813 lines
20 KiB
C
813 lines
20 KiB
C
/***********************************************************
|
|
Copyright 1994 by Lance Ellinghouse,
|
|
Cathedral City, California Republic, United States of America.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
documentation for any purpose and without fee is hereby granted,
|
|
provided that the above copyright notice appear in all copies and that
|
|
both that copyright notice and this permission notice appear in
|
|
supporting documentation, and that the name of Lance Ellinghouse
|
|
not be used in advertising or publicity pertaining to distribution
|
|
of the software without specific, written prior permission.
|
|
|
|
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
|
|
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE BE LIABLE FOR ANY SPECIAL,
|
|
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
|
|
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
|
|
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
******************************************************************/
|
|
|
|
/* This creates an encryption and decryption engine I am calling
|
|
a rotor due to the original design was a harware rotor with
|
|
contacts used in Germany during WWII.
|
|
|
|
Rotor Module:
|
|
|
|
- rotor.newrotor('key') -> rotorobject (default of 6 rotors)
|
|
- rotor.newrotor('key', num_rotors) -> rotorobject
|
|
|
|
Rotor Objects:
|
|
|
|
- ro.setkey('string') -> None (resets the key as defined in newrotor().
|
|
- ro.encrypt('string') -> encrypted string
|
|
- ro.decrypt('encrypted string') -> unencrypted string
|
|
|
|
- ro.encryptmore('string') -> encrypted string
|
|
- ro.decryptmore('encrypted string') -> unencrypted string
|
|
|
|
NOTE: the {en,de}cryptmore() methods use the setup that was
|
|
established via the {en,de}crypt calls. They will NOT
|
|
re-initalize the rotors unless: 1) They have not been
|
|
initalized with {en,de}crypt since the last setkey() call;
|
|
2) {en,de}crypt has not been called for this rotor yet.
|
|
|
|
NOTE: you MUST use the SAME key in rotor.newrotor()
|
|
if you wish to decrypt an encrypted string.
|
|
Also, the encrypted string is NOT 0-127 ASCII.
|
|
It is considered BINARY data.
|
|
|
|
*/
|
|
|
|
/* Rotor objects */
|
|
|
|
#include "Python.h"
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#define TRUE 1
|
|
#define FALSE 0
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
int seed[3];
|
|
short key[5];
|
|
int isinited;
|
|
int size;
|
|
int size_mask;
|
|
int rotors;
|
|
unsigned char *e_rotor; /* [num_rotors][size] */
|
|
unsigned char *d_rotor; /* [num_rotors][size] */
|
|
unsigned char *positions; /* [num_rotors] */
|
|
unsigned char *advances; /* [num_rotors] */
|
|
} PyRotorObject;
|
|
|
|
staticforward PyTypeObject PyRotor_Type;
|
|
|
|
#define PyRotor_Check(v) ((v)->ob_type == &PyRotor_Type)
|
|
|
|
/*
|
|
This defines the necessary routines to manage rotor objects
|
|
*/
|
|
|
|
static void set_seed( r )
|
|
PyRotorObject *r;
|
|
{
|
|
r->seed[0] = r->key[0];
|
|
r->seed[1] = r->key[1];
|
|
r->seed[2] = r->key[2];
|
|
r->isinited = FALSE;
|
|
}
|
|
|
|
/* Return the next random number in the range [0.0 .. 1.0) */
|
|
static float r_random( r )
|
|
PyRotorObject *r;
|
|
{
|
|
int x, y, z;
|
|
