1551 lines
37 KiB
C
1551 lines
37 KiB
C
|
|
/* Integer object implementation */
|
|
|
|
#include "Python.h"
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
|
|
static PyObject *int_int(PyIntObject *v);
|
|
|
|
long
|
|
PyInt_GetMax(void)
|
|
{
|
|
return LONG_MAX; /* To initialize sys.maxint */
|
|
}
|
|
|
|
/* Integers are quite normal objects, to make object handling uniform.
|
|
(Using odd pointers to represent integers would save much space
|
|
but require extra checks for this special case throughout the code.)
|
|
Since a typical Python program spends much of its time allocating
|
|
and deallocating integers, these operations should be very fast.
|
|
Therefore we use a dedicated allocation scheme with a much lower
|
|
overhead (in space and time) than straight malloc(): a simple
|
|
dedicated free list, filled when necessary with memory from malloc().
|
|
|
|
block_list is a singly-linked list of all PyIntBlocks ever allocated,
|
|
linked via their next members. PyIntBlocks are never returned to the
|
|
system before shutdown (PyInt_Fini).
|
|
|
|
free_list is a singly-linked list of available PyIntObjects, linked
|
|
via abuse of their ob_type members.
|
|
*/
|
|
|
|
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
|
|
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
|
|
#define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject))
|
|
|
|
struct _intblock {
|
|
struct _intblock *next;
|
|
PyIntObject objects[N_INTOBJECTS];
|
|
};
|
|
|
|
typedef struct _intblock PyIntBlock;
|
|
|
|
static PyIntBlock *block_list = NULL;
|
|
static PyIntObject *free_list = NULL;
|
|
|
|
static PyIntObject *
|
|
fill_free_list(void)
|
|
{
|
|
PyIntObject *p, *q;
|
|
/* Python's object allocator isn't appropriate for large blocks. */
|
|
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
|
|
if (p == NULL)
|
|
return (PyIntObject *) PyErr_NoMemory();
|
|
((PyIntBlock *)p)->next = block_list;
|
|
block_list = (PyIntBlock *)p;
|
|
/* Link the int objects together, from rear to front, then return
|
|
the address of the last int object in the block. */
|
|
p = &((PyIntBlock *)p)->objects[0];
|
|
q = p + N_INTOBJECTS;
|
|
while (--q > p)
|
|
Py_TYPE(q) = (struct _typeobject *)(q-1);
|
|
Py_TYPE(q) = NULL;
|
|
return p + N_INTOBJECTS - 1;
|
|
}
|
|
|
|
#ifndef NSMALLPOSINTS
|
|
#define NSMALLPOSINTS 257
|
|
#endif
|
|
#ifndef NSMALLNEGINTS
|
|
#define NSMALLNEGINTS 5
|
|
#endif
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
/* References to small integers are saved in this array so that they
|
|
can be shared.
|
|
The integers that are saved are those in the range
|
|
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
|
|
*/
|
|
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
|
|
#endif
|
|
#ifdef COUNT_ALLOCS
|
|
Py_ssize_t quick_int_allocs;
|
|
Py_ssize_t quick_neg_int_allocs;
|
|
#endif
|
|
|
|
PyObject *
|
|
PyInt_FromLong(long ival)
|
|
{
|
|
register PyIntObject *v;
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
|
|
v = small_ints[ival + NSMALLNEGINTS];
|
|
Py_INCREF(v);
|
|
#ifdef COUNT_ALLOCS
|
|
if (ival >= 0)
|
|
quick_int_allocs++;
|
|
else
|
|
quick_neg_int_allocs++;
|
|
#endif
|
|
return (PyObject *) v;
|
|
}
|
|
#endif
|
|
if (free_list == NULL) {
|
|
if ((free_list = fill_free_list()) == NULL)
|
|
return NULL;
|
|
}
|
|
/* Inline PyObject_New */
|
|
v = free_list;
|
|
free_list = (PyIntObject *)Py_TYPE(v);
|
|
PyObject_INIT(v, &PyInt_Type);
|
|
v->ob_ival = ival;
|
|
return (PyObject *) v;
|
|
}
|
|
|
|
PyObject *
|
|
PyInt_FromSize_t(size_t ival)
|
|
{
|
|
if (ival <= LONG_MAX)
|
|
return PyInt_FromLong((long)ival);
|
|
return _PyLong_FromSize_t(ival);
|
|
}
|
|
|
|
PyObject *
|
|
PyInt_FromSsize_t(Py_ssize_t ival)
|
|
{
|
|
if (ival >= LONG_MIN && ival <= LONG_MAX)
|
|
return PyInt_FromLong((long)ival);
|
|
return _PyLong_FromSsize_t(ival);
|
|
}
|
|
|
|
static void
|
|
int_dealloc(PyIntObject *v)
|
|
{
|
|
if (PyInt_CheckExact(v)) {
|
|
Py_TYPE(v) = (struct _typeobject *)free_list;
|
|
free_list = v;
|
|
}
|
|
else
|
|
Py_TYPE(v)->tp_free((PyObject *)v);
|
|
}
|
|
|
|
static void
|
|
int_free(PyIntObject *v)
|
|
{
|
|
Py_TYPE(v) = (struct _typeobject *)free_list;
|
|
free_list = v;
|
|
}
|
|
|
|
long
|
|
PyInt_AsLong(register PyObject *op)
|
|
{
|
|
PyNumberMethods *nb;
|
|
PyIntObject *io;
|
|
long val;
|
|
|
|
if (op && PyInt_Check(op))
|
|
return PyInt_AS_LONG((PyIntObject*) op);
|
|
|
|
if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL ||
|
|
nb->nb_int == NULL) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return -1;
|
|
}
|
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op);
|
|
if (io == NULL)
|
|
return -1;
|
|
if (!PyInt_Check(io)) {
|
|
if (PyLong_Check(io)) {
|
|
/* got a long? => retry int conversion */
|
|
val = PyLong_AsLong((PyObject *)io);
|
|
Py_DECREF(io);
|
|
if ((val == -1) && PyErr_Occurred())
|
|
return -1;
|
|
return val;
|
|
}
|
|
else
|
|
{
|
|
Py_DECREF(io);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__int__ method should return an integer");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
val = PyInt_AS_LONG(io);
|
|
Py_DECREF(io);
|
|
|
|
