cpython/Doc/library/stdtypes.rst

3014 lines
112 KiB
ReStructuredText

.. XXX: reference/datamodel and this have quite a few overlaps!
.. _bltin-types:
**************
Built-in Types
**************
The following sections describe the standard types that are built into the
interpreter.
.. note::
Historically (until release 2.2), Python's built-in types have differed from
user-defined types because it was not possible to use the built-in types as the
basis for object-oriented inheritance. This limitation no longer
exists.
.. index:: pair: built-in; types
The principal built-in types are numerics, sequences, mappings, files, classes,
instances and exceptions.
.. index:: statement: print
Some operations are supported by several object types; in particular,
practically all objects can be compared, tested for truth value, and converted
to a string (with the :func:`repr` function or the slightly different
:func:`str` function). The latter function is implicitly used when an object is
written by the :func:`print` function.
.. _truth:
Truth Value Testing
===================
.. index::
statement: if
statement: while
pair: truth; value
pair: Boolean; operations
single: false
Any object can be tested for truth value, for use in an :keyword:`if` or
:keyword:`while` condition or as operand of the Boolean operations below. The
following values are considered false:
.. index:: single: None (Built-in object)
* ``None``
.. index:: single: False (Built-in object)
* ``False``
* zero of any numeric type, for example, ``0``, ``0L``, ``0.0``, ``0j``.
* any empty sequence, for example, ``''``, ``()``, ``[]``.
* any empty mapping, for example, ``{}``.
* instances of user-defined classes, if the class defines a :meth:`__nonzero__`
or :meth:`__len__` method, when that method returns the integer zero or
:class:`bool` value ``False``. [#]_
.. index:: single: true
All other values are considered true --- so objects of many types are always
true.
.. index::
operator: or
operator: and
single: False
single: True
Operations and built-in functions that have a Boolean result always return ``0``
or ``False`` for false and ``1`` or ``True`` for true, unless otherwise stated.
(Important exception: the Boolean operations ``or`` and ``and`` always return
one of their operands.)
.. _boolean:
Boolean Operations --- :keyword:`and`, :keyword:`or`, :keyword:`not`
====================================================================
.. index:: pair: Boolean; operations
These are the Boolean operations, ordered by ascending priority:
+-------------+---------------------------------+-------+
| Operation | Result | Notes |
+=============+=================================+=======+
| ``x or y`` | if *x* is false, then *y*, else | \(1) |
| | *x* | |
+-------------+---------------------------------+-------+
| ``x and y`` | if *x* is false, then *x*, else | \(2) |
| | *y* | |
+-------------+---------------------------------+-------+
| ``not x`` | if *x* is false, then ``True``, | \(3) |
| | else ``False`` | |
+-------------+---------------------------------+-------+
.. index::
operator: and
operator: or
operator: not
Notes:
(1)
This is a short-circuit operator, so it only evaluates the second
argument if the first one is :const:`False`.
(2)
This is a short-circuit operator, so it only evaluates the second
argument if the first one is :const:`True`.
(3)
``not`` has a lower priority than non-Boolean operators, so ``not a == b`` is
interpreted as ``not (a == b)``, and ``a == not b`` is a syntax error.
.. _stdcomparisons:
Comparisons
===========
.. index::
pair: chaining; comparisons
pair: operator; comparison
operator: ==
operator: <
operator: <=
operator: >
operator: >=
operator: !=
operator: is
operator: is not
Comparison operations are supported by all objects. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, ``x < y <= z`` is equivalent to ``x < y and
y <= z``, except that *y* is evaluated only once (but in both cases *z* is not
evaluated at all when ``x < y`` is found to be false).
This table summarizes the comparison operations:
+------------+-------------------------+-------+
| Operation | Meaning | Notes |
+============+=========================+=======+
| ``<`` | strictly less than | |
+------------+-------------------------+-------+
| ``<=`` | less than or equal | |
+------------+-------------------------+-------+
| ``>`` | strictly greater than | |
+------------+-------------------------+-------+
| ``>=`` | greater than or equal | |
+------------+-------------------------+-------+
| ``==`` | equal | |
+------------+-------------------------+-------+
| ``!=`` | not equal | \(1) |
+------------+-------------------------+-------+
| ``is`` | object identity | |
+------------+-------------------------+-------+
| ``is not`` | negated object identity | |
+------------+-------------------------+-------+
Notes:
(1)
``!=`` can also be written ``<>``, but this is an obsolete usage
kept for backwards compatibility only. New code should always use
``!=``.
.. index::
pair: object; numeric
pair: objects; comparing
Objects of different types, except different numeric types and different string
types, never compare equal; such objects are ordered consistently but
arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate
notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently. The ``<``, ``<=``, ``>``
and ``>=`` operators will raise a :exc:`TypeError` exception when any operand is
a complex number.
.. index:: single: __cmp__() (instance method)
Instances of a class normally compare as non-equal unless the class defines the
:meth:`__cmp__` method. Refer to :ref:`customization`) for information on the
use of this method to effect object comparisons.
.. impl-detail::
Objects of different types except numbers are ordered by their type names;
objects of the same types that don't support proper comparison are ordered by
their address.
.. index::
operator: in
operator: not in
Two more operations with the same syntactic priority, ``in`` and ``not in``, are
supported only by sequence types (below).
.. _typesnumeric:
Numeric Types --- :class:`int`, :class:`float`, :class:`long`, :class:`complex`
===============================================================================
.. index::
object: numeric
object: Boolean
object: integer
object: long integer
object: floating point
object: complex number
pair: C; language
There are four distinct numeric types: :dfn:`plain integers`, :dfn:`long
integers`, :dfn:`floating point numbers`, and :dfn:`complex numbers`. In
addition, Booleans are a subtype of plain integers. Plain integers (also just
called :dfn:`integers`) are implemented using :ctype:`long` in C, which gives
them at least 32 bits of precision (``sys.maxint`` is always set to the maximum
plain integer value for the current platform, the minimum value is
``-sys.maxint - 1``). Long integers have unlimited precision. Floating point
numbers are usually implemented using :ctype:`double` in C; information about
the precision and internal representation of floating point numbers for the
machine on which your program is running is available in
:data:`sys.float_info`. Complex numbers have a real and imaginary part, which
are each a floating point number. To extract these parts from a complex number
*z*, use ``z.real`` and ``z.imag``. (The standard library includes additional
numeric types, :mod:`fractions` that hold rationals, and :mod:`decimal` that
hold floating-point numbers with user-definable precision.)
.. index::
pair: numeric; literals
pair: integer; literals
triple: long; integer; literals
pair: floating point; literals
pair: complex number; literals
pair: hexadecimal; literals
pair: octal; literals
Numbers are created by numeric literals or as the result of built-in functions
and operators. Unadorned integer literals (including binary, hex, and octal
numbers) yield plain integers unless the value they denote is too large to be
represented as a plain integer, in which case they yield a long integer.
Integer literals with an ``'L'`` or ``'l'`` suffix yield long integers (``'L'``
is preferred because ``1l`` looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers.
Appending ``'j'`` or ``'J'`` to a numeric literal yields a complex number with a
zero real part. A complex numeric literal is the sum of a real and an imaginary
part.
.. index::
single: arithmetic
builtin: int
builtin: long
builtin: float
builtin: complex
operator: +
operator: -
operator: *
operator: /
operator: //
operator: %
operator: **
Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the "narrower" type is
widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between
numbers of mixed type use the same rule. [#]_ The constructors :func:`int`,
:func:`long`, :func:`float`, and :func:`complex` can be used to produce numbers
of a specific type.
All built-in numeric types support the following operations. See
:ref:`power` and later sections for the operators' priorities.
+--------------------+---------------------------------+--------+
| Operation | Result | Notes |
+====================+=================================+========+
| ``x + y`` | sum of *x* and *y* | |
+--------------------+---------------------------------+--------+
| ``x - y`` | difference of *x* and *y* | |
+--------------------+---------------------------------+--------+
| ``x * y`` | product of *x* and *y* | |
+--------------------+---------------------------------+--------+
| ``x / y`` | quotient of *x* and *y* | \(1) |
+--------------------+---------------------------------+--------+
| ``x // y`` | (floored) quotient of *x* and | (4)(5) |
| | *y* | |
+--------------------+---------------------------------+--------+
| ``x % y`` | remainder of ``x / y`` | \(4) |
+--------------------+---------------------------------+--------+
| ``-x`` | *x* negated | |
+--------------------+---------------------------------+--------+
| ``+x`` | *x* unchanged | |
+--------------------+---------------------------------+--------+
| ``abs(x)`` | absolute value or magnitude of | \(3) |
| | *x* | |
+--------------------+---------------------------------+--------+
| ``int(x)`` | *x* converted to integer | \(2) |
+--------------------+---------------------------------+--------+
| ``long(x)`` | *x* converted to long integer | \(2) |
+--------------------+---------------------------------+--------+
| ``float(x)`` | *x* converted to floating point | \(6) |
+--------------------+---------------------------------+--------+
| ``complex(re,im)`` | a complex number with real part | |
| | *re*, imaginary part *im*. | |
| | *im* defaults to zero. | |
+--------------------+---------------------------------+--------+
| ``c.conjugate()`` | conjugate of the complex number | |
| | *c*. (Identity on real numbers) | |
+--------------------+---------------------------------+--------+
| ``divmod(x, y)`` | the pair ``(x // y, x % y)`` | (3)(4) |
+--------------------+---------------------------------+--------+
| ``pow(x, y)`` | *x* to the power *y* | (3)(7) |
+--------------------+---------------------------------+--------+
| ``x ** y`` | *x* to the power *y* | \(7) |
+--------------------+---------------------------------+--------+
.. index::
triple: operations on; numeric; types
single: conjugate() (complex number method)
Notes:
(1)
.. index::
pair: integer; division
triple: long; integer; division
For (plain or long) integer division, the result is an integer. The result is
always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and
(-1)/(-2) is 0. Note that the result is a long integer if either operand is a
long integer, regardless of the numeric value.
(2)
.. index::
module: math
single: floor() (in module math)
single: ceil() (in module math)
single: trunc() (in module math)
pair: numeric; conversions
Conversion from floats using :func:`int` or :func:`long` truncates toward
zero like the related function, :func:`math.trunc`. Use the function
:func:`math.floor` to round downward and :func:`math.ceil` to round
upward.
(3)
See :ref:`built-in-funcs` for a full description.
(4)
Complex floor division operator, modulo operator, and :func:`divmod`.
.. deprecated:: 2.3
Instead convert to float using :func:`abs` if appropriate.
(5)
Also referred to as integer division. The resultant value is a whole integer,
though the result's type is not necessarily int.
(6)
float also accepts the strings "nan" and "inf" with an optional prefix "+"
or "-" for Not a Number (NaN) and positive or negative infinity.