float val, term;
|
|
|
|
x = r->seed[0];
|
|
y = r->seed[1];
|
|
z = r->seed[2];
|
|
|
|
x = 171 * (x % 177) - 2 * (x/177);
|
|
y = 172 * (y % 176) - 35 * (y/176);
|
|
z = 170 * (z % 178) - 63 * (z/178);
|
|
|
|
if (x < 0) x = x + 30269;
|
|
if (y < 0) y = y + 30307;
|
|
if (z < 0) z = z + 30323;
|
|
|
|
r->seed[0] = x;
|
|
r->seed[1] = y;
|
|
r->seed[2] = z;
|
|
|
|
term = (float)(
|
|
(((float)x)/(float)30269.0) +
|
|
(((float)y)/(float)30307.0) +
|
|
(((float)z)/(float)30323.0)
|
|
);
|
|
val = term - (float)floor((double)term);
|
|
|
|
if (val >= 1.0) val = 0.0;
|
|
|
|
return val;
|
|
}
|
|
|
|
static short r_rand(r,s)
|
|
PyRotorObject *r;
|
|
short s;
|
|
{
|
|
/*short tmp = (short)((int)(r_random(r) * (float)32768.0) % 32768);*/
|
|
short tmp = (short)((short)(r_random(r) * (float)s) % s);
|
|
return tmp;
|
|
}
|
|
|
|
static void set_key(r, key)
|
|
PyRotorObject *r;
|
|
char *key;
|
|
{
|
|
#ifdef BUGGY_CODE_BW_COMPAT
|
|
/* See comments below */
|
|
int k1=995, k2=576, k3=767, k4=671, k5=463;
|
|
#else
|
|
unsigned long k1=995, k2=576, k3=767, k4=671, k5=463;
|
|
#endif
|
|
int i;
|
|
int len=strlen(key);
|
|
for (i=0;i<len;i++) {
|
|
#ifdef BUGGY_CODE_BW_COMPAT
|
|
/* This is the code as it was originally released.
|
|
It causes warnings on many systems and can generate
|
|
different results as well. If you have files
|
|
encrypted using an older version you may want to
|
|
#define BUGGY_CODE_BW_COMPAT so as to be able to
|
|
decrypt them... */
|
|
k1 = (((k1<<3 | k1<<-13) + key[i]) & 65535);
|
|
k2 = (((k2<<3 | k2<<-13) ^ key[i]) & 65535);
|
|
k3 = (((k3<<3 | k3<<-13) - key[i]) & 65535);
|
|
k4 = ((key[i] - (k4<<3 | k4<<-13)) & 65535);
|
|
k5 = (((k5<<3 | k5<<-13) ^ ~key[i]) & 65535);
|
|
#else
|
|
/* This code should be more portable */
|
|
k1 = (((k1<<3 | k1>>13) + key[i]) & 65535);
|
|
k2 = (((k2<<3 | k2>>13) ^ key[i]) & 65535);
|
|
k3 = (((k3<<3 | k3>>13) - key[i]) & 65535);
|
|
k4 = ((key[i] - (k4<<3 | k4>>13)) & 65535);
|
|
k5 = (((k5<<3 | k5>>13) ^ ~key[i]) & 65535);
|
|
#endif
|
|
}
|
|
r->key[0] = (short)k1;
|
|
r->key[1] = (short)(k2|1);
|
|
r->key[2] = (short)k3;
|
|
r->key[3] = (short)k4;
|
|
r->key[4] = (short)k5;
|
|
|
|
set_seed(r);
|
|
}
|
|
|
|
/* These define the interface to a rotor object */
|
|
static PyRotorObject *
|
|
PyRotor_New(num_rotors, key)
|
|
int num_rotors;
|
|
char *key;
|
|
{
|
|
PyRotorObject *xp;
|
|
xp = PyObject_NEW(PyRotorObject, &PyRotor_Type);
|
|
if (xp == NULL)
|
|
return NULL;
|
|
set_key(xp, key);
|
|
|
|
xp->size = 256;
|
|
xp->size_mask = xp->size - 1;
|
|
xp->size_mask = 0;
|
|
xp->rotors = num_rotors;
|
|
xp->e_rotor = NULL;
|
|
xp->d_rotor = NULL;
|
|
xp->positions = NULL;
|
|
xp->advances = NULL;
|
|
|
|
xp->e_rotor =
|
|
(unsigned char *)malloc((num_rotors * (xp->size * sizeof(char))));
|
|
if (xp->e_rotor == (unsigned char *)NULL)
|
|
goto fail;
|
|
xp->d_rotor =
|
|
(unsigned char *)malloc((num_rotors * (xp->size * sizeof(char))));
|
|
if (xp->d_rotor == (unsigned char *)NULL)
|
|
goto fail;
|
|
xp->positions = (unsigned char *)malloc(num_rotors * sizeof(char));
|
|
if (xp->positions == (unsigned char *)NULL)
|
|
goto fail;
|
|
xp->advances = (unsigned char *)malloc(num_rotors * sizeof(char));
|
|
if (xp->advances == (unsigned char *)NULL)
|
|
goto fail;
|
|
