743 lines
27 KiB
Python
743 lines
27 KiB
Python
'''This module implements specialized container datatypes providing
|
||
alternatives to Python’s general purpose built-in containers, dict,
|
||
list, set, and tuple.
|
||
|
||
* namedtuple factory function for creating tuple subclasses with named fields
|
||
* deque list-like container with fast appends and pops on either end
|
||
* Counter dict subclass for counting hashable objects
|
||
* OrderedDict dict subclass that remembers the order entries were added
|
||
* defaultdict dict subclass that calls a factory function to supply missing values
|
||
|
||
'''
|
||
|
||
__all__ = ['Counter', 'deque', 'defaultdict', 'namedtuple', 'OrderedDict']
|
||
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
|
||
# They should however be considered an integral part of collections.py.
|
||
from _abcoll import *
|
||
import _abcoll
|
||
__all__ += _abcoll.__all__
|
||
|
||
from _collections import deque, defaultdict
|
||
from operator import itemgetter as _itemgetter, eq as _eq
|
||
from keyword import iskeyword as _iskeyword
|
||
import sys as _sys
|
||
import heapq as _heapq
|
||
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
|
||
from itertools import imap as _imap
|
||
|
||
try:
|
||
from thread import get_ident as _get_ident
|
||
except ImportError:
|
||
from dummy_thread import get_ident as _get_ident
|
||
|
||
|
||
################################################################################
|
||
### OrderedDict
|
||
################################################################################
|
||
|
||
class OrderedDict(dict):
|
||
'Dictionary that remembers insertion order'
|
||
# An inherited dict maps keys to values.
|
||
# The inherited dict provides __getitem__, __len__, __contains__, and get.
|
||
# The remaining methods are order-aware.
|
||
# Big-O running times for all methods are the same as regular dictionaries.
|
||
|
||
# The internal self.__map dict maps keys to links in a doubly linked list.
|
||
# The circular doubly linked list starts and ends with a sentinel element.
|
||
# The sentinel element never gets deleted (this simplifies the algorithm).
|
||
# Each link is stored as a list of length three: [PREV, NEXT, KEY].
|
||
|
||
def __init__(*args, **kwds):
|
||
'''Initialize an ordered dictionary. The signature is the same as
|
||
regular dictionaries, but keyword arguments are not recommended because
|
||
their insertion order is arbitrary.
|
||
|
||
'''
|
||
if not args:
|
||
raise TypeError("descriptor '__init__' of 'OrderedDict' object "
|
||
"needs an argument")
|
||
self = args[0]
|
||
args = args[1:]
|
||
if len(args) > 1:
|
||
raise TypeError('expected at most 1 arguments, got %d' % len(args))
|
||
try:
|
||
self.__root
|
||
except AttributeError:
|
||
self.__root = root = [] # sentinel node
|
||
root[:] = [root, root, None]
|
||
self.__map = {}
|
||
self.__update(*args, **kwds)
|
||
|
||
def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
|
||
'od.__setitem__(i, y) <==> od[i]=y'
|
||
# Setting a new item creates a new link at the end of the linked list,
|
||
# and the inherited dictionary is updated with the new key/value pair.
|
||
if key not in self:
|
||
root = self.__root
|
||
last = root[0]
|
||
last[1] = root[0] = self.__map[key] = [last, root, key]
|
||
return dict_setitem(self, key, value)
|
||
|
||
def __delitem__(self, key, dict_delitem=dict.__delitem__):
|
||
'od.__delitem__(y) <==> del od[y]'
|
||
# Deleting an existing item uses self.__map to find the link which gets
|
||
# removed by updating the links in the predecessor and successor nodes.
|
||
dict_delitem(self, key)
|
||
link_prev, link_next, _ = self.__map.pop(key)
|
||
link_prev[1] = link_next # update link_prev[NEXT]
|
||
link_next[0] = link_prev # update link_next[PREV]
|
||
|
||
def __iter__(self):
|
||
'od.__iter__() <==> iter(od)'