.. versionadded:: 2.6
(7)
Python defines ``pow(0, 0)`` and ``0 ** 0`` to be ``1``, as is common for
programming languages.
All :class:`numbers.Real` types (:class:`int`, :class:`long`, and
:class:`float`) also include the following operations:
+--------------------+------------------------------------+--------+
| Operation | Result | Notes |
+====================+====================================+========+
| ``math.trunc(x)`` | *x* truncated to Integral | |
+--------------------+------------------------------------+--------+
| ``round(x[, n])`` | *x* rounded to n digits, | |
| | rounding half to even. If n is | |
| | omitted, it defaults to 0. | |
+--------------------+------------------------------------+--------+
| ``math.floor(x)`` | the greatest integral float <= *x* | |
+--------------------+------------------------------------+--------+
| ``math.ceil(x)`` | the least integral float >= *x* | |
+--------------------+------------------------------------+--------+
.. XXXJH exceptions: overflow (when? what operations?) zerodivision
.. _bitstring-ops:
Bit-string Operations on Integer Types
--------------------------------------
.. index::
triple: operations on; integer; types
pair: bit-string; operations
pair: shifting; operations
pair: masking; operations
operator: ^
operator: &
operator: <<
operator: >>
Plain and long integer types support additional operations that make sense only
for bit-strings. Negative numbers are treated as their 2's complement value
(for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).
The priorities of the binary bitwise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation ``~`` has the
same priority as the other unary numeric operations (``+`` and ``-``).
This table lists the bit-string operations sorted in ascending priority:
+------------+--------------------------------+----------+
| Operation | Result | Notes |
+============+================================+==========+
| ``x | y`` | bitwise :dfn:`or` of *x* and | |
| | *y* | |
+------------+--------------------------------+----------+
| ``x ^ y`` | bitwise :dfn:`exclusive or` of | |
| | *x* and *y* | |
+------------+--------------------------------+----------+
| ``x & y`` | bitwise :dfn:`and` of *x* and | |
| | *y* | |
+------------+--------------------------------+----------+
| ``x << n`` | *x* shifted left by *n* bits | (1)(2) |
+------------+--------------------------------+----------+
| ``x >> n`` | *x* shifted right by *n* bits | (1)(3) |
+------------+--------------------------------+----------+
| ``~x`` | the bits of *x* inverted | |
+------------+--------------------------------+----------+
Notes:
(1)
Negative shift counts are illegal and cause a :exc:`ValueError` to be raised.
(2)
A left shift by *n* bits is equivalent to multiplication by ``pow(2, n)``. A
long integer is returned if the result exceeds the range of plain integers.
(3)
A right shift by *n* bits is equivalent to division by ``pow(2, n)``.
Additional Methods on Integer Types
-----------------------------------
.. method:: int.bit_length()
.. method:: long.bit_length()
Return the number of bits necessary to represent an integer in binary,
excluding the sign and leading zeros::
>>> n = -37
>>> bin(n)
'-0b100101'
>>> n.bit_length()
6
More precisely, if ``x`` is nonzero, then ``x.bit_length()`` is the
unique positive integer ``k`` such that ``2**(k-1) <= abs(x) < 2**k``.
Equivalently, when ``abs(x)`` is small enough to have a correctly
rounded logarithm, then ``k = 1 + int(log(abs(x), 2))``.
If ``x`` is zero, then ``x.bit_length()`` returns ``0``.
Equivalent to::
def bit_length(self):
s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6
.. versionadded:: 2.7
Additional Methods on Float
---------------------------
The float type has some additional methods.
.. method:: float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the
original float and with a positive denominator. Raises
:exc:`OverflowError` on infinities and a :exc:`ValueError` on
NaNs.
.. versionadded:: 2.6
Two methods support conversion to
and from hexadecimal strings. Since Python's floats are stored
internally as binary numbers, converting a float to or from a
*decimal* string usually involves a small rounding error. In
contrast, hexadecimal strings allow exact representation and
specification of floating-point numbers. This can be useful when
debugging, and in numerical work.
.. method:: float.hex()
Return a representation of a floating-point number as a hexadecimal
string. For finite floating-point numbers, this representation
will always include a leading ``0x`` and a trailing ``p`` and
exponent.
.. versionadded:: 2.6
.. method:: float.fromhex(s)
Class method to return the float represented by a hexadecimal
string *s*. The string *s* may have leading and trailing
whitespace.
.. versionadded:: 2.6
Note that :meth:`float.hex` is an instance method, while
:meth:`float.fromhex` is a class method.
A hexadecimal string takes the form::
[sign] ['0x'] integer ['.' fraction] ['p' exponent]
where the optional ``sign`` may by either ``+`` or ``-``, ``integer``
and ``fraction`` are strings of hexadecimal digits, and ``exponent``
is a decimal integer with an optional leading sign. Case is not
significant, and there must be at least one hexadecimal digit in
either the integer or the fraction. This syntax is similar to the
syntax specified in section 6.4.4.2 of the C99 standard, and also to
the syntax used in Java 1.5 onwards. In particular, the output of
:meth:`float.hex` is usable as a hexadecimal floating-point literal in
C or Java code, and hexadecimal strings produced by C's ``%a`` format
character or Java's ``Double.toHexString`` are accepted by
:meth:`float.fromhex`.
Note that the exponent is written in decimal rather than hexadecimal,
and that it gives the power of 2 by which to multiply the coefficient.
For example, the hexadecimal string ``0x3.a7p10`` represents the
floating-point number ``(3 + 10./16 + 7./16**2) * 2.0**10``, or
``3740.0``::
>>> float.fromhex('0x3.a7p10')
3740.0
Applying the reverse conversion to ``3740.0`` gives a different
hexadecimal string representing the same number::
>>> float.hex(3740.0)
'0x1.d380000000000p+11'
.. _typeiter:
Iterator Types
==============
.. versionadded:: 2.2
.. index::
single: iterator protocol
single: protocol; iterator
single: sequence; iteration
single: container; iteration over
Python supports a concept of iteration over containers. This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration. Sequences, described below in more detail, always support
the iteration methods.
One method needs to be defined for container objects to provide iteration
support:
.. XXX duplicated in reference/datamodel!
.. method:: container.__iter__()
Return an iterator object. The object is required to support the iterator
protocol described below. If a container supports different types of
iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting
multiple forms of iteration would be a tree structure which supports both
breadth-first and depth-first traversal.) This method corresponds to the
:attr:`tp_iter` slot of the type structure for Python objects in the Python/C
API.
The iterator objects themselves are required to support the following two
methods, which together form the :dfn:`iterator protocol`:
.. method:: iterator.__iter__()
Return the iterator object itself. This is required to allow both containers
and iterators to be used with the :keyword:`for` and :keyword:`in` statements.
This method corresponds to the :attr:`tp_iter` slot of the type structure for
Python objects in the Python/C API.
.. method:: iterator.next()
Return the next item from the container. If there are no further items, raise
the :exc:`StopIteration` exception. This method corresponds to the
:attr:`tp_iternext` slot of the type structure for Python objects in the
Python/C API.
Python defines several iterator objects to support iteration over general and
specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator
protocol.
The intention of the protocol is that once an iterator's :meth:`next` method
raises :exc:`StopIteration`, it will continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)
.. _generator-types:
Generator Types
---------------
Python's :term:`generator`\s provide a convenient way to implement the iterator
protocol. If a container object's :meth:`__iter__` method is implemented as a
generator, it will automatically return an iterator object (technically, a
generator object) supplying the :meth:`__iter__` and :meth:`next` methods. More
information about generators can be found in :ref:`the documentation for the
yield expression <yieldexpr>`.
.. _typesseq:
Sequence Types --- :class:`str`, :class:`unicode`, :class:`list`, :class:`tuple`, :class:`buffer`, :class:`xrange`
==================================================================================================================
There are six sequence types: strings, Unicode strings, lists, tuples, buffers,
and xrange objects.
For other containers see the built in :class:`dict` and :class:`set` classes,
and the :mod:`collections` module.
.. index::
object: sequence
object: string
object: Unicode
object: tuple
object: list
object: buffer
object: xrange
String literals are written in single or double quotes: ``'xyzzy'``,
``"frobozz"``. See :ref:`strings` for more about string literals.
Unicode strings are much like strings, but are specified in the syntax
using a preceding ``'u'`` character: ``u'abc'``, ``u"def"``. In addition
to the functionality described here, there are also string-specific
methods described in the :ref:`string-methods` section. Lists are
constructed with square brackets, separating items with commas: ``[a, b, c]``.
Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple
must have the enclosing parentheses, such as ``a, b, c`` or ``()``. A
single item tuple must have a trailing comma, such as ``(d,)``.
Buffer objects are not directly supported by Python syntax, but can be created
by calling the built-in function :func:`buffer`. They don't support
concatenation or repetition.
Objects of type xrange are similar to buffers in that there is no specific syntax to
create them, but they are created using the :func:`xrange` function. They don't
support slicing, concatenation or repetition, and using ``in``, ``not in``,
:func:`min` or :func:`max` on them is inefficient.
Most sequence types support the following operations. The ``in`` and ``not in``
operations have the same priorities as the comparison operations. The ``+`` and
``*`` operations have the same priority as the corresponding numeric operations.
[#]_ Additional methods are provided for :ref:`typesseq-mutable`.
This table lists the sequence operations sorted in ascending priority
(operations in the same box have the same priority). In the table, *s* and *t*
are sequences of the same type; *n*, *i* and *j* are integers:
+------------------+--------------------------------+----------+
| Operation | Result | Notes |
+==================+================================+==========+
| ``x in s`` | ``True`` if an item of *s* is | \(1) |
| | equal to *x*, else ``False`` | |
+------------------+--------------------------------+----------+
| ``x not in s`` | ``False`` if an item of *s* is | \(1) |
| | equal to *x*, else ``True`` | |
+------------------+--------------------------------+----------+
| ``s + t`` | the concatenation of *s* and | \(6) |
| | *t* | |
+------------------+--------------------------------+----------+
| ``s * n, n * s`` | *n* shallow copies of *s* | \(2) |
| | concatenated | |
+------------------+--------------------------------+----------+
| ``s[i]`` | *i*'th item of *s*, origin 0 | \(3) |
+------------------+--------------------------------+----------+
| ``s[i:j]`` | slice of *s* from *i* to *j* | (3)(4) |
+------------------+--------------------------------+----------+
| ``s[i:j:k]`` | slice of *s* from *i* to *j* | (3)(5) |
| | with step *k* | |
+------------------+--------------------------------+----------+
| ``len(s)`` | length of *s* | |
+------------------+--------------------------------+----------+
| ``min(s)`` | smallest item of *s* | |
+------------------+--------------------------------+----------+
| ``max(s)`` | largest item of *s* | |
+------------------+--------------------------------+----------+
Sequence types also support comparisons. In particular, tuples and lists
are compared lexicographically by comparing corresponding
elements. This means that to compare equal, every element must compare
equal and the two sequences must be of the same type and have the same
length. (For full details see :ref:`comparisons` in the language
reference.)