return xp;
|
|
fail:
|
|
DECREF(xp);
|
|
return (PyRotorObject *)PyErr_NoMemory();
|
|
}
|
|
|
|
/* These routines impliment the rotor itself */
|
|
|
|
/* Here is a fairly sofisticated {en,de}cryption system. It is bassed
|
|
on the idea of a "rotor" machine. A bunch of rotors, each with a
|
|
different permutation of the alphabet, rotate around a different
|
|
amount after encrypting one character. The current state of the
|
|
rotors is used to encrypt one character.
|
|
|
|
The code is smart enought to tell if your alphabet has a number of
|
|
characters equal to a power of two. If it does, it uses logical
|
|
operations, if not it uses div and mod (both require a division).
|
|
|
|
You will need to make two changes to the code 1) convert to c, and
|
|
customize for an alphabet of 255 chars 2) add a filter at the
|
|
begining, and end, which subtracts one on the way in, and adds one on
|
|
the way out.
|
|
|
|
You might wish to do some timing studies. Another viable
|
|
alternative is to "byte stuff" the encrypted data of a normal (perhaps
|
|
this one) encryption routine.
|
|
|
|
j'
|
|
*/
|
|
|
|
/*(defun RTR-make-id-rotor (rotor)
|
|
"Set ROTOR to the identity permutation"
|
|
(let ((j 0))
|
|
(while (< j RTR-size)
|
|
(aset rotor j j)
|
|
(setq j (+ 1 j)))
|
|
rotor))*/
|
|
static void RTR_make_id_rotor(r, rtr)
|
|
PyRotorObject *r;
|
|
unsigned char *rtr;
|
|
{
|
|
register int j;
|
|
register int size = r->size;
|
|
for (j=0;j<size;j++) {
|
|
rtr[j] = (unsigned char)j;
|
|
}
|
|
}
|
|
|
|
|
|
/*(defvar RTR-e-rotors
|
|
(let ((rv (make-vector RTR-number-of-rotors 0))
|
|
(i 0)
|
|
tr)
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq tr (make-vector RTR-size 0))
|
|
(RTR-make-id-rotor tr)
|
|
(aset rv i tr)
|
|
(setq i (+ 1 i)))
|
|
rv)
|
|
"The current set of encryption rotors")*/
|
|
static void RTR_e_rotors(r)
|
|
PyRotorObject *r;
|
|
{
|
|
int i;
|
|
for (i=0;i<r->rotors;i++) {
|
|
RTR_make_id_rotor(r,&(r->e_rotor[(i*r->size)]));
|
|
}
|
|
}
|
|
|
|
/*(defvar RTR-d-rotors
|
|
(let ((rv (make-vector RTR-number-of-rotors 0))
|
|
(i 0)
|
|
tr)
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq tr (make-vector RTR-size 0))
|
|
(setq j 0)
|
|
(while (< j RTR-size)
|
|
(aset tr j j)
|
|
(setq j (+ 1 j)))
|
|
(aset rv i tr)
|
|
(setq i (+ 1 i)))
|
|
rv)
|
|
"The current set of decryption rotors")*/
|
|
static void RTR_d_rotors(r)
|
|
PyRotorObject *r;
|
|
{
|
|
register int i, j;
|
|
for (i=0;i<r->rotors;i++) {
|
|
for (j=0;j<r->size;j++) {
|
|
r->d_rotor[((i*r->size)+j)] = (unsigned char)j;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*(defvar RTR-positions (make-vector RTR-number-of-rotors 1)
|
|
"The positions of the rotors at this time")*/
|
|
static void RTR_positions(r)
|
|
PyRotorObject *r;
|
|
{
|
|
int i;
|
|
for (i=0;i<r->rotors;i++) {
|
|
r->positions[i] = 1;
|
|
}
|
|
}
|
|
|
|
/*(defvar RTR-advances (make-vector RTR-number-of-rotors 1)
|
|
"The number of positions to advance the rotors at a time")*/
|
|
static void RTR_advances(r)
|
|
PyRotorObject *r;
|
|
{
|
|
int i;
|
|
for (i=0;i<r->rotors;i++) {
|
|
r->advances[i] = 1;
|
|
}
|
|
}
|
|
|
|
/*(defun RTR-permute-rotor (e d)
|
|
"Permute the E rotor, and make the D rotor its inverse"
|
|
;; see Knuth for explaination of algorythm.