|
||
# Traverse the linked list in order.
|
||
root = self.__root
|
||
curr = root[1] # start at the first node
|
||
while curr is not root:
|
||
yield curr[2] # yield the curr[KEY]
|
||
curr = curr[1] # move to next node
|
||
|
||
def __reversed__(self):
|
||
'od.__reversed__() <==> reversed(od)'
|
||
# Traverse the linked list in reverse order.
|
||
root = self.__root
|
||
curr = root[0] # start at the last node
|
||
while curr is not root:
|
||
yield curr[2] # yield the curr[KEY]
|
||
curr = curr[0] # move to previous node
|
||
|
||
def clear(self):
|
||
'od.clear() -> None. Remove all items from od.'
|
||
root = self.__root
|
||
root[:] = [root, root, None]
|
||
self.__map.clear()
|
||
dict.clear(self)
|
||
|
||
# -- the following methods do not depend on the internal structure --
|
||
|
||
def keys(self):
|
||
'od.keys() -> list of keys in od'
|
||
return list(self)
|
||
|
||
def values(self):
|
||
'od.values() -> list of values in od'
|
||
return [self[key] for key in self]
|
||
|
||
def items(self):
|
||
'od.items() -> list of (key, value) pairs in od'
|
||
return [(key, self[key]) for key in self]
|
||
|
||
def iterkeys(self):
|
||
'od.iterkeys() -> an iterator over the keys in od'
|
||
return iter(self)
|
||
|
||
def itervalues(self):
|
||
'od.itervalues -> an iterator over the values in od'
|
||
for k in self:
|
||
yield self[k]
|
||
|
||
def iteritems(self):
|
||
'od.iteritems -> an iterator over the (key, value) pairs in od'
|
||
for k in self:
|
||
yield (k, self[k])
|
||
|
||
update = MutableMapping.update
|
||
|
||
__update = update # let subclasses override update without breaking __init__
|
||
|
||
__marker = object()
|
||
|
||
def pop(self, key, default=__marker):
|
||
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
|
||
value. If key is not found, d is returned if given, otherwise KeyError
|
||
is raised.
|
||
|
||
'''
|
||
if key in self:
|
||
result = self[key]
|
||
del self[key]
|
||
return result
|
||
if default is self.__marker:
|
||
raise KeyError(key)
|
||
return default
|
||
|
||
def setdefault(self, key, default=None):
|
||
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
|
||
if key in self:
|
||
return self[key]
|
||
self[key] = default
|
||
return default
|
||
|
||
def popitem(self, last=True):
|
||
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
|
||
Pairs are returned in LIFO order if last is true or FIFO order if false.
|
||
|
||
'''
|
||
if not self:
|
||
raise KeyError('dictionary is empty')
|
||
key = next(reversed(self) if last else iter(self))
|
||
value = self.pop(key)
|
||
return key, value
|
||
|
||
def __repr__(self, _repr_running={}):
|
||
'od.__repr__() <==> repr(od)'
|
||
call_key = id(self), _get_ident()
|
||
if call_key in _repr_running:
|
||
return '...'
|
||
_repr_running[call_key] = 1
|
||
try:
|
||
if not self:
|
||
return '%s()' % (self.__class__.__name__,)
|
||
return '%s(%r)' % (self.__class__.__name__, self.items())
|
||
finally:
|
||
del _repr_running[call_key]
|
||
|
||
def __reduce__(self):
|
||
'Return state information for pickling'
|
||
items = [[k, self[k]] for k in self]
|
||
inst_dict = vars(self).copy()
|
||
for k in vars(OrderedDict()):
|
||
inst_dict.pop(k, None)
|
||
if inst_dict:
|
||
return (self.__class__, (items,), inst_dict)
|
||
return self.__class__, (items,)
|
||
|
||
def copy(self):
|
||
'od.copy() -> a shallow copy of od'
|
||
return self.__class__(self)
|
||
|
||
@classmethod
|
||
def fromkeys(cls, iterable, value=None):
|
||
'''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
|
||
If not specified, the value defaults to None.