.. index::
triple: operations on; sequence; types
builtin: len
builtin: min
builtin: max
pair: concatenation; operation
pair: repetition; operation
pair: subscript; operation
pair: slice; operation
pair: extended slice; operation
operator: in
operator: not in
Notes:
(1)
When *s* is a string or Unicode string object the ``in`` and ``not in``
operations act like a substring test. In Python versions before 2.3, *x* had to
be a string of length 1. In Python 2.3 and beyond, *x* may be a string of any
length.
(2)
Values of *n* less than ``0`` are treated as ``0`` (which yields an empty
sequence of the same type as *s*). Note also that the copies are shallow;
nested structures are not copied. This often haunts new Python programmers;
consider:
>>> lists = [[]] * 3
>>> lists
[[], [], []]
>>> lists[0].append(3)
>>> lists
[[3], [3], [3]]
What has happened is that ``[[]]`` is a one-element list containing an empty
list, so all three elements of ``[[]] * 3`` are (pointers to) this single empty
list. Modifying any of the elements of ``lists`` modifies this single list.
You can create a list of different lists this way:
>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists
[[3], [5], [7]]
(3)
If *i* or *j* is negative, the index is relative to the end of the string:
``len(s) + i`` or ``len(s) + j`` is substituted. But note that ``-0`` is still
``0``.
(4)
The slice of *s* from *i* to *j* is defined as the sequence of items with index
*k* such that ``i <= k < j``. If *i* or *j* is greater than ``len(s)``, use
``len(s)``. If *i* is omitted or ``None``, use ``0``. If *j* is omitted or
``None``, use ``len(s)``. If *i* is greater than or equal to *j*, the slice is
empty.
(5)
The slice of *s* from *i* to *j* with step *k* is defined as the sequence of
items with index ``x = i + n*k`` such that ``0 <= n < (j-i)/k``. In other words,
the indices are ``i``, ``i+k``, ``i+2*k``, ``i+3*k`` and so on, stopping when
*j* is reached (but never including *j*). If *i* or *j* is greater than
``len(s)``, use ``len(s)``. If *i* or *j* are omitted or ``None``, they become
"end" values (which end depends on the sign of *k*). Note, *k* cannot be zero.
If *k* is ``None``, it is treated like ``1``.
(6)
.. impl-detail::
If *s* and *t* are both strings, some Python implementations such as
CPython can usually perform an in-place optimization for assignments of
the form ``s = s + t`` or ``s += t``. When applicable, this optimization
makes quadratic run-time much less likely. This optimization is both
version and implementation dependent. For performance sensitive code, it
is preferable to use the :meth:`str.join` method which assures consistent
linear concatenation performance across versions and implementations.
.. versionchanged:: 2.4
Formerly, string concatenation never occurred in-place.
.. _string-methods:
String Methods
--------------
.. index:: pair: string; methods
Below are listed the string methods which both 8-bit strings and
Unicode objects support.
In addition, Python's strings support the sequence type methods
described in the :ref:`typesseq` section. To output formatted strings
use template strings or the ``%`` operator described in the
:ref:`string-formatting` section. Also, see the :mod:`re` module for
string functions based on regular expressions.
.. method:: str.capitalize()
Return a copy of the string with its first character capitalized and the
rest lowercased.
For 8-bit strings, this method is locale-dependent.
.. method:: str.center(width[, fillchar])
Return centered in a string of length *width*. Padding is done using the
specified *fillchar* (default is a space).
.. versionchanged:: 2.4
Support for the *fillchar* argument.
.. method:: str.count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring *sub* in the
range [*start*, *end*]. Optional arguments *start* and *end* are
interpreted as in slice notation.
.. method:: str.decode([encoding[, errors]])
Decodes the string using the codec registered for *encoding*. *encoding*
defaults to the default string encoding. *errors* may be given to set a
different error handling scheme. The default is ``'strict'``, meaning that
encoding errors raise :exc:`UnicodeError`. Other possible values are
``'ignore'``, ``'replace'`` and any other name registered via
:func:`codecs.register_error`, see section :ref:`codec-base-classes`.
.. versionadded:: 2.2
.. versionchanged:: 2.3
Support for other error handling schemes added.
.. versionchanged:: 2.7
Support for keyword arguments added.
.. method:: str.encode([encoding[,errors]])
Return an encoded version of the string. Default encoding is the current
default string encoding. *errors* may be given to set a different error
handling scheme. The default for *errors* is ``'strict'``, meaning that
encoding errors raise a :exc:`UnicodeError`. Other possible values are
``'ignore'``, ``'replace'``, ``'xmlcharrefreplace'``, ``'backslashreplace'`` and
any other name registered via :func:`codecs.register_error`, see section
:ref:`codec-base-classes`. For a list of possible encodings, see section
:ref:`standard-encodings`.
.. versionadded:: 2.0
.. versionchanged:: 2.3
Support for ``'xmlcharrefreplace'`` and ``'backslashreplace'`` and other error
handling schemes added.
.. versionchanged:: 2.7
Support for keyword arguments added.
.. method:: str.endswith(suffix[, start[, end]])
Return ``True`` if the string ends with the specified *suffix*, otherwise return
``False``. *suffix* can also be a tuple of suffixes to look for. With optional
*start*, test beginning at that position. With optional *end*, stop comparing
at that position.
.. versionchanged:: 2.5
Accept tuples as *suffix*.
.. method:: str.expandtabs([tabsize])
Return a copy of the string where all tab characters are replaced by one or
more spaces, depending on the current column and the given tab size. The
column number is reset to zero after each newline occurring in the string.
If *tabsize* is not given, a tab size of ``8`` characters is assumed. This
doesn't understand other non-printing characters or escape sequences.
.. method:: str.find(sub[, start[, end]])
Return the lowest index in the string where substring *sub* is found, such
that *sub* is contained in the slice ``s[start:end]``. Optional arguments
*start* and *end* are interpreted as in slice notation. Return ``-1`` if
*sub* is not found.
.. method:: str.format(*args, **kwargs)
Perform a string formatting operation. The string on which this method is
called can contain literal text or replacement fields delimited by braces
``{}``. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of
the string where each replacement field is replaced with the string value of
the corresponding argument.
>>> "The sum of 1 + 2 is {0}".format(1+2)
'The sum of 1 + 2 is 3'
See :ref:`formatstrings` for a description of the various formatting options
that can be specified in format strings.
This method of string formatting is the new standard in Python 3.0, and
should be preferred to the ``%`` formatting described in
:ref:`string-formatting` in new code.
.. versionadded:: 2.6
.. method:: str.index(sub[, start[, end]])
Like :meth:`find`, but raise :exc:`ValueError` when the substring is not found.
.. method:: str.isalnum()
Return true if all characters in the string are alphanumeric and there is at
least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.isalpha()
Return true if all characters in the string are alphabetic and there is at least
one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.isdigit()
Return true if all characters in the string are digits and there is at least one
character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.islower()
Return true if all cased characters in the string are lowercase and there is at
least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.isspace()
Return true if there are only whitespace characters in the string and there is
at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.istitle()
Return true if the string is a titlecased string and there is at least one
character, for example uppercase characters may only follow uncased characters
and lowercase characters only cased ones. Return false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.isupper()
Return true if all cased characters in the string are uppercase and there is at
least one cased character, false otherwise.
For 8-bit strings, this method is locale-dependent.
.. method:: str.join(iterable)
Return a string which is the concatenation of the strings in the
:term:`iterable` *iterable*. The separator between elements is the string
providing this method.
.. method:: str.ljust(width[, fillchar])
Return the string left justified in a string of length *width*. Padding is done
using the specified *fillchar* (default is a space). The original string is
returned if *width* is less than ``len(s)``.
.. versionchanged:: 2.4
Support for the *fillchar* argument.
.. method:: str.lower()
Return a copy of the string converted to lowercase.
For 8-bit strings, this method is locale-dependent.
.. method:: str.lstrip([chars])
Return a copy of the string with leading characters removed. The *chars*
argument is a string specifying the set of characters to be removed. If omitted
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
argument is not a prefix; rather, all combinations of its values are stripped:
>>> ' spacious '.lstrip()
'spacious '
>>> 'www.example.com'.lstrip('cmowz.')
'example.com'
.. versionchanged:: 2.2.2
Support for the *chars* argument.
.. method:: str.partition(sep)
Split the string at the first occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings.
.. versionadded:: 2.5
.. method:: str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring *old* replaced by
*new*. If the optional argument *count* is given, only the first *count*
occurrences are replaced.
.. method:: str.rfind(sub [,start [,end]])
Return the highest index in the string where substring *sub* is found, such
that *sub* is contained within ``s[start:end]``. Optional arguments *start*
and *end* are interpreted as in slice notation. Return ``-1`` on failure.
.. method:: str.rindex(sub[, start[, end]])
Like :meth:`rfind` but raises :exc:`ValueError` when the substring *sub* is not
found.
.. method:: str.rjust(width[, fillchar])
Return the string right justified in a string of length *width*. Padding is done
using the specified *fillchar* (default is a space). The original string is
returned if *width* is less than ``len(s)``.
.. versionchanged:: 2.4
Support for the *fillchar* argument.
.. method:: str.rpartition(sep)
Split the string at the last occurrence of *sep*, and return a 3-tuple
containing the part before the separator, the separator itself, and the part
after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself.
.. versionadded:: 2.5
.. method:: str.rsplit([sep [,maxsplit]])
Return a list of the words in the string, using *sep* as the delimiter string.
If *maxsplit* is given, at most *maxsplit* splits are done, the *rightmost*
ones. If *sep* is not specified or ``None``, any whitespace string is a
separator. Except for splitting from the right, :meth:`rsplit` behaves like
:meth:`split` which is described in detail below.
.. versionadded:: 2.4
.. method:: str.rstrip([chars])
Return a copy of the string with trailing characters removed. The *chars*
argument is a string specifying the set of characters to be removed. If omitted
or ``None``, the *chars* argument defaults to removing whitespace. The *chars*
argument is not a suffix; rather, all combinations of its values are stripped:
>>> ' spacious '.rstrip()
' spacious'
>>> 'mississippi'.rstrip('ipz')
'mississ'
.. versionchanged:: 2.2.2
Support for the *chars* argument.
.. method:: str.split([sep[, maxsplit]])
Return a list of the words in the string, using *sep* as the delimiter
string. If *maxsplit* is given, at most *maxsplit* splits are done (thus,
the list will have at most ``maxsplit+1`` elements). If *maxsplit* is not
specified, then there is no limit on the number of splits (all possible
splits are made).
If *sep* is given, consecutive delimiters are not grouped together and are
deemed to delimit empty strings (for example, ``'1,,2'.split(',')`` returns
``['1', '', '2']``). The *sep* argument may consist of multiple characters
(for example, ``'1<>2<>3'.split('<>')`` returns ``['1', '2', '3']``).