|
|
(RTR-make-id-rotor e)
|
|
(let ((i RTR-size)
|
|
q j)
|
|
(while (<= 2 i)
|
|
(setq q (fair16 i)) ; a little tricky, decrement here
|
|
(setq i (- i 1)) ; since we have origin 0 array's
|
|
(setq j (aref e q))
|
|
(aset e q (aref e i))
|
|
(aset e i j)
|
|
(aset d j i))
|
|
(aset e 0 (aref e 0)) ; don't forget e[0] and d[0]
|
|
(aset d (aref e 0) 0)))*/
|
|
static void RTR_permute_rotor(r, e, d)
|
|
PyRotorObject *r;
|
|
unsigned char *e;
|
|
unsigned char *d;
|
|
{
|
|
short i = r->size;
|
|
short q;
|
|
unsigned char j;
|
|
RTR_make_id_rotor(r,e);
|
|
while (2 <= i) {
|
|
q = r_rand(r,i);
|
|
i--;
|
|
j = e[q];
|
|
e[q] = (unsigned char)e[i];
|
|
e[i] = (unsigned char)j;
|
|
d[j] = (unsigned char)i;
|
|
}
|
|
e[0] = (unsigned char)e[0];
|
|
d[(e[0])] = (unsigned char)0;
|
|
}
|
|
|
|
/*(defun RTR-init (key)
|
|
"Given KEY (a list of 5 16 bit numbers), initialize the rotor machine.
|
|
Set the advancement, position, and permutation of the rotors"
|
|
(R16-set-state key)
|
|
(let (i)
|
|
(setq i 0)
|
|
(while (< i RTR-number-of-rotors)
|
|
(aset RTR-positions i (fair16 RTR-size))
|
|
(aset RTR-advances i (+ 1 (* 2 (fair16 (/ RTR-size 2)))))
|
|
(message "Initializing rotor %d..." i)
|
|
(RTR-permute-rotor (aref RTR-e-rotors i) (aref RTR-d-rotors i))
|
|
(setq i (+ 1 i)))))*/
|
|
static void RTR_init(r)
|
|
PyRotorObject *r;
|
|
{
|
|
int i;
|
|
set_seed(r);
|
|
RTR_positions(r);
|
|
RTR_advances(r);
|
|
RTR_e_rotors(r);
|
|
RTR_d_rotors(r);
|
|
for(i=0;i<r->rotors;i++) {
|
|
r->positions[i] = r_rand(r,r->size);
|
|
r->advances[i] = (1+(2*(r_rand(r,r->size/2))));
|
|
RTR_permute_rotor(r,&(r->e_rotor[(i*r->size)]),&(r->d_rotor[(i*r->size)]));
|
|
}
|
|
r->isinited = TRUE;
|
|
}
|
|
|
|
/*(defun RTR-advance ()
|
|
"Change the RTR-positions vector, using the RTR-advances vector"
|
|
(let ((i 0)
|
|
(temp 0))
|
|
(if RTR-size-mask
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq temp (+ (aref RTR-positions i) (aref RTR-advances i)))
|
|
(aset RTR-positions i (logand temp RTR-size-mask))
|
|
(if (and (>= temp RTR-size)
|
|
(< i (- RTR-number-of-rotors 1)))
|
|
(aset RTR-positions (+ i 1)
|
|
(+ 1 (aref RTR-positions (+ i 1)))))
|
|
(setq i (+ i 1)))
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq temp (+ (aref RTR-positions i) (aref RTR-advances i)))
|
|
(aset RTR-positions i (% temp RTR-size))
|
|
(if (and (>= temp RTR-size)
|
|
(< i (- RTR-number-of-rotors 1)))
|
|
(aset RTR-positions (+ i 1)
|
|
(+ 1 (aref RTR-positions (+ i 1)))))