return val;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyInt_AsSsize_t(register PyObject *op)
|
|
{
|
|
#if SIZEOF_SIZE_T != SIZEOF_LONG
|
|
PyNumberMethods *nb;
|
|
PyIntObject *io;
|
|
Py_ssize_t val;
|
|
#endif
|
|
|
|
if (op == NULL) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return -1;
|
|
}
|
|
|
|
if (PyInt_Check(op))
|
|
return PyInt_AS_LONG((PyIntObject*) op);
|
|
if (PyLong_Check(op))
|
|
return _PyLong_AsSsize_t(op);
|
|
#if SIZEOF_SIZE_T == SIZEOF_LONG
|
|
return PyInt_AsLong(op);
|
|
#else
|
|
|
|
if ((nb = Py_TYPE(op)->tp_as_number) == NULL ||
|
|
(nb->nb_int == NULL && nb->nb_long == 0)) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return -1;
|
|
}
|
|
|
|
if (nb->nb_long != 0)
|
|
io = (PyIntObject*) (*nb->nb_long) (op);
|
|
else
|
|
io = (PyIntObject*) (*nb->nb_int) (op);
|
|
if (io == NULL)
|
|
return -1;
|
|
if (!PyInt_Check(io)) {
|
|
if (PyLong_Check(io)) {
|
|
/* got a long? => retry int conversion */
|
|
val = _PyLong_AsSsize_t((PyObject *)io);
|
|
Py_DECREF(io);
|
|
if ((val == -1) && PyErr_Occurred())
|
|
return -1;
|
|
return val;
|
|
}
|
|
else
|
|
{
|
|
Py_DECREF(io);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__int__ method should return an integer");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
val = PyInt_AS_LONG(io);
|
|
Py_DECREF(io);
|
|
|
|
return val;
|
|
#endif
|
|
}
|
|
|
|
unsigned long
|
|
PyInt_AsUnsignedLongMask(register PyObject *op)
|
|
{
|
|
PyNumberMethods *nb;
|
|
PyIntObject *io;
|
|
unsigned long val;
|
|
|
|
if (op && PyInt_Check(op))
|
|
return PyInt_AS_LONG((PyIntObject*) op);
|
|
if (op && PyLong_Check(op))
|
|
return PyLong_AsUnsignedLongMask(op);
|
|
|
|
if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL ||
|
|
nb->nb_int == NULL) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return (unsigned long)-1;
|
|
}
|
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op);
|
|
if (io == NULL)
|
|
return (unsigned long)-1;
|
|
if (!PyInt_Check(io)) {
|
|
if (PyLong_Check(io)) {
|
|
val = PyLong_AsUnsignedLongMask((PyObject *)io);
|
|
Py_DECREF(io);
|
|
if (PyErr_Occurred())
|
|
return (unsigned long)-1;
|
|
return val;
|
|
}
|
|
else
|
|
{
|
|
Py_DECREF(io);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__int__ method should return an integer");
|
|
return (unsigned long)-1;
|
|
}
|
|
}
|
|
|
|
val = PyInt_AS_LONG(io);
|
|
Py_DECREF(io);
|
|
|
|
return val;
|
|
}
|
|
|
|
#ifdef HAVE_LONG_LONG
|
|
unsigned PY_LONG_LONG
|
|
PyInt_AsUnsignedLongLongMask(register PyObject *op)
|
|
{
|
|
PyNumberMethods *nb;
|
|
PyIntObject *io;
|
|
unsigned PY_LONG_LONG val;
|
|
|
|
if (op && PyInt_Check(op))
|
|
return PyInt_AS_LONG((PyIntObject*) op);
|
|
if (op && PyLong_Check(op))
|
|
return PyLong_AsUnsignedLongLongMask(op);
|
|
|
|
if (op == NULL || (nb = Py_TYPE(op)->tp_as_number) == NULL ||
|
|
nb->nb_int == NULL) {
|
|
PyErr_SetString(PyExc_TypeError, "an integer is required");
|
|
return (unsigned PY_LONG_LONG)-1;
|
|
}
|
|
|
|
io = (PyIntObject*) (*nb->nb_int) (op);
|
|
if (io == NULL)
|
|
return (unsigned PY_LONG_LONG)-1;
|
|
if (!PyInt_Check(io)) {
|
|
if (PyLong_Check(io)) {
|
|
val = PyLong_AsUnsignedLongLongMask((PyObject *)io);
|
|
Py_DECREF(io);
|
|
if (PyErr_Occurred())
|
|
return (unsigned PY_LONG_LONG)-1;
|
|
return val;
|
|
}
|
|
else
|
|
{
|
|
Py_DECREF(io);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__int__ method should return an integer");
|
|
return (unsigned PY_LONG_LONG)-1;
|
|
}
|
|
}
|
|
|
|
val = PyInt_AS_LONG(io);
|
|
Py_DECREF(io);
|
|
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
PyObject *
|
|
PyInt_FromString(char *s, char **pend, int base)
|
|
{
|
|
char *end;
|
|
long x;
|
|
Py_ssize_t slen;
|
|
PyObject *sobj, *srepr;
|
|
|
|
if ((base != 0 && base < 2) || base > 36) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"int() base must be >= 2 and <= 36");
|
|
return NULL;
|
|
}
|
|
|
|
while (*s && isspace(Py_CHARMASK(*s)))
|
|
s++;
|
|
errno = 0;
|
|
if (base == 0 && s[0] == '0') {
|
|
x = (long) PyOS_strtoul(s, &end, base);
|
|
if (x < 0)
|
|
return PyLong_FromString(s, pend, base);
|
|
}
|
|
else
|
|
x = PyOS_strtol(s, &end, base);
|
|
if (end == s || !isalnum(Py_CHARMASK(end[-1])))
|
|
goto bad;
|
|
while (*end && isspace(Py_CHARMASK(*end)))
|
|
end++;
|
|
if (*end != '\0') {
|
|
bad:
|
|
slen = strlen(s) < 200 ? strlen(s) : 200;
|
|
sobj = PyString_FromStringAndSize(s, slen);
|
|
if (sobj == NULL)
|
|
return NULL;
|
|
srepr = PyObject_Repr(sobj);
|
|
Py_DECREF(sobj);
|
|
if (srepr == NULL)
|
|
return NULL;
|
|
PyErr_Format(PyExc_ValueError,
|
|
"invalid literal for int() with base %d: %s",
|
|
base, PyString_AS_STRING(srepr));
|
|
Py_DECREF(srepr);
|
|
return NULL;
|
|
}
|
|
else if (errno != 0)
|
|
return PyLong_FromString(s, pend, base);
|
|
if (pend)
|
|
*pend = end;
|
|
return PyInt_FromLong(x);
|
|
}
|
|
|
|
#ifdef Py_USING_UNICODE
|
|
PyObject *
|
|
PyInt_FromUnicode(Py_UNICODE *s, Py_ssize_t length, int base)
|
|
{
|
|
PyObject *result;
|
|
char *buffer = (char *)PyMem_MALLOC(length+1);
|
|
|
|
if (buffer == NULL)
|
|
return PyErr_NoMemory();
|
|
|
|
if (PyUnicode_EncodeDecimal(s, length, buffer, NULL)) {
|
|
PyMem_FREE(buffer);
|
|
return NULL;
|
|
}