|
||
|
||
'''
|
||
self = cls()
|
||
for key in iterable:
|
||
self[key] = value
|
||
return self
|
||
|
||
def __eq__(self, other):
|
||
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
|
||
while comparison to a regular mapping is order-insensitive.
|
||
|
||
'''
|
||
if isinstance(other, OrderedDict):
|
||
return dict.__eq__(self, other) and all(_imap(_eq, self, other))
|
||
return dict.__eq__(self, other)
|
||
|
||
def __ne__(self, other):
|
||
'od.__ne__(y) <==> od!=y'
|
||
return not self == other
|
||
|
||
# -- the following methods support python 3.x style dictionary views --
|
||
|
||
def viewkeys(self):
|
||
"od.viewkeys() -> a set-like object providing a view on od's keys"
|
||
return KeysView(self)
|
||
|
||
def viewvalues(self):
|
||
"od.viewvalues() -> an object providing a view on od's values"
|
||
return ValuesView(self)
|
||
|
||
def viewitems(self):
|
||
"od.viewitems() -> a set-like object providing a view on od's items"
|
||
return ItemsView(self)
|
||
|
||
|
||
################################################################################
|
||
### namedtuple
|
||
################################################################################
|
||
|
||
_class_template = '''\
|
||
class {typename}(tuple):
|
||
'{typename}({arg_list})'
|
||
|
||
__slots__ = ()
|
||
|
||
_fields = {field_names!r}
|
||
|
||
def __new__(_cls, {arg_list}):
|
||
'Create new instance of {typename}({arg_list})'
|
||
return _tuple.__new__(_cls, ({arg_list}))
|
||
|
||
@classmethod
|
||
def _make(cls, iterable, new=tuple.__new__, len=len):
|
||
'Make a new {typename} object from a sequence or iterable'
|
||
result = new(cls, iterable)
|
||
if len(result) != {num_fields:d}:
|
||
raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
|
||
return result
|
||
|
||
def __repr__(self):
|
||
'Return a nicely formatted representation string'
|
||
return '{typename}({repr_fmt})' % self
|
||
|
||
def _asdict(self):
|
||
'Return a new OrderedDict which maps field names to their values'
|
||
return OrderedDict(zip(self._fields, self))
|
||
|
||
def _replace(_self, **kwds):
|
||
'Return a new {typename} object replacing specified fields with new values'
|
||
result = _self._make(map(kwds.pop, {field_names!r}, _self))
|
||
if kwds:
|
||
raise ValueError('Got unexpected field names: %r' % kwds.keys())
|
||
return result
|
||
|
||
def __getnewargs__(self):
|
||
'Return self as a plain tuple. Used by copy and pickle.'
|
||
return tuple(self)
|
||
|
||
__dict__ = _property(_asdict)
|
||
|
||
def __getstate__(self):
|
||
'Exclude the OrderedDict from pickling'
|
||
pass
|
||
|
||
{field_defs}
|
||
'''
|
||
|
||
_repr_template = '{name}=%r'
|
||
|
||
_field_template = '''\
|
||
{name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
|
||
'''
|
||
|
||
def namedtuple(typename, field_names, verbose=False, rename=False):
|
||
"""Returns a new subclass of tuple with named fields.
|
||
|
||
>>> Point = namedtuple('Point', ['x', 'y'])
|
||
>>> Point.__doc__ # docstring for the new class
|
||
'Point(x, y)'
|
||
>>> p = Point(11, y=22) # instantiate with positional args or keywords
|
||
>>> p[0] + p[1] # indexable like a plain tuple
|
||
33
|
||
>>> x, y = p # unpack like a regular tuple
|
||
>>> x, y
|
||
(11, 22)
|
||
>>> p.x + p.y # fields also accessable by name
|
||
33
|
||
>>> d = p._asdict() # convert to a dictionary
|
||
>>> d['x']
|
||
11
|
||
>>> Point(**d) # convert from a dictionary
|
||
Point(x=11, y=22)
|
||
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
|
||
Point(x=100, y=22)
|
||
|
||
"""