|
|
(setq i (+ i 1))))))*/
|
|
static void RTR_advance(r)
|
|
PyRotorObject *r;
|
|
{
|
|
register int i=0, temp=0;
|
|
if (r->size_mask) {
|
|
while (i<r->rotors) {
|
|
temp = r->positions[i] + r->advances[i];
|
|
r->positions[i] = temp & r->size_mask;
|
|
if ((temp >= r->size) && (i < (r->rotors - 1))) {
|
|
r->positions[(i+1)] = 1 + r->positions[(i+1)];
|
|
}
|
|
i++;
|
|
}
|
|
} else {
|
|
while (i<r->rotors) {
|
|
temp = r->positions[i] + r->advances[i];
|
|
r->positions[i] = temp%r->size;
|
|
if ((temp >= r->size) && (i < (r->rotors - 1))) {
|
|
r->positions[(i+1)] = 1 + r->positions[(i+1)];
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*(defun RTR-e-char (p)
|
|
"Encrypt the character P with the current rotor machine"
|
|
(let ((i 0))
|
|
(if RTR-size-mask
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq p (aref (aref RTR-e-rotors i)
|
|
(logand (logxor (aref RTR-positions i)
|
|
p)
|
|
RTR-size-mask)))
|
|
(setq i (+ 1 i)))
|
|
(while (< i RTR-number-of-rotors)
|
|
(setq p (aref (aref RTR-e-rotors i)
|
|
(% (logxor (aref RTR-positions i)
|
|
p)
|
|
RTR-size)))
|
|
(setq i (+ 1 i))))
|
|
(RTR-advance)
|
|
p))*/
|
|
static unsigned char RTR_e_char(r, p)
|
|
PyRotorObject *r;
|
|
unsigned char p;
|
|
{
|
|
register int i=0;
|
|
register unsigned char tp=p;
|
|
if (r->size_mask) {
|
|
while (i < r->rotors) {
|
|
tp = r->e_rotor[(i*r->size)+(((r->positions[i] ^ tp) & r->size_mask))];
|
|
i++;
|
|
}
|
|
} else {
|
|
while (i < r->rotors) {
|
|
tp = r->e_rotor[(i*r->size)+(((r->positions[i] ^ tp) % (unsigned int) r->size))];
|
|
i++;
|
|
}
|
|
}
|
|
RTR_advance(r);
|
|
return ((unsigned char)tp);
|
|
}
|
|
|
|
/*(defun RTR-d-char (c)
|
|
"Decrypt the character C with the current rotor machine"
|
|
(let ((i (- RTR-number-of-rotors 1)))
|
|
(if RTR-size-mask
|
|
(while (<= 0 i)
|
|
(setq c (logand (logxor (aref RTR-positions i)
|
|
(aref (aref RTR-d-rotors i)
|
|
c))
|
|
RTR-size-mask))
|
|
(setq i (- i 1)))
|
|
(while (<= 0 i)
|
|
(setq c (% (logxor (aref RTR-positions i)
|
|
(aref (aref RTR-d-rotors i)
|
|
c))
|
|
RTR-size))
|
|
(setq i (- i 1))))
|
|
(RTR-advance)
|
|
c))*/
|
|
static unsigned char RTR_d_char(r, c)
|
|
PyRotorObject *r;
|
|
unsigned char c;
|
|
{
|
|
register int i=r->rotors - 1;
|
|
register unsigned char tc=c;
|
|
if (r->size_mask) {
|
|
while (0 <= i) {
|
|
tc = (r->positions[i] ^ r->d_rotor[(i*r->size)+tc]) & r->size_mask;
|
|
i--;
|
|
}
|
|
} else {
|
|
while (0 <= i) {
|
|