|
|
result = PyInt_FromString(buffer, NULL, base);
|
|
PyMem_FREE(buffer);
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/* Methods */
|
|
|
|
/* Integers are seen as the "smallest" of all numeric types and thus
|
|
don't have any knowledge about conversion of other types to
|
|
integers. */
|
|
|
|
#define CONVERT_TO_LONG(obj, lng) \
|
|
if (PyInt_Check(obj)) { \
|
|
lng = PyInt_AS_LONG(obj); \
|
|
} \
|
|
else { \
|
|
Py_INCREF(Py_NotImplemented); \
|
|
return Py_NotImplemented; \
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
int_print(PyIntObject *v, FILE *fp, int flags)
|
|
/* flags -- not used but required by interface */
|
|
{
|
|
long int_val = v->ob_ival;
|
|
Py_BEGIN_ALLOW_THREADS
|
|
fprintf(fp, "%ld", int_val);
|
|
Py_END_ALLOW_THREADS
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
int_compare(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long i = v->ob_ival;
|
|
register long j = w->ob_ival;
|
|
return (i < j) ? -1 : (i > j) ? 1 : 0;
|
|
}
|
|
|
|
static long
|
|
int_hash(PyIntObject *v)
|
|
{
|
|
/* XXX If this is changed, you also need to change the way
|
|
Python's long, float and complex types are hashed. */
|
|
long x = v -> ob_ival;
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
|
|
static PyObject *
|
|
int_add(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b, x;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
/* casts in the line below avoid undefined behaviour on overflow */
|
|
x = (long)((unsigned long)a + b);
|
|
if ((x^a) >= 0 || (x^b) >= 0)
|
|
return PyInt_FromLong(x);
|
|
return PyLong_Type.tp_as_number->nb_add((PyObject *)v, (PyObject *)w);
|
|
}
|
|
|
|
static PyObject *
|
|
int_sub(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b, x;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
/* casts in the line below avoid undefined behaviour on overflow */
|
|
x = (long)((unsigned long)a - b);
|
|
if ((x^a) >= 0 || (x^~b) >= 0)
|
|
return PyInt_FromLong(x);
|
|
return PyLong_Type.tp_as_number->nb_subtract((PyObject *)v,
|
|
(PyObject *)w);
|
|
}
|
|
|
|
/*
|
|
Integer overflow checking for * is painful: Python tried a couple ways, but
|
|
they didn't work on all platforms, or failed in endcases (a product of
|
|
-sys.maxint-1 has been a particular pain).
|
|
|
|
Here's another way:
|
|
|
|
The native long product x*y is either exactly right or *way* off, being
|
|
just the last n bits of the true product, where n is the number of bits
|
|
in a long (the delivered product is the true product plus i*2**n for
|
|
some integer i).
|
|
|
|
The native double product (double)x * (double)y is subject to three
|
|
rounding errors: on a sizeof(long)==8 box, each cast to double can lose
|
|
info, and even on a sizeof(long)==4 box, the multiplication can lose info.
|
|
But, unlike the native long product, it's not in *range* trouble: even
|
|
if sizeof(long)==32 (256-bit longs), the product easily fits in the
|
|
dynamic range of a double. So the leading 50 (or so) bits of the double
|
|
product are correct.
|
|
|
|
We check these two ways against each other, and declare victory if they're
|
|
approximately the same. Else, because the native long product is the only
|
|
one that can lose catastrophic amounts of information, it's the native long
|
|
product that must have overflowed.
|
|
*/
|
|
|
|
static PyObject *
|
|
int_mul(PyObject *v, PyObject *w)
|
|
{
|
|
long a, b;
|
|
long longprod; /* a*b in native long arithmetic */
|
|
double doubled_longprod; /* (double)longprod */
|
|
double doubleprod; /* (double)a * (double)b */
|
|
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
/* casts in the next line avoid undefined behaviour on overflow */
|
|
longprod = (long)((unsigned long)a * b);
|
|
doubleprod = (double)a * (double)b;
|
|
doubled_longprod = (double)longprod;
|
|
|
|
/* Fast path for normal case: small multiplicands, and no info
|
|
is lost in either method. */
|
|
if (doubled_longprod == doubleprod)
|
|
return PyInt_FromLong(longprod);
|
|
|
|
/* Somebody somewhere lost info. Close enough, or way off? Note
|
|
that a != 0 and b != 0 (else doubled_longprod == doubleprod == 0).
|
|
The difference either is or isn't significant compared to the
|
|
true value (of which doubleprod is a good approximation).
|
|
*/
|
|
{
|
|
const double diff = doubled_longprod - doubleprod;
|
|
const double absdiff = diff >= 0.0 ? diff : -diff;
|
|
const double absprod = doubleprod >= 0.0 ? doubleprod :
|
|
-doubleprod;
|
|
/* absdiff/absprod <= 1/32 iff
|
|
32 * absdiff <= absprod -- 5 good bits is "close enough" */
|
|
if (32.0 * absdiff <= absprod)
|
|
return PyInt_FromLong(longprod);
|
|
else
|
|
return PyLong_Type.tp_as_number->nb_multiply(v, w);
|
|
}
|
|
}
|
|
|
|
/* Integer overflow checking for unary negation: on a 2's-complement
|
|
* box, -x overflows iff x is the most negative long. In this case we
|
|
* get -x == x. However, -x is undefined (by C) if x /is/ the most
|
|
* negative long (it's a signed overflow case), and some compilers care.
|
|
* So we cast x to unsigned long first. However, then other compilers
|
|
* warn about applying unary minus to an unsigned operand. Hence the
|
|
* weird "0-".