Splitting an empty string with a specified separator returns ``['']``.
If *sep* is not specified or is ``None``, a different splitting algorithm is
applied: runs of consecutive whitespace are regarded as a single separator,
and the result will contain no empty strings at the start or end if the
string has leading or trailing whitespace. Consequently, splitting an empty
string or a string consisting of just whitespace with a ``None`` separator
returns ``[]``.
For example, ``' 1 2 3 '.split()`` returns ``['1', '2', '3']``, and
``' 1 2 3 '.split(None, 1)`` returns ``['1', '2 3 ']``.
.. method:: str.splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line
breaks are not included in the resulting list unless *keepends* is given and
true.
.. method:: str.startswith(prefix[, start[, end]])
Return ``True`` if string starts with the *prefix*, otherwise return ``False``.
*prefix* can also be a tuple of prefixes to look for. With optional *start*,
test string beginning at that position. With optional *end*, stop comparing
string at that position.
.. versionchanged:: 2.5
Accept tuples as *prefix*.
.. method:: str.strip([chars])
Return a copy of the string with the leading and trailing characters removed.
The *chars* argument is a string specifying the set of characters to be removed.
If omitted or ``None``, the *chars* argument defaults to removing whitespace.
The *chars* argument is not a prefix or suffix; rather, all combinations of its
values are stripped:
>>> ' spacious '.strip()
'spacious'
>>> 'www.example.com'.strip('cmowz.')
'example'
.. versionchanged:: 2.2.2
Support for the *chars* argument.
.. method:: str.swapcase()
Return a copy of the string with uppercase characters converted to lowercase and
vice versa.
For 8-bit strings, this method is locale-dependent.
.. method:: str.title()
Return a titlecased version of the string where words start with an uppercase
character and the remaining characters are lowercase.
The algorithm uses a simple language-independent definition of a word as
groups of consecutive letters. The definition works in many contexts but
it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result::
>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"
A workaround for apostrophes can be constructed using regular expressions::
>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+('[A-Za-z]+)?",
lambda mo: mo.group(0)[0].upper() +
mo.group(0)[1:].lower(),
s)
>>> titlecase("they're bill's friends.")
"They're Bill's Friends."
For 8-bit strings, this method is locale-dependent.
.. method:: str.translate(table[, deletechars])
Return a copy of the string where all characters occurring in the optional
argument *deletechars* are removed, and the remaining characters have been
mapped through the given translation table, which must be a string of length
256.
You can use the :func:`~string.maketrans` helper function in the :mod:`string`
module to create a translation table. For string objects, set the *table*
argument to ``None`` for translations that only delete characters:
>>> 'read this short text'.translate(None, 'aeiou')
'rd ths shrt txt'
.. versionadded:: 2.6
Support for a ``None`` *table* argument.
For Unicode objects, the :meth:`translate` method does not accept the optional
*deletechars* argument. Instead, it returns a copy of the *s* where all
characters have been mapped through the given translation table which must be a
mapping of Unicode ordinals to Unicode ordinals, Unicode strings or ``None``.
Unmapped characters are left untouched. Characters mapped to ``None`` are
deleted. Note, a more flexible approach is to create a custom character mapping
codec using the :mod:`codecs` module (see :mod:`encodings.cp1251` for an
example).
.. method:: str.upper()
Return a copy of the string converted to uppercase.
For 8-bit strings, this method is locale-dependent.
.. method:: str.zfill(width)
Return the numeric string left filled with zeros in a string of length
*width*. A sign prefix is handled correctly. The original string is
returned if *width* is less than ``len(s)``.
.. versionadded:: 2.2.2
The following methods are present only on unicode objects:
.. method:: unicode.isnumeric()
Return ``True`` if there are only numeric characters in S, ``False``
otherwise. Numeric characters include digit characters, and all characters
that have the Unicode numeric value property, e.g. U+2155,
VULGAR FRACTION ONE FIFTH.
.. method:: unicode.isdecimal()
Return ``True`` if there are only decimal characters in S, ``False``
otherwise. Decimal characters include digit characters, and all characters
that that can be used to form decimal-radix numbers, e.g. U+0660,
ARABIC-INDIC DIGIT ZERO.
.. _string-formatting:
String Formatting Operations
----------------------------
.. index::
single: formatting, string (%)
single: interpolation, string (%)
single: string; formatting
single: string; interpolation
single: printf-style formatting
single: sprintf-style formatting
single: % formatting
single: % interpolation
String and Unicode objects have one unique built-in operation: the ``%``
operator (modulo). This is also known as the string *formatting* or
*interpolation* operator. Given ``format % values`` (where *format* is a string
or Unicode object), ``%`` conversion specifications in *format* are replaced
with zero or more elements of *values*. The effect is similar to the using
:cfunc:`sprintf` in the C language. If *format* is a Unicode object, or if any
of the objects being converted using the ``%s`` conversion are Unicode objects,
the result will also be a Unicode object.
If *format* requires a single argument, *values* may be a single non-tuple
object. [#]_ Otherwise, *values* must be a tuple with exactly the number of
items specified by the format string, or a single mapping object (for example, a
dictionary).
A conversion specifier contains two or more characters and has the following
components, which must occur in this order:
#. The ``'%'`` character, which marks the start of the specifier.
#. Mapping key (optional), consisting of a parenthesised sequence of characters
(for example, ``(somename)``).
#. Conversion flags (optional), which affect the result of some conversion
types.
#. Minimum field width (optional). If specified as an ``'*'`` (asterisk), the
actual width is read from the next element of the tuple in *values*, and the
object to convert comes after the minimum field width and optional precision.
#. Precision (optional), given as a ``'.'`` (dot) followed by the precision. If
specified as ``'*'`` (an asterisk), the actual width is read from the next
element of the tuple in *values*, and the value to convert comes after the
precision.
#. Length modifier (optional).
#. Conversion type.
When the right argument is a dictionary (or other mapping type), then the
formats in the string *must* include a parenthesised mapping key into that
dictionary inserted immediately after the ``'%'`` character. The mapping key
selects the value to be formatted from the mapping. For example:
>>> print '%(language)s has %(#)03d quote types.' % \
... {'language': "Python", "#": 2}
Python has 002 quote types.
In this case no ``*`` specifiers may occur in a format (since they require a
sequential parameter list).
The conversion flag characters are:
+---------+---------------------------------------------------------------------+
| Flag | Meaning |
+=========+=====================================================================+
| ``'#'`` | The value conversion will use the "alternate form" (where defined |
| | below). |
+---------+---------------------------------------------------------------------+
| ``'0'`` | The conversion will be zero padded for numeric values. |
+---------+---------------------------------------------------------------------+
| ``'-'`` | The converted value is left adjusted (overrides the ``'0'`` |
| | conversion if both are given). |
+---------+---------------------------------------------------------------------+
| ``' '`` | (a space) A blank should be left before a positive number (or empty |
| | string) produced by a signed conversion. |
+---------+---------------------------------------------------------------------+
| ``'+'`` | A sign character (``'+'`` or ``'-'``) will precede the conversion |
| | (overrides a "space" flag). |
+---------+---------------------------------------------------------------------+
A length modifier (``h``, ``l``, or ``L``) may be present, but is ignored as it
is not necessary for Python -- so e.g. ``%ld`` is identical to ``%d``.
The conversion types are:
+------------+-----------------------------------------------------+-------+
| Conversion | Meaning | Notes |
+============+=====================================================+=======+
| ``'d'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'i'`` | Signed integer decimal. | |
+------------+-----------------------------------------------------+-------+
| ``'o'`` | Signed octal value. | \(1) |
+------------+-----------------------------------------------------+-------+
| ``'u'`` | Obsolete type -- it is identical to ``'d'``. | \(7) |
+------------+-----------------------------------------------------+-------+
| ``'x'`` | Signed hexadecimal (lowercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'X'`` | Signed hexadecimal (uppercase). | \(2) |
+------------+-----------------------------------------------------+-------+
| ``'e'`` | Floating point exponential format (lowercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'E'`` | Floating point exponential format (uppercase). | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'f'`` | Floating point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'F'`` | Floating point decimal format. | \(3) |
+------------+-----------------------------------------------------+-------+
| ``'g'`` | Floating point format. Uses lowercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'G'`` | Floating point format. Uses uppercase exponential | \(4) |
| | format if exponent is less than -4 or not less than | |
| | precision, decimal format otherwise. | |
+------------+-----------------------------------------------------+-------+
| ``'c'`` | Single character (accepts integer or single | |
| | character string). | |
+------------+-----------------------------------------------------+-------+
| ``'r'`` | String (converts any Python object using | \(5) |
| | :func:`repr`). | |
+------------+-----------------------------------------------------+-------+
| ``'s'`` | String (converts any Python object using | \(6) |
| | :func:`str`). | |
+------------+-----------------------------------------------------+-------+
| ``'%'`` | No argument is converted, results in a ``'%'`` | |
| | character in the result. | |
+------------+-----------------------------------------------------+-------+
Notes:
(1)
The alternate form causes a leading zero (``'0'``) to be inserted between
left-hand padding and the formatting of the number if the leading character
of the result is not already a zero.
(2)
The alternate form causes a leading ``'0x'`` or ``'0X'`` (depending on whether
the ``'x'`` or ``'X'`` format was used) to be inserted between left-hand padding
and the formatting of the number if the leading character of the result is not
already a zero.
(3)
The alternate form causes the result to always contain a decimal point, even if
no digits follow it.
The precision determines the number of digits after the decimal point and
defaults to 6.
(4)
The alternate form causes the result to always contain a decimal point, and
trailing zeroes are not removed as they would otherwise be.
The precision determines the number of significant digits before and after the
decimal point and defaults to 6.
(5)
The ``%r`` conversion was added in Python 2.0.
The precision determines the maximal number of characters used.
(6)
If the object or format provided is a :class:`unicode` string, the resulting
string will also be :class:`unicode`.
The precision determines the maximal number of characters used.
(7)
See :pep:`237`.
Since Python strings have an explicit length, ``%s`` conversions do not assume
that ``'\0'`` is the end of the string.
.. XXX Examples?
.. versionchanged:: 2.7
``%f`` conversions for numbers whose absolute value is over 1e50 are no
longer replaced by ``%g`` conversions.
.. index::
module: string
module: re
Additional string operations are defined in standard modules :mod:`string` and
:mod:`re`.
.. _typesseq-xrange:
XRange Type
-----------
.. index:: object: xrange
The :class:`xrange` type is an immutable sequence which is commonly used for
looping. The advantage of the :class:`xrange` type is that an :class:`xrange`
object will always take the same amount of memory, no matter the size of the
range it represents. There are no consistent performance advantages.
XRange objects have very little behavior: they only support indexing, iteration,
and the :func:`len` function.