tc = (r->positions[i] ^ r->d_rotor[(i*r->size)+tc]) % (unsigned int) r->size;
|
|
i--;
|
|
}
|
|
}
|
|
RTR_advance(r);
|
|
return(tc);
|
|
}
|
|
|
|
/*(defun RTR-e-region (beg end key)
|
|
"Perform a rotor encryption of the region from BEG to END by KEY"
|
|
(save-excursion
|
|
(let ((tenth (/ (- end beg) 10)))
|
|
(RTR-init key)
|
|
(goto-char beg)
|
|
;; ### make it stop evry 10% or so to tell us
|
|
(while (< (point) end)
|
|
(let ((fc (following-char)))
|
|
(insert-char (RTR-e-char fc) 1)
|
|
(delete-char 1))))))*/
|
|
static void RTR_e_region(r, beg, len, doinit)
|
|
PyRotorObject *r;
|
|
unsigned char *beg;
|
|
int len;
|
|
int doinit;
|
|
{
|
|
register int i;
|
|
if (doinit || r->isinited == FALSE)
|
|
RTR_init(r);
|
|
for (i=0;i<len;i++) {
|
|
beg[i]=RTR_e_char(r,beg[i]);
|
|
}
|
|
}
|
|
|
|
/*(defun RTR-d-region (beg end key)
|
|
"Perform a rotor decryption of the region from BEG to END by KEY"
|
|
(save-excursion
|
|
(progn
|
|
(RTR-init key)
|
|
(goto-char beg)
|
|
(while (< (point) end)
|
|
(let ((fc (following-char)))
|
|
(insert-char (RTR-d-char fc) 1)
|
|
(delete-char 1))))))*/
|
|
static void RTR_d_region(r, beg, len, doinit)
|
|
PyRotorObject *r;
|
|
unsigned char *beg;
|
|
int len;
|
|
int doinit;
|
|
{
|
|
register int i;
|
|
if (doinit || r->isinited == FALSE)
|
|
RTR_init(r);
|
|
for (i=0;i<len;i++) {
|
|
beg[i]=RTR_d_char(r,beg[i]);
|
|
}
|
|
}
|
|
|
|
|
|
/*(defun RTR-key-string-to-ints (key)
|
|
"Convert a string into a list of 4 numbers"
|
|
(let ((k1 995)
|
|
(k2 576)
|
|
(k3 767)
|
|
(k4 671)
|
|
(k5 463)
|
|
(i 0))
|
|
(while (< i (length key))
|
|
(setq k1 (logand (+ (logior (lsh k1 3) (lsh k1 -13)) (aref key i)) 65535))
|
|
(setq k2 (logand (logxor (logior (lsh k2 3) (lsh k2 -13)) (aref key i)) 65535))
|
|
(setq k3 (logand (- (logior (lsh k3 3) (lsh k3 -13)) (aref key i)) 65535))
|
|
(setq k4 (logand (- (aref key i) (logior (lsh k4 3) (lsh k4 -13))) 65535))
|
|
(setq k5 (logand (logxor (logior (lsh k5 3) (lsh k5 -13)) (lognot (aref key i))) 65535))
|
|
(setq i (+ i 1)))
|
|
(list k1 (logior 1 k2) k3 k4 k5)))*/
|
|
/* This is done in set_key() above */
|
|
|
|
/*(defun encrypt-region (beg end key)
|
|
"Interactivly encrypt the region"
|
|
(interactive "r\nsKey:")
|
|
(RTR-e-region beg end (RTR-key-string-to-ints key)))*/
|
|
static void encrypt_region(r, region, len)
|
|
PyRotorObject *r;
|
|
unsigned char *region;
|
|
int len;
|
|
{
|
|
RTR_e_region(r,region,len,TRUE);
|
|
}
|
|
|
|
/*(defun decrypt-region (beg end key)