|
|
*/
|
|
#define UNARY_NEG_WOULD_OVERFLOW(x) \
|
|
((x) < 0 && (unsigned long)(x) == 0-(unsigned long)(x))
|
|
|
|
/* Return type of i_divmod */
|
|
enum divmod_result {
|
|
DIVMOD_OK, /* Correct result */
|
|
DIVMOD_OVERFLOW, /* Overflow, try again using longs */
|
|
DIVMOD_ERROR /* Exception raised */
|
|
};
|
|
|
|
static enum divmod_result
|
|
i_divmod(register long x, register long y,
|
|
long *p_xdivy, long *p_xmody)
|
|
{
|
|
long xdivy, xmody;
|
|
|
|
if (y == 0) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"integer division or modulo by zero");
|
|
return DIVMOD_ERROR;
|
|
}
|
|
/* (-sys.maxint-1)/-1 is the only overflow case. */
|
|
if (y == -1 && UNARY_NEG_WOULD_OVERFLOW(x))
|
|
return DIVMOD_OVERFLOW;
|
|
xdivy = x / y;
|
|
/* xdiv*y can overflow on platforms where x/y gives floor(x/y)
|
|
* for x and y with differing signs. (This is unusual
|
|
* behaviour, and C99 prohibits it, but it's allowed by C89;
|
|
* for an example of overflow, take x = LONG_MIN, y = 5 or x =
|
|
* LONG_MAX, y = -5.) However, x - xdivy*y is always
|
|
* representable as a long, since it lies strictly between
|
|
* -abs(y) and abs(y). We add casts to avoid intermediate
|
|
* overflow.
|
|
*/
|
|
xmody = (long)(x - (unsigned long)xdivy * y);
|
|
/* If the signs of x and y differ, and the remainder is non-0,
|
|
* C89 doesn't define whether xdivy is now the floor or the
|
|
* ceiling of the infinitely precise quotient. We want the floor,
|
|
* and we have it iff the remainder's sign matches y's.
|
|
*/
|
|
if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
|
|
xmody += y;
|
|
--xdivy;
|
|
assert(xmody && ((y ^ xmody) >= 0));
|
|
}
|
|
*p_xdivy = xdivy;
|
|
*p_xmody = xmody;
|
|
return DIVMOD_OK;
|
|
}
|
|
|
|
static PyObject *
|
|
int_div(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
switch (i_divmod(xi, yi, &d, &m)) {
|
|
case DIVMOD_OK:
|
|
return PyInt_FromLong(d);
|
|
case DIVMOD_OVERFLOW:
|
|
return PyLong_Type.tp_as_number->nb_divide((PyObject *)x,
|
|
(PyObject *)y);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
int_classic_div(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
if (Py_DivisionWarningFlag &&
|
|
PyErr_Warn(PyExc_DeprecationWarning, "classic int division") < 0)
|
|
return NULL;
|
|
switch (i_divmod(xi, yi, &d, &m)) {
|
|
case DIVMOD_OK:
|
|
return PyInt_FromLong(d);
|
|
case DIVMOD_OVERFLOW:
|
|
return PyLong_Type.tp_as_number->nb_divide((PyObject *)x,
|
|
(PyObject *)y);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
int_true_divide(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
/* If they aren't both ints, give someone else a chance. In
|
|
particular, this lets int/long get handled by longs, which
|
|
underflows to 0 gracefully if the long is too big to convert
|
|
to float. */
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
if (yi == 0) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"division by zero");
|
|
return NULL;
|
|
}
|
|
if (xi == 0)
|
|
return PyFloat_FromDouble(yi < 0 ? -0.0 : 0.0);
|
|
|
|
#define WIDTH_OF_ULONG (CHAR_BIT*SIZEOF_LONG)
|
|
#if DBL_MANT_DIG < WIDTH_OF_ULONG
|
|
if ((xi >= 0 ? 0UL + xi : 0UL - xi) >> DBL_MANT_DIG ||
|
|
(yi >= 0 ? 0UL + yi : 0UL - yi) >> DBL_MANT_DIG)
|
|
/* Large x or y. Use long integer arithmetic. */
|
|
return PyLong_Type.tp_as_number->nb_true_divide(
|
|
(PyObject *)x, (PyObject *)y);
|
|
else
|
|
#endif
|
|
/* Both ints can be exactly represented as doubles. Do a
|
|
floating-point division. */
|
|
return PyFloat_FromDouble((double)xi / (double)yi);
|
|
}
|
|
|
|
static PyObject *
|
|
int_mod(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
switch (i_divmod(xi, yi, &d, &m)) {
|
|
case DIVMOD_OK:
|
|
return PyInt_FromLong(m);
|
|
case DIVMOD_OVERFLOW:
|
|
return PyLong_Type.tp_as_number->nb_remainder((PyObject *)x,
|
|
(PyObject *)y);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
int_divmod(PyIntObject *x, PyIntObject *y)
|
|
{
|
|
long xi, yi;
|
|
long d, m;
|
|
CONVERT_TO_LONG(x, xi);
|
|
CONVERT_TO_LONG(y, yi);
|
|
switch (i_divmod(xi, yi, &d, &m)) {
|
|
case DIVMOD_OK:
|
|
return Py_BuildValue("(ll)", d, m);
|
|
case DIVMOD_OVERFLOW:
|
|
return PyLong_Type.tp_as_number->nb_divmod((PyObject *)x,
|
|
(PyObject *)y);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z)
|
|
{
|
|
register long iv, iw, iz=0, ix, temp, prev;
|
|
CONVERT_TO_LONG(v, iv);
|
|
CONVERT_TO_LONG(w, iw);
|
|
if (iw < 0) {
|
|
if ((PyObject *)z != Py_None) {
|
|
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
|
|
"cannot be negative when 3rd argument specified");
|
|
return NULL;
|
|
}
|
|
/* Return a float. This works because we know that
|
|
this calls float_pow() which converts its
|
|
arguments to double. */
|
|
return PyFloat_Type.tp_as_number->nb_power(
|
|
(PyObject *)v, (PyObject *)w, (PyObject *)z);
|
|
}
|
|
if ((PyObject *)z != Py_None) {
|
|
CONVERT_TO_LONG(z, iz);
|
|
if (iz == 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"pow() 3rd argument cannot be 0");
|
|
return NULL;
|
|
}
|
|
}
|
|
/*
|
|
* XXX: The original exponentiation code stopped looping
|
|
* when temp hit zero; this code will continue onwards
|
|
* unnecessarily, but at least it won't cause any errors.
|
|
* Hopefully the speed improvement from the fast exponentiation
|
|
* will compensate for the slight inefficiency.
|
|
* XXX: Better handling of overflows is desperately needed.