.. _typesseq-mutable:
Mutable Sequence Types
----------------------
.. index::
triple: mutable; sequence; types
object: list
List objects support additional operations that allow in-place modification of
the object. Other mutable sequence types (when added to the language) should
also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are
defined on mutable sequence types (where *x* is an arbitrary object):
.. index::
triple: operations on; sequence; types
triple: operations on; list; type
pair: subscript; assignment
pair: slice; assignment
pair: extended slice; assignment
statement: del
single: append() (list method)
single: extend() (list method)
single: count() (list method)
single: index() (list method)
single: insert() (list method)
single: pop() (list method)
single: remove() (list method)
single: reverse() (list method)
single: sort() (list method)
+------------------------------+--------------------------------+---------------------+
| Operation | Result | Notes |
+==============================+================================+=====================+
| ``s[i] = x`` | item *i* of *s* is replaced by | |
| | *x* | |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j] = t`` | slice of *s* from *i* to *j* | |
| | is replaced by the contents of | |
| | the iterable *t* | |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j]`` | same as ``s[i:j] = []`` | |
+------------------------------+--------------------------------+---------------------+
| ``s[i:j:k] = t`` | the elements of ``s[i:j:k]`` | \(1) |
| | are replaced by those of *t* | |
+------------------------------+--------------------------------+---------------------+
| ``del s[i:j:k]`` | removes the elements of | |
| | ``s[i:j:k]`` from the list | |
+------------------------------+--------------------------------+---------------------+
| ``s.append(x)`` | same as ``s[len(s):len(s)] = | \(2) |
| | [x]`` | |
+------------------------------+--------------------------------+---------------------+
| ``s.extend(x)`` | same as ``s[len(s):len(s)] = | \(3) |
| | x`` | |
+------------------------------+--------------------------------+---------------------+
| ``s.count(x)`` | return number of *i*'s for | |
| | which ``s[i] == x`` | |
+------------------------------+--------------------------------+---------------------+
| ``s.index(x[, i[, j]])`` | return smallest *k* such that | \(4) |
| | ``s[k] == x`` and ``i <= k < | |
| | j`` | |
+------------------------------+--------------------------------+---------------------+
| ``s.insert(i, x)`` | same as ``s[i:i] = [x]`` | \(5) |
+------------------------------+--------------------------------+---------------------+
| ``s.pop([i])`` | same as ``x = s[i]; del s[i]; | \(6) |
| | return x`` | |
+------------------------------+--------------------------------+---------------------+
| ``s.remove(x)`` | same as ``del s[s.index(x)]`` | \(4) |
+------------------------------+--------------------------------+---------------------+
| ``s.reverse()`` | reverses the items of *s* in | \(7) |
| | place | |
+------------------------------+--------------------------------+---------------------+
| ``s.sort([cmp[, key[, | sort the items of *s* in place | (7)(8)(9)(10) |
| reverse]]])`` | | |
+------------------------------+--------------------------------+---------------------+
Notes:
(1)
*t* must have the same length as the slice it is replacing.
(2)
The C implementation of Python has historically accepted multiple parameters and
implicitly joined them into a tuple; this no longer works in Python 2.0. Use of
this misfeature has been deprecated since Python 1.4.
(3)
*x* can be any iterable object.
(4)
Raises :exc:`ValueError` when *x* is not found in *s*. When a negative index is
passed as the second or third parameter to the :meth:`index` method, the list
length is added, as for slice indices. If it is still negative, it is truncated
to zero, as for slice indices.
.. versionchanged:: 2.3
Previously, :meth:`index` didn't have arguments for specifying start and stop
positions.
(5)
When a negative index is passed as the first parameter to the :meth:`insert`
method, the list length is added, as for slice indices. If it is still
negative, it is truncated to zero, as for slice indices.
.. versionchanged:: 2.3
Previously, all negative indices were truncated to zero.
(6)
The :meth:`pop` method is only supported by the list and array types. The
optional argument *i* defaults to ``-1``, so that by default the last item is
removed and returned.
(7)
The :meth:`sort` and :meth:`reverse` methods modify the list in place for
economy of space when sorting or reversing a large list. To remind you that
they operate by side effect, they don't return the sorted or reversed list.
(8)
The :meth:`sort` method takes optional arguments for controlling the
comparisons.
*cmp* specifies a custom comparison function of two arguments (list items) which
should return a negative, zero or positive number depending on whether the first
argument is considered smaller than, equal to, or larger than the second
argument: ``cmp=lambda x,y: cmp(x.lower(), y.lower())``. The default value
is ``None``.
*key* specifies a function of one argument that is used to extract a comparison
key from each list element: ``key=str.lower``. The default value is ``None``.
*reverse* is a boolean value. If set to ``True``, then the list elements are
sorted as if each comparison were reversed.
In general, the *key* and *reverse* conversion processes are much faster than
specifying an equivalent *cmp* function. This is because *cmp* is called
multiple times for each list element while *key* and *reverse* touch each
element only once. Use :func:`functools.cmp_to_key` to convert an
old-style *cmp* function to a *key* function.
.. versionchanged:: 2.3
Support for ``None`` as an equivalent to omitting *cmp* was added.
.. versionchanged:: 2.4
Support for *key* and *reverse* was added.
(9)
Starting with Python 2.3, the :meth:`sort` method is guaranteed to be stable. A
sort is stable if it guarantees not to change the relative order of elements
that compare equal --- this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).
(10)
.. impl-detail::
While a list is being sorted, the effect of attempting to mutate, or even
inspect, the list is undefined. The C implementation of Python 2.3 and
newer makes the list appear empty for the duration, and raises
:exc:`ValueError` if it can detect that the list has been mutated during a
sort.
.. _types-set:
Set Types --- :class:`set`, :class:`frozenset`
==============================================
.. index:: object: set
A :dfn:`set` object is an unordered collection of distinct :term:`hashable` objects.
Common uses include membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and
symmetric difference.
(For other containers see the built in :class:`dict`, :class:`list`,
and :class:`tuple` classes, and the :mod:`collections` module.)
.. versionadded:: 2.4
Like other collections, sets support ``x in set``, ``len(set)``, and ``for x in
set``. Being an unordered collection, sets do not record element position or
order of insertion. Accordingly, sets do not support indexing, slicing, or
other sequence-like behavior.
There are currently two built-in set types, :class:`set` and :class:`frozenset`.
The :class:`set` type is mutable --- the contents can be changed using methods
like :meth:`add` and :meth:`remove`. Since it is mutable, it has no hash value
and cannot be used as either a dictionary key or as an element of another set.
The :class:`frozenset` type is immutable and :term:`hashable` --- its contents
cannot be altered after it is created; it can therefore be used as a dictionary
key or as an element of another set.
As of Python 2.7, non-empty sets (not frozensets) can be created by placing a
comma-separated list of elements within braces, for example: ``{'jack',
'sjoerd'}``, in addition to the :class:`set` constructor.
The constructors for both classes work the same:
.. class:: set([iterable])
frozenset([iterable])
Return a new set or frozenset object whose elements are taken from
*iterable*. The elements of a set must be hashable. To represent sets of
sets, the inner sets must be :class:`frozenset` objects. If *iterable* is
not specified, a new empty set is returned.
Instances of :class:`set` and :class:`frozenset` provide the following
operations:
.. describe:: len(s)
Return the cardinality of set *s*.
.. describe:: x in s
Test *x* for membership in *s*.
.. describe:: x not in s
Test *x* for non-membership in *s*.
.. method:: isdisjoint(other)
Return True if the set has no elements in common with *other*. Sets are
disjoint if and only if their intersection is the empty set.
.. versionadded:: 2.6
.. method:: issubset(other)
set <= other
Test whether every element in the set is in *other*.
.. method:: set < other
Test whether the set is a true subset of *other*, that is,
``set <= other and set != other``.
.. method:: issuperset(other)
set >= other
Test whether every element in *other* is in the set.
.. method:: set > other
Test whether the set is a true superset of *other*, that is, ``set >=
other and set != other``.
.. method:: union(other, ...)
set | other | ...
Return a new set with elements from the set and all others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: intersection(other, ...)
set & other & ...
Return a new set with elements common to the set and all others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: difference(other, ...)
set - other - ...
Return a new set with elements in the set that are not in the others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: symmetric_difference(other)
set ^ other
Return a new set with elements in either the set or *other* but not both.
.. method:: copy()
Return a new set with a shallow copy of *s*.
Note, the non-operator versions of :meth:`union`, :meth:`intersection`,
:meth:`difference`, and :meth:`symmetric_difference`, :meth:`issubset`, and
:meth:`issuperset` methods will accept any iterable as an argument. In
contrast, their operator based counterparts require their arguments to be
sets. This precludes error-prone constructions like ``set('abc') & 'cbs'``
in favor of the more readable ``set('abc').intersection('cbs')``.
Both :class:`set` and :class:`frozenset` support set to set comparisons. Two
sets are equal if and only if every element of each set is contained in the
other (each is a subset of the other). A set is less than another set if and
only if the first set is a proper subset of the second set (is a subset, but
is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).
Instances of :class:`set` are compared to instances of :class:`frozenset`
based on their members. For example, ``set('abc') == frozenset('abc')``
returns ``True`` and so does ``set('abc') in set([frozenset('abc')])``.
The subset and equality comparisons do not generalize to a complete ordering
function. For example, any two disjoint sets are not equal and are not
subsets of each other, so *all* of the following return ``False``: ``a<b``,
``a==b``, or ``a>b``. Accordingly, sets do not implement the :meth:`__cmp__`
method.
Since sets only define partial ordering (subset relationships), the output of
the :meth:`list.sort` method is undefined for lists of sets.
Set elements, like dictionary keys, must be :term:`hashable`.
Binary operations that mix :class:`set` instances with :class:`frozenset`
return the type of the first operand. For example: ``frozenset('ab') |
set('bc')`` returns an instance of :class:`frozenset`.
The following table lists operations available for :class:`set` that do not
apply to immutable instances of :class:`frozenset`:
.. method:: update(other, ...)
set |= other | ...
Update the set, adding elements from all others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: intersection_update(other, ...)
set &= other & ...
Update the set, keeping only elements found in it and all others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: difference_update(other, ...)
set -= other | ...
Update the set, removing elements found in others.
.. versionchanged:: 2.6
Accepts multiple input iterables.
.. method:: symmetric_difference_update(other)
set ^= other
Update the set, keeping only elements found in either set, but not in both.
.. method:: add(elem)
Add element *elem* to the set.
.. method:: remove(elem)
Remove element *elem* from the set. Raises :exc:`KeyError` if *elem* is
not contained in the set.
.. method:: discard(elem)
Remove element *elem* from the set if it is present.
.. method:: pop()
Remove and return an arbitrary element from the set. Raises
:exc:`KeyError` if the set is empty.
.. method:: clear()
Remove all elements from the set.