|
|
"Interactivly decrypt the region"
|
|
(interactive "r\nsKey:")
|
|
(RTR-d-region beg end (RTR-key-string-to-ints key)))*/
|
|
static void decrypt_region(r, region, len)
|
|
PyRotorObject *r;
|
|
unsigned char *region;
|
|
int len;
|
|
{
|
|
RTR_d_region(r,region,len,TRUE);
|
|
}
|
|
|
|
/* Rotor methods */
|
|
|
|
static void
|
|
PyRotor_Dealloc(xp)
|
|
PyRotorObject *xp;
|
|
{
|
|
PyMem_XDEL(xp->e_rotor);
|
|
PyMem_XDEL(xp->d_rotor);
|
|
PyMem_XDEL(xp->positions);
|
|
PyMem_XDEL(xp->advances);
|
|
PyMem_DEL(xp);
|
|
}
|
|
|
|
static PyObject *
|
|
PyRotor_Encrypt(self, args)
|
|
PyRotorObject *self;
|
|
PyObject * args;
|
|
{
|
|
char *string = (char *)NULL;
|
|
int len = 0;
|
|
PyObject * rtn = (PyObject * )NULL;
|
|
char *tmp;
|
|
|
|
if (!PyArg_Parse(args,"s#",&string, &len))
|
|
return NULL;
|
|
if (!(tmp = (char *)malloc(len+5))) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
memset(tmp,'\0',len+1);
|
|
memcpy(tmp,string,len);
|
|
RTR_e_region(self,(unsigned char *)tmp,len, TRUE);
|
|
rtn = PyString_FromStringAndSize(tmp,len);
|
|
free(tmp);
|
|
return(rtn);
|
|
}
|
|
|
|
static PyObject *
|
|
PyRotor_EncryptMore(self, args)
|
|
PyRotorObject *self;
|
|
PyObject * args;
|
|
{
|
|
char *string = (char *)NULL;
|
|
int len = 0;
|
|
PyObject * rtn = (PyObject * )NULL;
|
|
char *tmp;
|
|
|
|
if (!PyArg_Parse(args,"s#",&string, &len))
|
|
return NULL;
|
|
if (!(tmp = (char *)malloc(len+5))) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
memset(tmp,'\0',len+1);
|
|
memcpy(tmp,string,len);
|
|
RTR_e_region(self,(unsigned char *)tmp,len, FALSE);
|
|
rtn = PyString_FromStringAndSize(tmp,len);
|
|
free(tmp);
|
|
return(rtn);
|
|
}
|
|
|
|
static PyObject *
|
|
PyRotor_Decrypt(self, args)
|
|
PyRotorObject *self;
|
|
PyObject * args;
|
|
{
|
|
char *string = (char *)NULL;
|
|
int len = 0;
|
|
PyObject * rtn = (PyObject * )NULL;
|
|
char *tmp;
|
|
|
|
if (!PyArg_Parse(args,"s#",&string, &len))
|
|
return NULL;
|
|
if (!(tmp = (char *)malloc(len+5))) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
memset(tmp,'\0',len+1);
|
|
memcpy(tmp,string,len);
|
|
RTR_d_region(self,(unsigned char *)tmp,len, TRUE);
|
|
rtn = PyString_FromStringAndSize(tmp,len);
|
|
free(tmp);
|
|
return(rtn);
|
|
}
|
|
|
|
static PyObject *
|
|
PyRotor_DecryptMore(self, args)
|
|
PyRotorObject *self;
|
|
PyObject * args;
|
|
{
|
|
char *string = (char *)NULL;
|
|
int len = 0;
|
|
PyObject * rtn = (PyObject * )NULL;
|
|
char *tmp;