|
|
*/
|
|
temp = iv;
|
|
ix = 1;
|
|
while (iw > 0) {
|
|
prev = ix; /* Save value for overflow check */
|
|
if (iw & 1) {
|
|
ix = ix*temp;
|
|
if (temp == 0)
|
|
break; /* Avoid ix / 0 */
|
|
if (ix / temp != prev) {
|
|
return PyLong_Type.tp_as_number->nb_power(
|
|
(PyObject *)v,
|
|
(PyObject *)w,
|
|
(PyObject *)z);
|
|
}
|
|
}
|
|
iw >>= 1; /* Shift exponent down by 1 bit */
|
|
if (iw==0) break;
|
|
prev = temp;
|
|
temp *= temp; /* Square the value of temp */
|
|
if (prev != 0 && temp / prev != prev) {
|
|
return PyLong_Type.tp_as_number->nb_power(
|
|
(PyObject *)v, (PyObject *)w, (PyObject *)z);
|
|
}
|
|
if (iz) {
|
|
/* If we did a multiplication, perform a modulo */
|
|
ix = ix % iz;
|
|
temp = temp % iz;
|
|
}
|
|
}
|
|
if (iz) {
|
|
long div, mod;
|
|
switch (i_divmod(ix, iz, &div, &mod)) {
|
|
case DIVMOD_OK:
|
|
ix = mod;
|
|
break;
|
|
case DIVMOD_OVERFLOW:
|
|
return PyLong_Type.tp_as_number->nb_power(
|
|
(PyObject *)v, (PyObject *)w, (PyObject *)z);
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
return PyInt_FromLong(ix);
|
|
}
|
|
|
|
static PyObject *
|
|
int_neg(PyIntObject *v)
|
|
{
|
|
register long a;
|
|
a = v->ob_ival;
|
|
/* check for overflow */
|
|
if (UNARY_NEG_WOULD_OVERFLOW(a)) {
|
|
PyObject *o = PyLong_FromLong(a);
|
|
if (o != NULL) {
|
|
PyObject *result = PyNumber_Negative(o);
|
|
Py_DECREF(o);
|
|
return result;
|
|
}
|
|
return NULL;
|
|
}
|
|
return PyInt_FromLong(-a);
|
|
}
|
|
|
|
static PyObject *
|
|
int_abs(PyIntObject *v)
|
|
{
|
|
if (v->ob_ival >= 0)
|
|
return int_int(v);
|
|
else
|
|
return int_neg(v);
|
|
}
|
|
|
|
static int
|
|
int_nonzero(PyIntObject *v)
|
|
{
|
|
return v->ob_ival != 0;
|
|
}
|
|
|
|
static PyObject *
|
|
int_invert(PyIntObject *v)
|
|
{
|
|
return PyInt_FromLong(~v->ob_ival);
|
|
}
|
|
|
|
static PyObject *
|
|
int_lshift(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
long a, b, c;
|
|
PyObject *vv, *ww, *result;
|
|
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
if (b < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "negative shift count");
|
|
return NULL;
|
|
}
|
|
if (a == 0 || b == 0)
|
|
return int_int(v);
|
|
if (b >= LONG_BIT) {
|
|
vv = PyLong_FromLong(PyInt_AS_LONG(v));
|
|
if (vv == NULL)
|
|
return NULL;
|
|
ww = PyLong_FromLong(PyInt_AS_LONG(w));
|
|
if (ww == NULL) {
|
|
Py_DECREF(vv);
|
|
return NULL;
|
|
}
|
|
result = PyNumber_Lshift(vv, ww);
|
|
Py_DECREF(vv);
|
|
Py_DECREF(ww);
|
|
return result;
|
|
}
|
|
c = a << b;
|
|
if (a != Py_ARITHMETIC_RIGHT_SHIFT(long, c, b)) {
|
|
vv = PyLong_FromLong(PyInt_AS_LONG(v));
|
|
if (vv == NULL)
|
|
return NULL;
|
|
ww = PyLong_FromLong(PyInt_AS_LONG(w));
|
|
if (ww == NULL) {
|
|
Py_DECREF(vv);
|
|
return NULL;
|
|
}
|
|
result = PyNumber_Lshift(vv, ww);
|
|
Py_DECREF(vv);
|
|
Py_DECREF(ww);
|
|
return result;
|
|
}
|
|
return PyInt_FromLong(c);
|
|
}
|
|
|
|
static PyObject *
|
|
int_rshift(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
if (b < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "negative shift count");
|
|
return NULL;
|
|
}
|
|
if (a == 0 || b == 0)
|
|
return int_int(v);
|
|
if (b >= LONG_BIT) {
|
|
if (a < 0)
|
|
a = -1;
|
|
else
|
|
a = 0;
|
|
}
|
|
else {
|
|
a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
|
|
}
|
|
return PyInt_FromLong(a);
|
|
}
|
|
|
|
static PyObject *
|
|
int_and(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a & b);
|
|
}
|
|
|
|
static PyObject *
|
|
int_xor(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a ^ b);
|
|
}
|
|
|
|
static PyObject *
|
|
int_or(PyIntObject *v, PyIntObject *w)
|
|
{
|
|
register long a, b;
|
|
CONVERT_TO_LONG(v, a);
|
|
CONVERT_TO_LONG(w, b);
|
|
return PyInt_FromLong(a | b);
|
|
}
|
|
|
|
static int
|
|
int_coerce(PyObject **pv, PyObject **pw)
|
|
{
|
|
if (PyInt_Check(*pw)) {
|
|
Py_INCREF(*pv);
|
|
Py_INCREF(*pw);
|
|
return 0;
|
|
}
|
|
return 1; /* Can't do it */
|
|
}
|
|
|
|
static PyObject *
|
|
int_int(PyIntObject *v)
|
|
{
|
|
if (PyInt_CheckExact(v))
|
|
Py_INCREF(v);
|
|
else
|
|
v = (PyIntObject *)PyInt_FromLong(v->ob_ival);
|
|
return (PyObject *)v;
|
|
}
|
|
|
|
static PyObject *
|
|
int_long(PyIntObject *v)
|
|
{
|
|
return PyLong_FromLong((v -> ob_ival));
|
|
}
|
|
|
|
static const unsigned char BitLengthTable[32] = {
|
|
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
|
|
};
|
|
|
|
static int
|
|
bits_in_ulong(unsigned long d)
|
|
{
|
|
int d_bits = 0;
|
|
while (d >= 32) {
|
|
d_bits += 6;
|
|
d >>= 6;
|
|
}
|
|
d_bits += (int)BitLengthTable[d];
|
|
return d_bits;
|
|
}
|
|
|
|
#if 8*SIZEOF_LONG-1 <= DBL_MANT_DIG
|
|
/* Every Python int can be exactly represented as a float. */
|
|
|
|
static PyObject *
|
|
int_float(PyIntObject *v)
|
|
{
|
|
return PyFloat_FromDouble((double)(v -> ob_ival));
|
|
}
|
|
|
|
#else
|
|
/* Here not all Python ints are exactly representable as floats, so we may
|
|
have to round. We do this manually, since the C standards don't specify
|
|
whether converting an integer to a float rounds up or down */
|
|
|
|
static PyObject *
|
|
int_float(PyIntObject *v)
|
|
{
|
|
unsigned long abs_ival, lsb;
|
|
int round_up;
|
|
|
|
if (v->ob_ival < 0)
|
|
abs_ival = 0U-(unsigned long)v->ob_ival;
|
|
else
|
|
abs_ival = (unsigned long)v->ob_ival;
|
|
if (abs_ival < (1L << DBL_MANT_DIG))
|
|
/* small integer; no need to round */
|
|
return PyFloat_FromDouble((double)v->ob_ival);
|
|
|
|
/* Round abs_ival to MANT_DIG significant bits, using the
|
|
round-half-to-even rule. abs_ival & lsb picks out the 'rounding'
|
|
bit: the first bit after the most significant MANT_DIG bits of
|
|
abs_ival. We round up if this bit is set, provided that either:
|
|
|
|
(1) abs_ival isn't exactly halfway between two floats, in which
|
|
case at least one of the bits following the rounding bit must be
|
|
set; i.e., abs_ival & lsb-1 != 0, or:
|
|
|
|
(2) the resulting rounded value has least significant bit 0; or
|
|
in other words the bit above the rounding bit is set (this is the
|
|
'to-even' bit of round-half-to-even); i.e., abs_ival & 2*lsb != 0
|
|
|
|
The condition "(1) or (2)" equates to abs_ival & 3*lsb-1 != 0. */
|
|
|
|
lsb = 1L << (bits_in_ulong(abs_ival)-DBL_MANT_DIG-1);
|
|
round_up = (abs_ival & lsb) && (abs_ival & (3*lsb-1));
|
|
abs_ival &= -2*lsb;
|
|
if (round_up)
|
|
abs_ival += 2*lsb;
|
|
return PyFloat_FromDouble(v->ob_ival < 0 ?