Note, the non-operator versions of the :meth:`update`,
:meth:`intersection_update`, :meth:`difference_update`, and
:meth:`symmetric_difference_update` methods will accept any iterable as an
argument.
Note, the *elem* argument to the :meth:`__contains__`, :meth:`remove`, and
:meth:`discard` methods may be a set. To support searching for an equivalent
frozenset, the *elem* set is temporarily mutated during the search and then
restored. During the search, the *elem* set should not be read or mutated
since it does not have a meaningful value.
.. seealso::
:ref:`comparison-to-builtin-set`
Differences between the :mod:`sets` module and the built-in set types.
.. _typesmapping:
Mapping Types --- :class:`dict`
===============================
.. index::
object: mapping
object: dictionary
triple: operations on; mapping; types
triple: operations on; dictionary; type
statement: del
builtin: len
A :dfn:`mapping` object maps :term:`hashable` values to arbitrary objects.
Mappings are mutable objects. There is currently only one standard mapping
type, the :dfn:`dictionary`. (For other containers see the built in
:class:`list`, :class:`set`, and :class:`tuple` classes, and the
:mod:`collections` module.)
A dictionary's keys are *almost* arbitrary values. Values that are not
:term:`hashable`, that is, values containing lists, dictionaries or other
mutable types (that are compared by value rather than by object identity) may
not be used as keys. Numeric types used for keys obey the normal rules for
numeric comparison: if two numbers compare equal (such as ``1`` and ``1.0``)
then they can be used interchangeably to index the same dictionary entry. (Note
however, that since computers store floating-point numbers as approximations it
is usually unwise to use them as dictionary keys.)
Dictionaries can be created by placing a comma-separated list of ``key: value``
pairs within braces, for example: ``{'jack': 4098, 'sjoerd': 4127}`` or ``{4098:
'jack', 4127: 'sjoerd'}``, or by the :class:`dict` constructor.
.. class:: dict([arg])
Return a new dictionary initialized from an optional positional argument or from
a set of keyword arguments. If no arguments are given, return a new empty
dictionary. If the positional argument *arg* is a mapping object, return a
dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports
iteration, or an iterator object. The elements of the argument must each also
be of one of those kinds, and each must in turn contain exactly two objects.
The first is used as a key in the new dictionary, and the second as the key's
value. If a given key is seen more than once, the last value associated with it
is retained in the new dictionary.
If keyword arguments are given, the keywords themselves with their associated
values are added as items to the dictionary. If a key is specified both in the
positional argument and as a keyword argument, the value associated with the
keyword is retained in the dictionary. For example, these all return a
dictionary equal to ``{"one": 2, "two": 3}``:
* ``dict(one=2, two=3)``
* ``dict({'one': 2, 'two': 3})``
* ``dict(zip(('one', 'two'), (2, 3)))``
* ``dict([['two', 3], ['one', 2]])``
The first example only works for keys that are valid Python
identifiers; the others work with any valid keys.
.. versionadded:: 2.2
.. versionchanged:: 2.3
Support for building a dictionary from keyword arguments added.
These are the operations that dictionaries support (and therefore, custom
mapping types should support too):
.. describe:: len(d)
Return the number of items in the dictionary *d*.
.. describe:: d[key]
Return the item of *d* with key *key*. Raises a :exc:`KeyError` if *key*
is not in the map.
.. versionadded:: 2.5
If a subclass of dict defines a method :meth:`__missing__`, if the key
*key* is not present, the ``d[key]`` operation calls that method with
the key *key* as argument. The ``d[key]`` operation then returns or
raises whatever is returned or raised by the ``__missing__(key)`` call
if the key is not present. No other operations or methods invoke
:meth:`__missing__`. If :meth:`__missing__` is not defined,
:exc:`KeyError` is raised. :meth:`__missing__` must be a method; it
cannot be an instance variable. For an example, see
:class:`collections.defaultdict`.
.. describe:: d[key] = value
Set ``d[key]`` to *value*.
.. describe:: del d[key]
Remove ``d[key]`` from *d*. Raises a :exc:`KeyError` if *key* is not in the
map.
.. describe:: key in d
Return ``True`` if *d* has a key *key*, else ``False``.
.. versionadded:: 2.2
.. describe:: key not in d
Equivalent to ``not key in d``.
.. versionadded:: 2.2
.. describe:: iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut
for :meth:`iterkeys`.
.. method:: clear()
Remove all items from the dictionary.
.. method:: copy()
Return a shallow copy of the dictionary.
.. method:: fromkeys(seq[, value])
Create a new dictionary with keys from *seq* and values set to *value*.
:func:`fromkeys` is a class method that returns a new dictionary. *value*
defaults to ``None``.
.. versionadded:: 2.3
.. method:: get(key[, default])
Return the value for *key* if *key* is in the dictionary, else *default*.
If *default* is not given, it defaults to ``None``, so that this method
never raises a :exc:`KeyError`.
.. method:: has_key(key)
Test for the presence of *key* in the dictionary. :meth:`has_key` is
deprecated in favor of ``key in d``.
.. method:: items()
Return a copy of the dictionary's list of ``(key, value)`` pairs.
.. impl-detail::
Keys and values are listed in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary's
history of insertions and deletions.
If :meth:`items`, :meth:`keys`, :meth:`values`, :meth:`iteritems`,
:meth:`iterkeys`, and :meth:`itervalues` are called with no intervening
modifications to the dictionary, the lists will directly correspond. This
allows the creation of ``(value, key)`` pairs using :func:`zip`: ``pairs =
zip(d.values(), d.keys())``. The same relationship holds for the
:meth:`iterkeys` and :meth:`itervalues` methods: ``pairs =
zip(d.itervalues(), d.iterkeys())`` provides the same value for
``pairs``. Another way to create the same list is ``pairs = [(v, k) for
(k, v) in d.iteritems()]``.
.. method:: iteritems()
Return an iterator over the dictionary's ``(key, value)`` pairs. See the
note for :meth:`dict.items`.
Using :meth:`iteritems` while adding or deleting entries in the dictionary
may raise a :exc:`RuntimeError` or fail to iterate over all entries.
.. versionadded:: 2.2
.. method:: iterkeys()
Return an iterator over the dictionary's keys. See the note for
:meth:`dict.items`.
Using :meth:`iterkeys` while adding or deleting entries in the dictionary
may raise a :exc:`RuntimeError` or fail to iterate over all entries.
.. versionadded:: 2.2
.. method:: itervalues()
Return an iterator over the dictionary's values. See the note for
:meth:`dict.items`.
Using :meth:`itervalues` while adding or deleting entries in the
dictionary may raise a :exc:`RuntimeError` or fail to iterate over all
entries.
.. versionadded:: 2.2
.. method:: keys()
Return a copy of the dictionary's list of keys. See the note for
:meth:`dict.items`.
.. method:: pop(key[, default])
If *key* is in the dictionary, remove it and return its value, else return
*default*. If *default* is not given and *key* is not in the dictionary,
a :exc:`KeyError` is raised.
.. versionadded:: 2.3
.. method:: popitem()
Remove and return an arbitrary ``(key, value)`` pair from the dictionary.
:func:`popitem` is useful to destructively iterate over a dictionary, as
often used in set algorithms. If the dictionary is empty, calling
:func:`popitem` raises a :exc:`KeyError`.
.. method:: setdefault(key[, default])
If *key* is in the dictionary, return its value. If not, insert *key*
with a value of *default* and return *default*. *default* defaults to
``None``.
.. method:: update([other])
Update the dictionary with the key/value pairs from *other*, overwriting
existing keys. Return ``None``.
:func:`update` accepts either another dictionary object or an iterable of
key/value pairs (as tuples or other iterables of length two). If keyword
arguments are specified, the dictionary is then updated with those
key/value pairs: ``d.update(red=1, blue=2)``.
.. versionchanged:: 2.4
Allowed the argument to be an iterable of key/value pairs and allowed
keyword arguments.
.. method:: values()
Return a copy of the dictionary's list of values. See the note for
:meth:`dict.items`.
.. method:: viewitems()
Return a new view of the dictionary's items (``(key, value)`` pairs). See
below for documentation of view objects.
.. versionadded:: 2.7
.. method:: viewkeys()
Return a new view of the dictionary's keys. See below for documentation of
view objects.
.. versionadded:: 2.7
.. method:: viewvalues()
Return a new view of the dictionary's values. See below for documentation of
view objects.
.. versionadded:: 2.7
.. _dict-views:
Dictionary view objects
-----------------------
The objects returned by :meth:`dict.viewkeys`, :meth:`dict.viewvalues` and
:meth:`dict.viewitems` are *view objects*. They provide a dynamic view on the
dictionary's entries, which means that when the dictionary changes, the view
reflects these changes.
Dictionary views can be iterated over to yield their respective data, and
support membership tests:
.. describe:: len(dictview)
Return the number of entries in the dictionary.
.. describe:: iter(dictview)
Return an iterator over the keys, values or items (represented as tuples of
``(key, value)``) in the dictionary.
Keys and values are iterated over in an arbitrary order which is non-random,
varies across Python implementations, and depends on the dictionary's history
of insertions and deletions. If keys, values and items views are iterated
over with no intervening modifications to the dictionary, the order of items
will directly correspond. This allows the creation of ``(value, key)`` pairs
using :func:`zip`: ``pairs = zip(d.values(), d.keys())``. Another way to
create the same list is ``pairs = [(v, k) for (k, v) in d.items()]``.
Iterating views while adding or deleting entries in the dictionary may raise
a :exc:`RuntimeError` or fail to iterate over all entries.
.. describe:: x in dictview
Return ``True`` if *x* is in the underlying dictionary's keys, values or
items (in the latter case, *x* should be a ``(key, value)`` tuple).
Keys views are set-like since their entries are unique and hashable. If all
values are hashable, so that (key, value) pairs are unique and hashable, then
the items view is also set-like. (Values views are not treated as set-like
since the entries are generally not unique.) Then these set operations are
available ("other" refers either to another view or a set):
.. describe:: dictview & other
Return the intersection of the dictview and the other object as a new set.
.. describe:: dictview | other
Return the union of the dictview and the other object as a new set.
.. describe:: dictview - other
Return the difference between the dictview and the other object (all elements
in *dictview* that aren't in *other*) as a new set.
.. describe:: dictview ^ other
Return the symmetric difference (all elements either in *dictview* or
*other*, but not in both) of the dictview and the other object as a new set.
An example of dictionary view usage::
>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.viewkeys()
>>> values = dishes.viewvalues()
>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
>>> print(n)
504
>>> # keys and values are iterated over in the same order
>>> list(keys)
['eggs', 'bacon', 'sausage', 'spam']
>>> list(values)
[2, 1, 1, 500]
>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['spam', 'bacon']
>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
.. _bltin-file-objects:
File Objects
============
.. index::
object: file
builtin: file
module: os
module: socket
File objects are implemented using C's ``stdio`` package and can be
created with the built-in :func:`open` function. File
objects are also returned by some other built-in functions and methods,
such as :func:`os.popen` and :func:`os.fdopen` and the :meth:`makefile`
method of socket objects. Temporary files can be created using the
:mod:`tempfile` module, and high-level file operations such as copying,
moving, and deleting files and directories can be achieved with the
:mod:`shutil` module.