|
||
|
||
# Validate the field names. At the user's option, either generate an error
|
||
# message or automatically replace the field name with a valid name.
|
||
if isinstance(field_names, basestring):
|
||
field_names = field_names.replace(',', ' ').split()
|
||
field_names = map(str, field_names)
|
||
typename = str(typename)
|
||
if rename:
|
||
seen = set()
|
||
for index, name in enumerate(field_names):
|
||
if (not all(c.isalnum() or c=='_' for c in name)
|
||
or _iskeyword(name)
|
||
or not name
|
||
or name[0].isdigit()
|
||
or name.startswith('_')
|
||
or name in seen):
|
||
field_names[index] = '_%d' % index
|
||
seen.add(name)
|
||
for name in [typename] + field_names:
|
||
if type(name) != str:
|
||
raise TypeError('Type names and field names must be strings')
|
||
if not all(c.isalnum() or c=='_' for c in name):
|
||
raise ValueError('Type names and field names can only contain '
|
||
'alphanumeric characters and underscores: %r' % name)
|
||
if _iskeyword(name):
|
||
raise ValueError('Type names and field names cannot be a '
|
||
'keyword: %r' % name)
|
||
if name[0].isdigit():
|
||
raise ValueError('Type names and field names cannot start with '
|
||
'a number: %r' % name)
|
||
seen = set()
|
||
for name in field_names:
|
||
if name.startswith('_') and not rename:
|
||
raise ValueError('Field names cannot start with an underscore: '
|
||
'%r' % name)
|
||
if name in seen:
|
||
raise ValueError('Encountered duplicate field name: %r' % name)
|
||
seen.add(name)
|
||
|
||
# Fill-in the class template
|
||
class_definition = _class_template.format(
|
||
typename = typename,
|
||
field_names = tuple(field_names),
|
||
num_fields = len(field_names),
|
||
arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
|
||
repr_fmt = ', '.join(_repr_template.format(name=name)
|
||
for name in field_names),
|
||
field_defs = '\n'.join(_field_template.format(index=index, name=name)
|
||
for index, name in enumerate(field_names))
|
||
)
|
||
if verbose:
|
||
print class_definition
|
||
|
||
# Execute the template string in a temporary namespace and support
|
||
# tracing utilities by setting a value for frame.f_globals['__name__']
|
||
namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
|
||
OrderedDict=OrderedDict, _property=property, _tuple=tuple)
|
||
try:
|
||
exec class_definition in namespace
|
||
except SyntaxError as e:
|
||
raise SyntaxError(e.message + ':\n' + class_definition)
|
||
result = namespace[typename]
|
||
|
||
# For pickling to work, the __module__ variable needs to be set to the frame
|
||
# where the named tuple is created. Bypass this step in environments where
|
||
# sys._getframe is not defined (Jython for example) or sys._getframe is not
|
||
# defined for arguments greater than 0 (IronPython).
|
||
try:
|
||
result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
|
||
except (AttributeError, ValueError):
|
||
pass
|
||
|
||
return result
|
||
|
||
|
||
########################################################################
|
||
### Counter
|
||
########################################################################
|
||
|
||
class Counter(dict):
|
||
'''Dict subclass for counting hashable items. Sometimes called a bag
|
||
or multiset. Elements are stored as dictionary keys and their counts
|
||
are stored as dictionary values.