|
|
-(double)abs_ival :
|
|
(double)abs_ival);
|
|
}
|
|
|
|
#endif
|
|
|
|
static PyObject *
|
|
int_oct(PyIntObject *v)
|
|
{
|
|
return _PyInt_Format(v, 8, 0);
|
|
}
|
|
|
|
static PyObject *
|
|
int_hex(PyIntObject *v)
|
|
{
|
|
return _PyInt_Format(v, 16, 0);
|
|
}
|
|
|
|
static PyObject *
|
|
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
|
|
|
|
static PyObject *
|
|
int_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *x = NULL;
|
|
int base = -909;
|
|
static char *kwlist[] = {"x", "base", 0};
|
|
|
|
if (type != &PyInt_Type)
|
|
return int_subtype_new(type, args, kwds); /* Wimp out */
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
|
|
&x, &base))
|
|
return NULL;
|
|
if (x == NULL)
|
|
return PyInt_FromLong(0L);
|
|
if (base == -909)
|
|
return PyNumber_Int(x);
|
|
if (PyString_Check(x)) {
|
|
/* Since PyInt_FromString doesn't have a length parameter,
|
|
* check here for possible NULs in the string. */
|
|
char *string = PyString_AS_STRING(x);
|
|
if (strlen(string) != PyString_Size(x)) {
|
|
/* create a repr() of the input string,
|
|
* just like PyInt_FromString does */
|
|
PyObject *srepr;
|
|
srepr = PyObject_Repr(x);
|
|
if (srepr == NULL)
|
|
return NULL;
|
|
PyErr_Format(PyExc_ValueError,
|
|
"invalid literal for int() with base %d: %s",
|
|
base, PyString_AS_STRING(srepr));
|
|
Py_DECREF(srepr);
|
|
return NULL;
|
|
}
|
|
return PyInt_FromString(string, NULL, base);
|
|
}
|
|
#ifdef Py_USING_UNICODE
|
|
if (PyUnicode_Check(x))
|
|
return PyInt_FromUnicode(PyUnicode_AS_UNICODE(x),
|
|
PyUnicode_GET_SIZE(x),
|
|
base);
|
|
#endif
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"int() can't convert non-string with explicit base");
|
|
return NULL;
|
|
}
|
|
|
|
/* Wimpy, slow approach to tp_new calls for subtypes of int:
|
|
first create a regular int from whatever arguments we got,
|
|
then allocate a subtype instance and initialize its ob_ival
|
|
from the regular int. The regular int is then thrown away.
|
|
*/
|
|
static PyObject *
|
|
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *tmp, *newobj;
|
|
long ival;
|
|
|
|
assert(PyType_IsSubtype(type, &PyInt_Type));
|
|
tmp = int_new(&PyInt_Type, args, kwds);
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
if (!PyInt_Check(tmp)) {
|
|
ival = PyLong_AsLong(tmp);
|
|
if (ival == -1 && PyErr_Occurred()) {
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
} else {
|
|
ival = ((PyIntObject *)tmp)->ob_ival;
|
|
}
|
|
|
|
newobj = type->tp_alloc(type, 0);
|
|
if (newobj == NULL) {
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
((PyIntObject *)newobj)->ob_ival = ival;
|
|
Py_DECREF(tmp);
|
|
return newobj;
|
|
}
|
|
|
|
static PyObject *
|
|
int_getnewargs(PyIntObject *v)
|
|
{
|
|
return Py_BuildValue("(l)", v->ob_ival);
|
|
}
|
|
|
|
static PyObject *
|
|
int_get0(PyIntObject *v, void *context) {
|
|
return PyInt_FromLong(0L);
|
|
}
|
|
|
|
static PyObject *
|
|
int_get1(PyIntObject *v, void *context) {
|
|
return PyInt_FromLong(1L);
|
|
}
|
|
|
|
/* Convert an integer to a decimal string. On many platforms, this
|
|
will be significantly faster than the general arbitrary-base
|
|
conversion machinery in _PyInt_Format, thanks to optimization
|
|
opportunities offered by division by a compile-time constant. */
|
|
static PyObject *
|
|
int_to_decimal_string(PyIntObject *v) {
|
|
char buf[sizeof(long)*CHAR_BIT/3+6], *p, *bufend;
|
|
long n = v->ob_ival;
|
|
unsigned long absn;
|
|
p = bufend = buf + sizeof(buf);
|
|
absn = n < 0 ? 0UL - n : n;
|
|
do {
|
|
*--p = '0' + (char)(absn % 10);
|
|
absn /= 10;
|
|
} while (absn);
|
|
if (n < 0)
|
|
*--p = '-';
|
|
return PyString_FromStringAndSize(p, bufend - p);
|
|
}
|
|
|
|
/* Convert an integer to the given base. Returns a string.
