean Values
|
|
--------------
|
|
|
|
Boolean values are the two constant objects ``False`` and ``True``. They are
|
|
used to represent truth values (although other values can also be considered
|
|
false or true). In numeric contexts (for example when used as the argument to
|
|
an arithmetic operator), they behave like the integers 0 and 1, respectively.
|
|
The built-in function :func:`bool` can be used to cast any value to a Boolean,
|
|
if the value can be interpreted as a truth value (see section Truth Value
|
|
Testing above).
|
|
|
|
.. index::
|
|
single: False
|
|
single: True
|
|
pair: Boolean; values
|
|
|
|
They are written as ``False`` and ``True``, respectively.
|
|
|
|
|
|
.. _typesinternal:
|
|
|
|
Internal Objects
|
|
----------------
|
|
|
|
See :ref:`types` for this information. It describes stack frame objects,
|
|
traceback objects, and slice objects.
|
|
|
|
|
|
.. _specialattrs:
|
|
|
|
Special Attributes
|
|
==================
|
|
|
|
The implementation adds a few special read-only attributes to several object
|
|
types, where they are relevant. Some of these are not reported by the
|
|
:func:`dir` built-in function.
|
|
|
|
|
|
.. attribute:: object.__dict__
|
|
|
|
A dictionary or other mapping object used to store an object's (writable)
|
|
attributes.
|
|
|
|
|
|
.. attribute:: instance.__class__
|
|
|
|
The class to which a class instance belongs.
|
|
|
|
|
|
.. attribute:: class.__bases__
|
|
|
|
The tuple of base classes of a class object. If there are no base classes, this
|
|
will be an empty tuple.
|
|
|
|
|
|
.. attribute:: class.__name__
|
|
|
|
The name of the class or type.
|
|
|
|
.. rubric:: Footnotes
|
|
|
|
.. [#] Additional information on these special methods may be found in the Python
|
|
Reference Manual (:ref:`customization`).
|
|
|
|
.. [#] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
|
|
similarly for tuples.
|
|
|
|
.. [#] They must have since the parser can't tell the type of the operands.
|
|
|
|
.. [#] To format only a tuple you should therefore provide a singleton tuple whose only
|
|
element is the tuple to be formatted.
|
|
|
|
.. [#] These numbers are fairly arbitrary. They are intended to avoid printing endless
|
|
strings of meaningless digits without hampering correct use and without having
|
|
to know the exact precision of floating point values on a particular machine.
|
|
|
|
.. [#] The advantage of leaving the newline on is that returning an empty string is
|
|
then an unambiguous EOF indication. It is also possible (in cases where it
|
|
might matter, for example, if you want to make an exact copy of a file while
|
|
scanning its lines) to tell whether the last line of a file ended in a newline
|
|
or not (yes this happens!).
|