|
||
|
||
>>> c = Counter('abcdeabcdabcaba') # count elements from a string
|
||
|
||
>>> c.most_common(3) # three most common elements
|
||
[('a', 5), ('b', 4), ('c', 3)]
|
||
>>> sorted(c) # list all unique elements
|
||
['a', 'b', 'c', 'd', 'e']
|
||
>>> ''.join(sorted(c.elements())) # list elements with repetitions
|
||
'aaaaabbbbcccdde'
|
||
>>> sum(c.values()) # total of all counts
|
||
15
|
||
|
||
>>> c['a'] # count of letter 'a'
|
||
5
|
||
>>> for elem in 'shazam': # update counts from an iterable
|
||
... c[elem] += 1 # by adding 1 to each element's count
|
||
>>> c['a'] # now there are seven 'a'
|
||
7
|
||
>>> del c['b'] # remove all 'b'
|
||
>>> c['b'] # now there are zero 'b'
|
||
0
|
||
|
||
>>> d = Counter('simsalabim') # make another counter
|
||
>>> c.update(d) # add in the second counter
|
||
>>> c['a'] # now there are nine 'a'
|
||
9
|
||
|
||
>>> c.clear() # empty the counter
|
||
>>> c
|
||
Counter()
|
||
|
||
Note: If a count is set to zero or reduced to zero, it will remain
|
||
in the counter until the entry is deleted or the counter is cleared:
|
||
|
||
>>> c = Counter('aaabbc')
|
||
>>> c['b'] -= 2 # reduce the count of 'b' by two
|
||
>>> c.most_common() # 'b' is still in, but its count is zero
|
||
[('a', 3), ('c', 1), ('b', 0)]
|
||
|
||
'''
|
||
# References:
|
||
# http://en.wikipedia.org/wiki/Multiset
|
||
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
|
||
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
|
||
# http://code.activestate.com/recipes/259174/
|
||
# Knuth, TAOCP Vol. II section 4.6.3
|
||
|
||
def __init__(*args, **kwds):
|
||
'''Create a new, empty Counter object. And if given, count elements
|
||
from an input iterable. Or, initialize the count from another mapping
|
||
of elements to their counts.
|
||
|
||
>>> c = Counter() # a new, empty counter
|
||
>>> c = Counter('gallahad') # a new counter from an iterable
|
||
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
|
||
>>> c = Counter(a=4, b=2) # a new counter from keyword args
|
||
|
||
'''
|
||
if not args:
|
||
raise TypeError("descriptor '__init__' of 'Counter' object "
|
||
"needs an argument")
|
||
self = args[0]
|
||
args = args[1:]
|
||
if len(args) > 1:
|
||
raise TypeError('expected at most 1 arguments, got %d' % len(args))
|
||
super(Counter, self).__init__()
|
||
self.update(*args, **kwds)
|
||
|
||
def __missing__(self, key):
|
||
'The count of elements not in the Counter is zero.'
|
||
# Needed so that self[missing_item] does not raise KeyError
|
||
return 0
|
||
|
||
def most_common(self, n=None):
|
||
'''List the n most common elements and their counts from the most
|
||
common to the least. If n is None, then list all element counts.
|
||
|
||
>>> Counter('abcdeabcdabcaba').most_common(3)
|
||
[('a', 5), ('b', 4), ('c', 3)]
|
||
|
||
'''
|
||
# Emulate Bag.sortedByCount from Smalltalk
|
||
if n is None:
|
||
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
|
||
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
|
||
|
||
def elements(self):
|
||
'''Iterator over elements repeating each as many times as its count.
|
||
|
||
>>> c = Counter('ABCABC')
|
||
>>> sorted(c.elements())
|
||
['A', 'A', 'B', 'B', 'C', 'C']
|
||
|
||
# Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
|
||
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
|
||
>>> product = 1
|
||
>>> for factor in prime_factors.elements(): # loop over factors
|
||
... product *= factor # and multiply them
|
||
>>> product
|
||
1836
|
||
|
||
Note, if an element's count has been set to zero or is a negative
|
||
number, elements() will ignore it.
|
||
|
||
'''
|
||
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
|
||
return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
|
||
|
||
# Override dict methods where necessary
|
||
|
||
@classmethod
|
||
def fromkeys(cls, iterable, v=None):
|
||
# There is no equivalent method for counters because setting v=1
|
||
# means that no element can have a count greater than one.
|
||
raise NotImplementedError(
|
||
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
|
||
|
||
def update(*args, **kwds):
|
||
'''Like dict.update() but add counts instead of replacing them.