|
|
If base is 2, 8 or 16, add the proper prefix '0b', '0o' or '0x'.
|
|
If newstyle is zero, then use the pre-2.6 behavior of octal having
|
|
a leading "0" */
|
|
PyAPI_FUNC(PyObject*)
|
|
_PyInt_Format(PyIntObject *v, int base, int newstyle)
|
|
{
|
|
/* There are no doubt many, many ways to optimize this, using code
|
|
similar to _PyLong_Format */
|
|
long n = v->ob_ival;
|
|
int negative = n < 0;
|
|
int is_zero = n == 0;
|
|
|
|
/* For the reasoning behind this size, see
|
|
http://c-faq.com/misc/hexio.html. Then, add a few bytes for
|
|
the possible sign and prefix "0[box]" */
|
|
char buf[sizeof(n)*CHAR_BIT+6];
|
|
|
|
/* Start by pointing to the end of the buffer. We fill in from
|
|
the back forward. */
|
|
char* p = &buf[sizeof(buf)];
|
|
|
|
assert(base >= 2 && base <= 36);
|
|
|
|
/* Special case base 10, for speed */
|
|
if (base == 10)
|
|
return int_to_decimal_string(v);
|
|
|
|
do {
|
|
/* I'd use i_divmod, except it doesn't produce the results
|
|
I want when n is negative. So just duplicate the salient
|
|
part here. */
|
|
long div = n / base;
|
|
long mod = n - div * base;
|
|
|
|
/* convert abs(mod) to the right character in [0-9, a-z] */
|
|
char cdigit = (char)(mod < 0 ? -mod : mod);
|
|
cdigit += (cdigit < 10) ? '0' : 'a'-10;
|
|
*--p = cdigit;
|
|
|
|
n = div;
|
|
} while(n);
|
|
|
|
if (base == 2) {
|
|
*--p = 'b';
|
|
*--p = '0';
|
|
}
|
|
else if (base == 8) {
|
|
if (newstyle) {
|
|
*--p = 'o';
|
|
*--p = '0';
|
|
}
|
|
else
|
|
if (!is_zero)
|
|
*--p = '0';
|
|
}
|
|
else if (base == 16) {
|
|
*--p = 'x';
|
|
*--p = '0';
|
|
}
|
|
else {
|
|
*--p = '#';
|
|
*--p = '0' + base%10;
|
|
if (base > 10)
|
|
*--p = '0' + base/10;
|
|
}
|
|
if (negative)
|
|
*--p = '-';
|
|
|
|
return PyString_FromStringAndSize(p, &buf[sizeof(buf)] - p);
|
|
}
|
|
|
|
static PyObject *
|
|
int__format__(PyObject *self, PyObject *args)
|
|
{
|
|
PyObject *format_spec;
|
|
|
|
if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
|
|
return NULL;
|
|
if (PyBytes_Check(format_spec))
|
|
return _PyInt_FormatAdvanced(self,
|
|
PyBytes_AS_STRING(format_spec),
|
|
PyBytes_GET_SIZE(format_spec));
|
|
if (PyUnicode_Check(format_spec)) {
|
|
/* Convert format_spec to a str */
|
|
PyObject *result;
|
|
PyObject *str_spec = PyObject_Str(format_spec);
|
|
|
|
if (str_spec == NULL)
|
|
return NULL;
|
|
|
|
result = _PyInt_FormatAdvanced(self,
|
|
PyBytes_AS_STRING(str_spec),
|
|
PyBytes_GET_SIZE(str_spec));
|
|
|
|
Py_DECREF(str_spec);
|
|
return result;
|
|
}
|
|
PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
int_bit_length(PyIntObject *v)
|
|
{
|
|
unsigned long n;
|
|
|
|
if (v->ob_ival < 0)
|
|
/* avoid undefined behaviour when v->ob_ival == -LONG_MAX-1 */
|
|
n = 0U-(unsigned long)v->ob_ival;
|
|
else
|
|
n = (unsigned long)v->ob_ival;
|
|
|
|
return PyInt_FromLong(bits_in_ulong(n));
|
|
}
|
|
|
|
PyDoc_STRVAR(int_bit_length_doc,
|
|
"int.bit_length() -> int\n\
|
|
\n\
|
|
Number of bits necessary to represent self in binary.\n\
|
|
>>> bin(37)\n\
|
|
'0b100101'\n\
|
|
>>> (37).bit_length()\n\
|
|
6");
|
|
|
|
#if 0
|
|
static PyObject *
|
|
int_is_finite(PyObject *v)
|
|
{
|
|
Py_RETURN_TRUE;
|
|
}
|
|
#endif
|
|
|
|
static PyMethodDef int_methods[] = {
|
|
{"conjugate", (PyCFunction)int_int, METH_NOARGS,
|
|
"Returns self, the complex conjugate of any int."},
|
|
{"bit_length", (PyCFunction)int_bit_length, METH_NOARGS,
|
|
int_bit_length_doc},
|
|
#if 0
|
|
{"is_finite", (PyCFunction)int_is_finite, METH_NOARGS,
|
|
"Returns always True."},
|
|
#endif
|
|
{"__trunc__", (PyCFunction)int_int, METH_NOARGS,
|
|
"Truncating an Integral returns itself."},
|
|
{"__getnewargs__", (PyCFunction)int_getnewargs, METH_NOARGS},
|
|
{"__format__", (PyCFunction)int__format__, METH_VARARGS},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyGetSetDef int_getset[] = {
|
|
{"real",
|
|
(getter)int_int, (setter)NULL,
|
|
"the real part of a complex number",
|
|
NULL},
|
|
{"imag",
|
|
(getter)int_get0, (setter)NULL,
|
|
"the imaginary part of a complex number",
|
|
NULL},
|
|
{"numerator",
|
|
(getter)int_int, (setter)NULL,
|
|
"the numerator of a rational number in lowest terms",
|
|
NULL},
|
|
{"denominator",
|
|
(getter)int_get1, (setter)NULL,
|
|
"the denominator of a rational number in lowest terms",
|
|
NULL},
|
|
{NULL} /* Sentinel */
|
|
};
|
|
|
|
PyDoc_STRVAR(int_doc,
|
|
"int(x[, base]) -> integer\n\
|
|
\n\
|
|
Convert a string or number to an integer, if possible. A floating point\n\
|
|
argument will be truncated towards zero (this does not include a string\n\
|
|
representation of a floating point number!) When converting a string, use\n\
|
|
the optional base. It is an error to supply a base when converting a\n\
|
|
non-string. If base is zero, the proper base is guessed based on the\n\
|
|
string content. If the argument is outside the integer range a\n\
|
|