When a file operation fails for an I/O-related reason, the exception
:exc:`IOError` is raised. This includes situations where the operation is not
defined for some reason, like :meth:`seek` on a tty device or writing a file
opened for reading.
Files have the following methods:
.. method:: file.close()
Close the file. A closed file cannot be read or written any more. Any operation
which requires that the file be open will raise a :exc:`ValueError` after the
file has been closed. Calling :meth:`close` more than once is allowed.
As of Python 2.5, you can avoid having to call this method explicitly if you use
the :keyword:`with` statement. For example, the following code will
automatically close *f* when the :keyword:`with` block is exited::
from __future__ import with_statement # This isn't required in Python 2.6
with open("hello.txt") as f:
for line in f:
print line
In older versions of Python, you would have needed to do this to get the same
effect::
f = open("hello.txt")
try:
for line in f:
print line
finally:
f.close()
.. note::
Not all "file-like" types in Python support use as a context manager for the
:keyword:`with` statement. If your code is intended to work with any file-like
object, you can use the function :func:`contextlib.closing` instead of using
the object directly.
.. method:: file.flush()
Flush the internal buffer, like ``stdio``'s :cfunc:`fflush`. This may be a
no-op on some file-like objects.
.. note::
:meth:`flush` does not necessarily write the file's data to disk. Use
:meth:`flush` followed by :func:`os.fsync` to ensure this behavior.
.. method:: file.fileno()
.. index::
pair: file; descriptor
module: fcntl
Return the integer "file descriptor" that is used by the underlying
implementation to request I/O operations from the operating system. This can be
useful for other, lower level interfaces that use file descriptors, such as the
:mod:`fcntl` module or :func:`os.read` and friends.
.. note::
File-like objects which do not have a real file descriptor should *not* provide
this method!
.. method:: file.isatty()
Return ``True`` if the file is connected to a tty(-like) device, else ``False``.
.. note::
If a file-like object is not associated with a real file, this method should
*not* be implemented.
.. method:: file.next()
A file object is its own iterator, for example ``iter(f)`` returns *f* (unless
*f* is closed). When a file is used as an iterator, typically in a
:keyword:`for` loop (for example, ``for line in f: print line``), the
:meth:`.next` method is called repeatedly. This method returns the next input
line, or raises :exc:`StopIteration` when EOF is hit when the file is open for
reading (behavior is undefined when the file is open for writing). In order to
make a :keyword:`for` loop the most efficient way of looping over the lines of a
file (a very common operation), the :meth:`next` method uses a hidden read-ahead
buffer. As a consequence of using a read-ahead buffer, combining :meth:`.next`
with other file methods (like :meth:`readline`) does not work right. However,
using :meth:`seek` to reposition the file to an absolute position will flush the
read-ahead buffer.
.. versionadded:: 2.3
.. method:: file.read([size])
Read at most *size* bytes from the file (less if the read hits EOF before
obtaining *size* bytes). If the *size* argument is negative or omitted, read
all data until EOF is reached. The bytes are returned as a string object. An
empty string is returned when EOF is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an EOF is hit.) Note
that this method may call the underlying C function :cfunc:`fread` more than
once in an effort to acquire as close to *size* bytes as possible. Also note
that when in non-blocking mode, less data than was requested may be
returned, even if no *size* parameter was given.
.. note::
This function is simply a wrapper for the underlying
:cfunc:`fread` C function, and will behave the same in corner cases,
such as whether the EOF value is cached.
.. method:: file.readline([size])
Read one entire line from the file. A trailing newline character is kept in the
string (but may be absent when a file ends with an incomplete line). [#]_ If
the *size* argument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An
empty string is returned *only* when EOF is encountered immediately.
.. note::
Unlike ``stdio``'s :cfunc:`fgets`, the returned string contains null characters
(``'\0'``) if they occurred in the input.
.. method:: file.readlines([sizehint])
Read until EOF using :meth:`readline` and return a list containing the lines
thus read. If the optional *sizehint* argument is present, instead of
reading up to EOF, whole lines totalling approximately *sizehint* bytes
(possibly after rounding up to an internal buffer size) are read. Objects
implementing a file-like interface may choose to ignore *sizehint* if it
cannot be implemented, or cannot be implemented efficiently.
.. method:: file.xreadlines()
This method returns the same thing as ``iter(f)``.
.. versionadded:: 2.1
.. deprecated:: 2.3
Use ``for line in file`` instead.
.. method:: file.seek(offset[, whence])
Set the file's current position, like ``stdio``'s :cfunc:`fseek`. The *whence*
argument is optional and defaults to ``os.SEEK_SET`` or ``0`` (absolute file
positioning); other values are ``os.SEEK_CUR`` or ``1`` (seek relative to the
current position) and ``os.SEEK_END`` or ``2`` (seek relative to the file's
end). There is no return value.
For example, ``f.seek(2, os.SEEK_CUR)`` advances the position by two and
``f.seek(-3, os.SEEK_END)`` sets the position to the third to last.
Note that if the file is opened for appending
(mode ``'a'`` or ``'a+'``), any :meth:`seek` operations will be undone at the
next write. If the file is only opened for writing in append mode (mode
``'a'``), this method is essentially a no-op, but it remains useful for files
opened in append mode with reading enabled (mode ``'a+'``). If the file is
opened in text mode (without ``'b'``), only offsets returned by :meth:`tell` are
legal. Use of other offsets causes undefined behavior.
Note that not all file objects are seekable.
.. versionchanged:: 2.6
Passing float values as offset has been deprecated.
.. method:: file.tell()
Return the file's current position, like ``stdio``'s :cfunc:`ftell`.
.. note::
On Windows, :meth:`tell` can return illegal values (after an :cfunc:`fgets`)
when reading files with Unix-style line-endings. Use binary mode (``'rb'``) to
circumvent this problem.
.. method:: file.truncate([size])
Truncate the file's size. If the optional *size* argument is present, the file
is truncated to (at most) that size. The size defaults to the current position.
The current file position is not changed. Note that if a specified size exceeds
the file's current size, the result is platform-dependent: possibilities
include that the file may remain unchanged, increase to the specified size as if
zero-filled, or increase to the specified size with undefined new content.
Availability: Windows, many Unix variants.
.. method:: file.write(str)
Write a string to the file. There is no return value. Due to buffering, the
string may not actually show up in the file until the :meth:`flush` or
:meth:`close` method is called.
.. method:: file.writelines(sequence)
Write a sequence of strings to the file. The sequence can be any iterable
object producing strings, typically a list of strings. There is no return value.
(The name is intended to match :meth:`readlines`; :meth:`writelines` does not
add line separators.)
Files support the iterator protocol. Each iteration returns the same result as
``file.readline()``, and iteration ends when the :meth:`readline` method returns
an empty string.
File objects also offer a number of other interesting attributes. These are not
required for file-like objects, but should be implemented if they make sense for
the particular object.
.. attribute:: file.closed
bool indicating the current state of the file object. This is a read-only
attribute; the :meth:`close` method changes the value. It may not be available
on all file-like objects.
.. attribute:: file.encoding
The encoding that this file uses. When Unicode strings are written to a file,
they will be converted to byte strings using this encoding. In addition, when
the file is connected to a terminal, the attribute gives the encoding that the
terminal is likely to use (that information might be incorrect if the user has
misconfigured the terminal). The attribute is read-only and may not be present
on all file-like objects. It may also be ``None``, in which case the file uses
the system default encoding for converting Unicode strings.
.. versionadded:: 2.3
.. attribute:: file.errors
The Unicode error handler used along with the encoding.
.. versionadded:: 2.6
.. attribute:: file.mode
The I/O mode for the file. If the file was created using the :func:`open`
built-in function, this will be the value of the *mode* parameter. This is a
read-only attribute and may not be present on all file-like objects.
.. attribute:: file.name
If the file object was created using :func:`open`, the name of the file.
Otherwise, some string that indicates the source of the file object, of the
form ``<...>``. This is a read-only attribute and may not be present on all
file-like objects.
.. attribute:: file.newlines
If Python was built with the :option:`--with-universal-newlines` option to
:program:`configure` (the default) this read-only attribute exists, and for
files opened in universal newline read mode it keeps track of the types of
newlines encountered while reading the file. The values it can take are
``'\r'``, ``'\n'``, ``'\r\n'``, ``None`` (unknown, no newlines read yet) or a
tuple containing all the newline types seen, to indicate that multiple newline
conventions were encountered. For files not opened in universal newline read
mode the value of this attribute will be ``None``.
.. attribute:: file.softspace
Boolean that indicates whether a space character needs to be printed before
another value when using the :keyword:`print` statement. Classes that are trying
to simulate a file object should also have a writable :attr:`softspace`
attribute, which should be initialized to zero. This will be automatic for most
classes implemented in Python (care may be needed for objects that override
attribute access); types implemented in C will have to provide a writable
:attr:`softspace` attribute.
.. note::
This attribute is not used to control the :keyword:`print` statement, but to
allow the implementation of :keyword:`print` to keep track of its internal
state.
.. _typememoryview:
memoryview type
===============
.. versionadded:: 2.7
:class:`memoryview` objects allow Python code to access the internal data
of an object that supports the buffer protocol without copying. Memory
is generally interpreted as simple bytes.
.. class:: memoryview(obj)
Create a :class:`memoryview` that references *obj*. *obj* must support the
buffer protocol. Builtin objects that support the buffer protocol include
:class:`str` and :class:`bytearray` (but not :class:`unicode`).
A :class:`memoryview` has the notion of an *element*, which is the
atomic memory unit handled by the originating object *obj*. For many
simple types such as :class:`str` and :class:`bytearray`, an element
is a single byte, but other third-party types may expose larger elements.
``len(view)`` returns the total number of elements in the memoryview,
*view*. The :class:`~memoryview.itemsize` attribute will give you the
number of bytes in a single element.
A :class:`memoryview` supports slicing to expose its data. Taking a single
index will return a single element as a :class:`str` object. Full
slicing will result in a subview::
>>> v = memoryview('abcefg')
>>> v[1]
'b'
>>> v[-1]
'g'
>>> v[1:4]
<memory at 0x77ab28>
>>> v[1:4].tobytes()
'bce'
If the object the memoryview is over supports changing its data, the
memoryview supports slice assignment::
>>> data = bytearray('abcefg')
>>> v = memoryview(data)
>>> v.readonly
False
>>> v[0] = 'z'
>>> data
bytearray(b'zbcefg')
>>> v[1:4] = '123'
>>> data
bytearray(b'z123fg')
>>> v[2] = 'spam'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: cannot modify size of memoryview object
Notice how the size of the memoryview object cannot be changed.