|
||
|
||
Source can be an iterable, a dictionary, or another Counter instance.
|
||
|
||
>>> c = Counter('which')
|
||
>>> c.update('witch') # add elements from another iterable
|
||
>>> d = Counter('watch')
|
||
>>> c.update(d) # add elements from another counter
|
||
>>> c['h'] # four 'h' in which, witch, and watch
|
||
4
|
||
|
||
'''
|
||
# The regular dict.update() operation makes no sense here because the
|
||
# replace behavior results in the some of original untouched counts
|
||
# being mixed-in with all of the other counts for a mismash that
|
||
# doesn't have a straight-forward interpretation in most counting
|
||
# contexts. Instead, we implement straight-addition. Both the inputs
|
||
# and outputs are allowed to contain zero and negative counts.
|
||
|
||
if not args:
|
||
raise TypeError("descriptor 'update' of 'Counter' object "
|
||
"needs an argument")
|
||
self = args[0]
|
||
args = args[1:]
|
||
if len(args) > 1:
|
||
raise TypeError('expected at most 1 arguments, got %d' % len(args))
|
||
iterable = args[0] if args else None
|
||
if iterable is not None:
|
||
if isinstance(iterable, Mapping):
|
||
if self:
|
||
self_get = self.get
|
||
for elem, count in iterable.iteritems():
|
||
self[elem] = self_get(elem, 0) + count
|
||
else:
|
||
super(Counter, self).update(iterable) # fast path when counter is empty
|
||
else:
|
||
self_get = self.get
|
||
for elem in iterable:
|
||
self[elem] = self_get(elem, 0) + 1
|
||
if kwds:
|
||
self.update(kwds)
|
||
|
||
def subtract(*args, **kwds):
|
||
'''Like dict.update() but subtracts counts instead of replacing them.
|
||
Counts can be reduced below zero. Both the inputs and outputs are
|
||
allowed to contain zero and negative counts.
|
||
|
||
Source can be an iterable, a dictionary, or another Counter instance.
|
||
|
||
>>> c = Counter('which')
|
||
>>> c.subtract('witch') # subtract elements from another iterable
|
||
>>> c.subtract(Counter('watch')) # subtract elements from another counter
|
||
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
|
||
0
|
||
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
|
||
-1
|
||
|
||
'''
|
||
if not args:
|
||
raise TypeError("descriptor 'subtract' of 'Counter' object "
|
||
"needs an argument")
|
||
self = args[0]
|
||
args = args[1:]
|
||
if len(args) > 1:
|
||
raise TypeError('expected at most 1 arguments, got %d' % len(args))
|
||
iterable = args[0] if args else None
|
||
if iterable is not None:
|
||
self_get = self.get
|
||
if isinstance(iterable, Mapping):
|
||
for elem, count in iterable.items():
|
||
self[elem] = self_get(elem, 0) - count
|
||
else:
|
||
for elem in iterable:
|
||
self[elem] = self_get(elem, 0) - 1
|
||
if kwds:
|
||
self.subtract(kwds)
|
||
|
||
def copy(self):
|
||
'Return a shallow copy.'
|
||
return self.__class__(self)
|
||
|
||
def __reduce__(self):
|
||
return self.__class__, (dict(self),)
|
||
|
||
def __delitem__(self, elem):
|
||
'Like dict.__delitem__() but does not raise KeyError for missing values.'
|
||
if elem in self:
|
||
super(Counter, self).__delitem__(elem)
|
||
|
||
def __repr__(self):
|
||
if not self:
|
||
return '%s()' % self.__class__.__name__
|
||
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
|
||
return '%s({%s})' % (self.__class__.__name__, items)
|
||
|
||
# Multiset-style mathematical operations discussed in:
|
||
# Knuth TAOCP Volume II section 4.6.3 exercise 19
|
||
# and at http://en.wikipedia.org/wiki/Multiset
|
||
#
|
||
# Outputs guaranteed to only include positive counts.
|
||
#
|
||
# To strip negative and zero counts, add-in an empty counter:
|
||
# c += Counter()
|
||
|
||
def __add__(self, other):
|
||
'''Add counts from two counters.