long object will be returned instead.");
|
|
|
|
static PyNumberMethods int_as_number = {
|
|
(binaryfunc)int_add, /*nb_add*/
|
|
(binaryfunc)int_sub, /*nb_subtract*/
|
|
(binaryfunc)int_mul, /*nb_multiply*/
|
|
(binaryfunc)int_classic_div, /*nb_divide*/
|
|
(binaryfunc)int_mod, /*nb_remainder*/
|
|
(binaryfunc)int_divmod, /*nb_divmod*/
|
|
(ternaryfunc)int_pow, /*nb_power*/
|
|
(unaryfunc)int_neg, /*nb_negative*/
|
|
(unaryfunc)int_int, /*nb_positive*/
|
|
(unaryfunc)int_abs, /*nb_absolute*/
|
|
(inquiry)int_nonzero, /*nb_nonzero*/
|
|
(unaryfunc)int_invert, /*nb_invert*/
|
|
(binaryfunc)int_lshift, /*nb_lshift*/
|
|
(binaryfunc)int_rshift, /*nb_rshift*/
|
|
(binaryfunc)int_and, /*nb_and*/
|
|
(binaryfunc)int_xor, /*nb_xor*/
|
|
(binaryfunc)int_or, /*nb_or*/
|
|
int_coerce, /*nb_coerce*/
|
|
(unaryfunc)int_int, /*nb_int*/
|
|
(unaryfunc)int_long, /*nb_long*/
|
|
(unaryfunc)int_float, /*nb_float*/
|
|
(unaryfunc)int_oct, /*nb_oct*/
|
|
(unaryfunc)int_hex, /*nb_hex*/
|
|
0, /*nb_inplace_add*/
|
|
0, /*nb_inplace_subtract*/
|
|
0, /*nb_inplace_multiply*/
|
|
0, /*nb_inplace_divide*/
|
|
0, /*nb_inplace_remainder*/
|
|
0, /*nb_inplace_power*/
|
|
0, /*nb_inplace_lshift*/
|
|
0, /*nb_inplace_rshift*/
|
|
0, /*nb_inplace_and*/
|
|
0, /*nb_inplace_xor*/
|
|
0, /*nb_inplace_or*/
|
|
(binaryfunc)int_div, /* nb_floor_divide */
|
|
(binaryfunc)int_true_divide, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
(unaryfunc)int_int, /* nb_index */
|
|
};
|
|
|
|
PyTypeObject PyInt_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"int",
|
|
sizeof(PyIntObject),
|
|
0,
|
|
(destructor)int_dealloc, /* tp_dealloc */
|
|
(printfunc)int_print, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
(cmpfunc)int_compare, /* tp_compare */
|
|
(reprfunc)int_to_decimal_string, /* tp_repr */
|
|
&int_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)int_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)int_to_decimal_string, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_INT_SUBCLASS, /* tp_flags */
|
|
int_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
int_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
int_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
int_new, /* tp_new */
|
|
(freefunc)int_free, /* tp_free */
|
|
};
|
|
|
|
int
|
|
_PyInt_Init(void)
|
|
{
|
|
PyIntObject *v;
|
|
int ival;
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++) {
|
|
if (!free_list && (free_list = fill_free_list()) == NULL)
|
|
return 0;
|
|
/* PyObject_New is inlined */
|
|
v = free_list;
|
|
free_list = (PyIntObject *)Py_TYPE(v);
|
|
PyObject_INIT(v, &PyInt_Type);
|
|
v->ob_ival = ival;
|
|
small_ints[ival + NSMALLNEGINTS] = v;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
PyInt_ClearFreeList(void)
|
|
{
|
|
PyIntObject *p;
|
|
PyIntBlock *list, *next;
|
|
int i;
|
|
int u; /* remaining unfreed ints per block */
|
|
int freelist_size = 0;
|
|
|
|
list = block_list;
|
|
block_list = NULL;
|
|
free_list = NULL;
|
|
while (list != NULL) {
|
|
u = 0;
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (PyInt_CheckExact(p) && p->ob_refcnt != 0)
|
|
u++;
|
|
}
|
|
next = list->next;
|
|
if (u) {
|
|
list->next = block_list;
|
|
block_list = list;
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (!PyInt_CheckExact(p) ||
|
|
p->ob_refcnt == 0) {
|
|
Py_TYPE(p) = (struct _typeobject *)
|
|
free_list;
|
|
free_list = p;
|
|
}
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
else if (-NSMALLNEGINTS <= p->ob_ival &&
|
|
p->ob_ival < NSMALLPOSINTS &&
|
|
small_ints[p->ob_ival +
|
|
NSMALLNEGINTS] == NULL) {
|
|
Py_INCREF(p);
|
|
small_ints[p->ob_ival +
|
|
NSMALLNEGINTS] = p;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
else {
|
|
PyMem_FREE(list);
|
|
}
|
|
freelist_size += u;
|
|
list = next;
|
|
}
|
|
|
|
return freelist_size;
|
|
}
|
|
|
|
void
|
|
PyInt_Fini(void)
|
|
{
|
|
PyIntObject *p;
|
|
PyIntBlock *list;
|
|
int i;
|
|
int u; /* total unfreed ints per block */
|
|
|
|
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
|
|
PyIntObject **q;
|
|
|
|
i = NSMALLNEGINTS + NSMALLPOSINTS;
|
|
q = small_ints;
|
|
while (--i >= 0) {
|
|
Py_XDECREF(*q);
|
|
*q++ = NULL;
|
|
}
|
|
#endif
|
|
u = PyInt_ClearFreeList();
|
|
if (!Py_VerboseFlag)
|
|
return;
|
|
fprintf(stderr, "# cleanup ints");
|
|
if (!u) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
else {
|
|
fprintf(stderr,
|
|
": %d unfreed int%s\n",
|
|
u, u == 1 ? "" : "s");
|
|
}
|
|
if (Py_VerboseFlag > 1) {
|
|
list = block_list;
|
|
while (list != NULL) {
|
|
for (i = 0, p = &list->objects[0];
|
|
i < N_INTOBJECTS;
|
|
i++, p++) {
|
|
if (PyInt_CheckExact(p) && p->ob_refcnt != 0)
|
|
/* XXX(twouters) cast refcount to
|
|
long until %zd is universally
|
|
available
|
|
*/
|
|
fprintf(stderr,
|
|
"# <int at %p, refcnt=%ld, val=%ld>\n",
|
|
p, (long)p->ob_refcnt,
|
|
p->ob_ival);
|
|
}
|
|
list = list->next;
|
|
}
|
|
}
|
|
}
|