|
|
|
|
if (!PyArg_Parse(args,"s#",&string, &len))
|
|
return NULL;
|
|
if (!(tmp = (char *)malloc(len+5))) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
memset(tmp,'\0',len+1);
|
|
memcpy(tmp,string,len);
|
|
RTR_d_region(self,(unsigned char *)tmp,len, FALSE);
|
|
rtn = PyString_FromStringAndSize(tmp,len);
|
|
free(tmp);
|
|
return(rtn);
|
|
}
|
|
|
|
static PyObject *
|
|
PyRotor_SetKey(self, args)
|
|
PyRotorObject *self;
|
|
PyObject * args;
|
|
{
|
|
char *key;
|
|
char *string;
|
|
|
|
if (PyArg_Parse(args,"s",&string))
|
|
set_key(self,string);
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
static struct methodlist PyRotor_Methods[] = {
|
|
{"encrypt", (PyCFunction)PyRotor_Encrypt},
|
|
{"encryptmore", (PyCFunction)PyRotor_EncryptMore},
|
|
{"decrypt", (PyCFunction)PyRotor_Decrypt},
|
|
{"decryptmore", (PyCFunction)PyRotor_DecryptMore},
|
|
{"setkey", (PyCFunction)PyRotor_SetKey},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
/* Return a rotor object's named attribute. */
|
|
static PyObject *
|
|
PyRotor_GetAttr(s, name)
|
|
PyRotorObject *s;
|
|
char *name;
|
|
{
|
|
return Py_FindMethod(PyRotor_Methods, (PyObject * ) s, name);
|
|
}
|
|
|
|
static PyTypeObject PyRotor_Type = {
|
|
PyObject_HEAD_INIT(&Typetype)
|
|
0, /*ob_size*/
|
|
"rotor", /*tp_name*/
|
|
sizeof(PyRotorObject), /*tp_size*/
|
|
0, /*tp_itemsize*/
|
|
/* methods */
|
|
(destructor)PyRotor_Dealloc, /*tp_dealloc*/
|
|
0, /*tp_print*/
|
|
(getattrfunc)PyRotor_GetAttr, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
0, /*tp_repr*/
|
|
0, /*tp_hash*/
|
|
};
|
|
|
|
|
|
static PyObject *
|
|
PyRotor_Rotor(self, args)
|
|
PyObject * self;
|
|
PyObject * args;
|
|
{
|
|
char *string;
|
|
PyRotorObject *r;
|
|
int len;
|
|
int num_rotors;
|
|
|
|
if (PyArg_Parse(args,"s#", &string, &len)) {
|
|
num_rotors = 6;
|
|
} else {
|
|
PyErr_Clear();
|
|
if (!PyArg_Parse(args,"(s#i)", &string, &len, &num_rotors))
|
|
return NULL;
|
|
}
|
|
r = PyRotor_New(num_rotors, string);
|
|
return (PyObject * )r;
|
|
}
|
|
|
|
static struct methodlist PyRotor_Rotor_Methods[] = {
|
|
{"newrotor", (PyCFunction)PyRotor_Rotor},
|
|
{NULL, NULL} /* Sentinel */
|
|
};
|
|
|
|
|
|
/* Initialize this module.
|
|
This is called when the first 'import rotor' is done,
|
|
via a table in config.c, if config.c is compiled with USE_ROTOR
|
|
defined. */
|
|
|
|
void
|
|
initrotor()
|
|
{
|
|
PyObject * m;
|
|
|
|
m = Py_InitModule("rotor", PyRotor_Rotor_Methods);
|
|
}
|