:class:`memoryview` has two methods:
.. method:: tobytes()
Return the data in the buffer as a bytestring (an object of class
:class:`str`). ::
>>> m = memoryview("abc")
>>> m.tobytes()
'abc'
.. method:: tolist()
Return the data in the buffer as a list of integers. ::
>>> memoryview("abc").tolist()
[97, 98, 99]
There are also several readonly attributes available:
.. attribute:: format
A string containing the format (in :mod:`struct` module style) for each
element in the view. This defaults to ``'B'``, a simple bytestring.
.. attribute:: itemsize
The size in bytes of each element of the memoryview.
.. attribute:: shape
A tuple of integers the length of :attr:`ndim` giving the shape of the
memory as a N-dimensional array.
.. attribute:: ndim
An integer indicating how many dimensions of a multi-dimensional array the
memory represents.
.. attribute:: strides
A tuple of integers the length of :attr:`ndim` giving the size in bytes to
access each element for each dimension of the array.
.. memoryview.suboffsets isn't documented because it only seems useful for C
.. _typecontextmanager:
Context Manager Types
=====================
.. versionadded:: 2.5
.. index::
single: context manager
single: context management protocol
single: protocol; context management
Python's :keyword:`with` statement supports the concept of a runtime context
defined by a context manager. This is implemented using two separate methods
that allow user-defined classes to define a runtime context that is entered
before the statement body is executed and exited when the statement ends.
The :dfn:`context management protocol` consists of a pair of methods that need
to be provided for a context manager object to define a runtime context:
.. method:: contextmanager.__enter__()
Enter the runtime context and return either this object or another object
related to the runtime context. The value returned by this method is bound to
the identifier in the :keyword:`as` clause of :keyword:`with` statements using
this context manager.
An example of a context manager that returns itself is a file object. File
objects return themselves from __enter__() to allow :func:`open` to be used as
the context expression in a :keyword:`with` statement.
An example of a context manager that returns a related object is the one
returned by :func:`decimal.localcontext`. These managers set the active
decimal context to a copy of the original decimal context and then return the
copy. This allows changes to be made to the current decimal context in the body
of the :keyword:`with` statement without affecting code outside the
:keyword:`with` statement.
.. method:: contextmanager.__exit__(exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception
that occurred should be suppressed. If an exception occurred while executing the
body of the :keyword:`with` statement, the arguments contain the exception type,
value and traceback information. Otherwise, all three arguments are ``None``.
Returning a true value from this method will cause the :keyword:`with` statement
to suppress the exception and continue execution with the statement immediately
following the :keyword:`with` statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur
during execution of this method will replace any exception that occurred in the
body of the :keyword:`with` statement.
The exception passed in should never be reraised explicitly - instead, this
method should return a false value to indicate that the method completed
successfully and does not want to suppress the raised exception. This allows
context management code (such as ``contextlib.nested``) to easily detect whether
or not an :meth:`__exit__` method has actually failed.
Python defines several context managers to support easy thread synchronisation,
prompt closure of files or other objects, and simpler manipulation of the active
decimal arithmetic context. The specific types are not treated specially beyond
their implementation of the context management protocol. See the
:mod:`contextlib` module for some examples.
Python's :term:`generator`\s and the ``contextlib.contextmanager`` :term:`decorator`
provide a convenient way to implement these protocols. If a generator function is
decorated with the ``contextlib.contextmanager`` decorator, it will return a
context manager implementing the necessary :meth:`__enter__` and
:meth:`__exit__` methods, rather than the iterator produced by an undecorated
generator function.
Note that there is no specific slot for any of these methods in the type
structure for Python objects in the Python/C API. Extension types wanting to
define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a
single class dictionary lookup is negligible.
.. _typesother:
Other Built-in Types
====================
The interpreter supports several other kinds of objects. Most of these support
only one or two operations.
.. _typesmodules:
Modules
-------
The only special operation on a module is attribute access: ``m.name``, where
*m* is a module and *name* accesses a name defined in *m*'s symbol table.
Module attributes can be assigned to. (Note that the :keyword:`import`
statement is not, strictly speaking, an operation on a module object; ``import
foo`` does not require a module object named *foo* to exist, rather it requires
an (external) *definition* for a module named *foo* somewhere.)
A special member of every module is :attr:`__dict__`. This is the dictionary
containing the module's symbol table. Modifying this dictionary will actually
change the module's symbol table, but direct assignment to the :attr:`__dict__`
attribute is not possible (you can write ``m.__dict__['a'] = 1``, which defines
``m.a`` to be ``1``, but you can't write ``m.__dict__ = {}``). Modifying
:attr:`__dict__` directly is not recommended.
Modules built into the interpreter are written like this: ``<module 'sys'
(built-in)>``. If loaded from a file, they are written as ``<module 'os' from
'/usr/local/lib/pythonX.Y/os.pyc'>``.
.. _typesobjects:
Classes and Class Instances
---------------------------
See :ref:`objects` and :ref:`class` for these.
.. _typesfunctions:
Functions
---------
Function objects are created by function definitions. The only operation on a
function object is to call it: ``func(argument-list)``.
There are really two flavors of function objects: built-in functions and
user-defined functions. Both support the same operation (to call the function),
but the implementation is different, hence the different object types.
See :ref:`function` for more information.
.. _typesmethods:
Methods
-------
.. index:: object: method
Methods are functions that are called using the attribute notation. There are
two flavors: built-in methods (such as :meth:`append` on lists) and class
instance methods. Built-in methods are described with the types that support
them.
The implementation adds two special read-only attributes to class instance
methods: ``m.im_self`` is the object on which the method operates, and
``m.im_func`` is the function implementing the method. Calling ``m(arg-1,
arg-2, ..., arg-n)`` is completely equivalent to calling ``m.im_func(m.im_self,
arg-1, arg-2, ..., arg-n)``.
Class instance methods are either *bound* or *unbound*, referring to whether the
method was accessed through an instance or a class, respectively. When a method
is unbound, its ``im_self`` attribute will be ``None`` and if called, an
explicit ``self`` object must be passed as the first argument. In this case,
``self`` must be an instance of the unbound method's class (or a subclass of
that class), otherwise a :exc:`TypeError` is raised.
Like function objects, methods objects support getting arbitrary attributes.
However, since method attributes are actually stored on the underlying function
object (``meth.im_func``), setting method attributes on either bound or unbound
methods is disallowed. Attempting to set a method attribute results in a
:exc:`TypeError` being raised. In order to set a method attribute, you need to
explicitly set it on the underlying function object::
class C:
def method(self):
pass
c = C()
c.method.im_func.whoami = 'my name is c'
See :ref:`types` for more information.
.. _bltin-code-objects:
Code Objects
------------
.. index:: object: code
.. index::
builtin: compile
single: func_code (function object attribute)
Code objects are used by the implementation to represent "pseudo-compiled"
executable Python code such as a function body. They differ from function
objects because they don't contain a reference to their global execution
environment. Code objects are returned by the built-in :func:`compile` function
and can be extracted from function objects through their :attr:`func_code`
attribute. See also the :mod:`code` module.
.. index::
statement: exec
builtin: eval
A code object can be executed or evaluated by passing it (instead of a source
string) to the :keyword:`exec` statement or the built-in :func:`eval` function.
See :ref:`types` for more information.
.. _bltin-type-objects:
Type Objects
------------
.. index::
builtin: type
module: types
Type objects represent the various object types. An object's type is accessed
by the built-in function :func:`type`. There are no special operations on
types. The standard module :mod:`types` defines names for all standard built-in
types.
Types are written like this: ``<type 'int'>``.
.. _bltin-null-object:
The Null Object
---------------
This object is returned by functions that don't explicitly return a value. It
supports no special operations. There is exactly one null object, named
``None`` (a built-in name).
It is written as ``None``.
.. _bltin-ellipsis-object:
The Ellipsis Object
-------------------
This object is used by extended slice notation (see :ref:`slicings`). It
supports no special operations. There is exactly one ellipsis object, named
:const:`Ellipsis` (a built-in name).
It is written as ``Ellipsis``.
Boolean Values
--------------
Boolean values are the two constant objects ``False`` and ``True``. They are
used to represent truth values (although other values can also be considered
false or true). In numeric contexts (for example when used as the argument to
an arithmetic operator), they behave like the integers 0 and 1, respectively.
The built-in function :func:`bool` can be used to cast any value to a Boolean,
if the value can be interpreted as a truth value (see section Truth Value
Testing above).
.. index::
single: False
single: True
pair: Boolean; values
They are written as ``False`` and ``True``, respectively.
.. _typesinternal:
Internal Objects
----------------
See :ref:`types` for this information. It describes stack frame objects,
traceback objects, and slice objects.
.. _specialattrs:
Special Attributes
==================
The implementation adds a few special read-only attributes to several object
types, where they are relevant. Some of these are not reported by the
:func:`dir` built-in function.
.. attribute:: object.__dict__
A dictionary or other mapping object used to store an object's (writable)
attributes.
.. attribute:: object.__methods__
.. deprecated:: 2.2
Use the built-in function :func:`dir` to get a list of an object's attributes.
This attribute is no longer available.
.. attribute:: object.__members__
.. deprecated:: 2.2
Use the built-in function :func:`dir` to get a list of an object's attributes.
This attribute is no longer available.
.. attribute:: instance.__class__
The class to which a class instance belongs.
.. attribute:: class.__bases__
The tuple of base classes of a class object.
.. attribute:: class.__name__
The name of the class or type.
The following attributes are only supported by :term:`new-style class`\ es.
.. attribute:: class.__mro__
This attribute is a tuple of classes that are considered when looking for
base classes during method resolution.
.. method:: class.mro()
This method can be overridden by a metaclass to customize the method
resolution order for its instances. It is called at class instantiation, and
its result is stored in :attr:`__mro__`.
.. method:: class.__subclasses__
Each new-style class keeps a list of weak references to its immediate
subclasses. This method returns a list of all those references still alive.
Example::
>>> int.__subclasses__()
[<type 'bool'>]
.. rubric:: Footnotes
.. [#] Additional information on these special methods may be found in the Python
Reference Manual (:ref:`customization`).
.. [#] As a consequence, the list ``[1, 2]`` is considered equal to ``[1.0, 2.0]``, and
similarly for tuples.
.. [#] They must have since the parser can't tell the type of the operands.
.. [#] To format only a tuple you should therefore provide a singleton tuple whose only
element is the tuple to be formatted.
.. [#] The advantage of leaving the newline on is that returning an empty string is
then an unambiguous EOF indication. It is also possible (in cases where it
might matter, for example, if you want to make an exact copy of a file while
scanning its lines) to tell whether the last line of a file ended in a newline
or not (yes this happens!).