|
||
|
||
>>> Counter('abbb') + Counter('bcc')
|
||
Counter({'b': 4, 'c': 2, 'a': 1})
|
||
|
||
'''
|
||
if not isinstance(other, Counter):
|
||
return NotImplemented
|
||
result = Counter()
|
||
for elem, count in self.items():
|
||
newcount = count + other[elem]
|
||
if newcount > 0:
|
||
result[elem] = newcount
|
||
for elem, count in other.items():
|
||
if elem not in self and count > 0:
|
||
result[elem] = count
|
||
return result
|
||
|
||
def __sub__(self, other):
|
||
''' Subtract count, but keep only results with positive counts.
|
||
|
||
>>> Counter('abbbc') - Counter('bccd')
|
||
Counter({'b': 2, 'a': 1})
|
||
|
||
'''
|
||
if not isinstance(other, Counter):
|
||
return NotImplemented
|
||
result = Counter()
|
||
for elem, count in self.items():
|
||
newcount = count - other[elem]
|
||
if newcount > 0:
|
||
result[elem] = newcount
|
||
for elem, count in other.items():
|
||
if elem not in self and count < 0:
|
||
result[elem] = 0 - count
|
||
return result
|
||
|
||
def __or__(self, other):
|
||
'''Union is the maximum of value in either of the input counters.
|
||
|
||
>>> Counter('abbb') | Counter('bcc')
|
||
Counter({'b': 3, 'c': 2, 'a': 1})
|
||
|
||
'''
|
||
if not isinstance(other, Counter):
|
||
return NotImplemented
|
||
result = Counter()
|
||
for elem, count in self.items():
|
||
other_count = other[elem]
|
||
newcount = other_count if count < other_count else count
|
||
if newcount > 0:
|
||
result[elem] = newcount
|
||
for elem, count in other.items():
|
||
if elem not in self and count > 0:
|
||
result[elem] = count
|
||
return result
|
||
|
||
def __and__(self, other):
|
||
''' Intersection is the minimum of corresponding counts.
|
||
|
||
>>> Counter('abbb') & Counter('bcc')
|
||
Counter({'b': 1})
|
||
|
||
'''
|
||
if not isinstance(other, Counter):
|
||
return NotImplemented
|
||
result = Counter()
|
||
for elem, count in self.items():
|
||
other_count = other[elem]
|
||
newcount = count if count < other_count else other_count
|
||
if newcount > 0:
|
||
result[elem] = newcount
|
||
return result
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# verify that instances can be pickled
|
||
from cPickle import loads, dumps
|
||
Point = namedtuple('Point', 'x, y', True)
|
||
p = Point(x=10, y=20)
|
||
assert p == loads(dumps(p))
|
||
|
||
# test and demonstrate ability to override methods
|
||
class Point(namedtuple('Point', 'x y')):
|
||
__slots__ = ()
|
||
@property
|
||
def hypot(self):
|
||
return (self.x ** 2 + self.y ** 2) ** 0.5
|
||
def __str__(self):
|
||
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
|
||
|
||
for p in Point(3, 4), Point(14, 5/7.):
|
||
print p
|
||
|
||
class Point(namedtuple('Point', 'x y')):
|
||
'Point class with optimized _make() and _replace() without error-checking'
|
||
__slots__ = ()
|
||
_make = classmethod(tuple.__new__)
|
||
def _replace(self, _map=map, **kwds):
|
||
return self._make(_map(kwds.get, ('x', 'y'), self))
|
||
|
||
print Point(11, 22)._replace(x=100)
|
||
|
||
Point3D = namedtuple('Point3D', Point._fields + ('z',))
|
||
print Point3D.__doc__
|
||
|
||
import doctest
|
||
TestResults = namedtuple('TestResults', 'failed attempted')
|
||
print TestResults(*doctest.testmod())
|