307 lines
12 KiB
Python
307 lines
12 KiB
Python
__all__ = ['deque', 'defaultdict', 'namedtuple']
|
|
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
|
|
# They should however be considered an integral part of collections.py.
|
|
from _abcoll import *
|
|
import _abcoll
|
|
__all__ += _abcoll.__all__
|
|
|
|
from _collections import deque, defaultdict
|
|
from operator import itemgetter as _itemgetter
|
|
from keyword import iskeyword as _iskeyword
|
|
import sys as _sys
|
|
import heapq as _heapq
|
|
from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
|
|
|
|
########################################################################
|
|
### namedtuple #######################################################
|
|
|
|
def namedtuple(typename, field_names, verbose=False):
|
|
"""Returns a new subclass of tuple with named fields.
|
|
|
|
>>> Point = namedtuple('Point', 'x y')
|
|
>>> Point.__doc__ # docstring for the new class
|
|
'Point(x, y)'
|
|
>>> p = Point(11, y=22) # instantiate with positional args or keywords
|
|
>>> p[0] + p[1] # indexable like a plain tuple
|
|
33
|
|
>>> x, y = p # unpack like a regular tuple
|
|
>>> x, y
|
|
(11, 22)
|
|
>>> p.x + p.y # fields also accessable by name
|
|
33
|
|
>>> d = p._asdict() # convert to a dictionary
|
|
>>> d['x']
|
|
11
|
|
>>> Point(**d) # convert from a dictionary
|
|
Point(x=11, y=22)
|
|
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
|
|
Point(x=100, y=22)
|
|
|
|
"""
|
|
|
|
# Parse and validate the field names. Validation serves two purposes,
|
|
# generating informative error messages and preventing template injection attacks.
|
|
if isinstance(field_names, basestring):
|
|
field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
|
|
field_names = tuple(map(str, field_names))
|
|
for name in (typename,) + field_names:
|
|
if not all(c.isalnum() or c=='_' for c in name):
|
|
raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
|
|
if _iskeyword(name):
|
|
raise ValueError('Type names and field names cannot be a keyword: %r' % name)
|
|
if name[0].isdigit():
|
|
raise ValueError('Type names and field names cannot start with a number: %r' % name)
|
|
seen_names = set()
|
|
for name in field_names:
|
|
if name.startswith('_'):
|
|
raise ValueError('Field names cannot start with an underscore: %r' % name)
|
|
if name in seen_names:
|
|
raise ValueError('Encountered duplicate field name: %r' % name)
|
|
seen_names.add(name)
|
|
|
|
# Create and fill-in the class template
|
|
numfields = len(field_names)
|
|
argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes
|
|
reprtxt = ', '.join('%s=%%r' % name for name in field_names)
|
|
dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names))
|
|
template = '''class %(typename)s(tuple):
|
|
'%(typename)s(%(argtxt)s)' \n
|
|
__slots__ = () \n
|
|
_fields = %(field_names)r \n
|
|
def __new__(cls, %(argtxt)s):
|
|
return tuple.__new__(cls, (%(argtxt)s)) \n
|
|
@classmethod
|
|
def _make(cls, iterable, new=tuple.__new__, len=len):
|
|
'Make a new %(typename)s object from a sequence or iterable'
|
|
result = new(cls, iterable)
|
|
if len(result) != %(numfields)d:
|
|
raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
|
|
return result \n
|
|
def __repr__(self):
|
|
return '%(typename)s(%(reprtxt)s)' %% self \n
|
|
def _asdict(t):
|
|
'Return a new dict which maps field names to their values'
|
|
return {%(dicttxt)s} \n
|
|
def _replace(self, **kwds):
|
|
'Return a new %(typename)s object replacing specified fields with new values'
|
|
result = self._make(map(kwds.pop, %(field_names)r, self))
|
|
if kwds:
|
|
raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
|
|
return result \n
|
|
def __getnewargs__(self):
|
|
return tuple(self) \n\n''' % locals()
|
|
for i, name in enumerate(field_names):
|
|
template += ' %s = property(itemgetter(%d))\n' % (name, i)
|
|
if verbose:
|
|
print template
|
|
|
|
# Execute the template string in a temporary namespace and
|
|
# support tracing utilities by setting a value for frame.f_globals['__name__']
|
|
namespace = dict(itemgetter=_itemgetter, __name__='namedtuple_%s' % typename)
|
|
try:
|
|
exec template in namespace
|
|
except SyntaxError, e:
|
|
raise SyntaxError(e.message + ':\n' + template)
|
|
result = namespace[typename]
|
|
|
|
# For pickling to work, the __module__ variable needs to be set to the frame
|
|
# where the named tuple is created. Bypass this step in enviroments where
|
|
# sys._getframe is not defined (Jython for example).
|
|
if hasattr(_sys, '_getframe'):
|
|
result.__module__ = _sys._getframe(1).f_globals['__name__']
|
|
|
|
return result
|
|
|
|
|
|
########################################################################
|
|
### Counter ##########################################################
|
|
|
|
class Counter(dict):
|
|
'''Dict subclass for counting hashable items. Sometimes called a bag
|
|
or multiset. Elements are stored as dictionary keys and their counts
|
|
are stored as dictionary values.
|
|
|
|
>>> c = Counter('abracadabra') # count elements from a string
|
|
|
|
>>> c.most_common(3) # three most common elements
|
|
[('a', 5), ('r', 2), ('b', 2)]
|
|
>>> sorted(c) # list all unique elements
|
|
['a', 'b', 'c', 'd', 'r']
|
|
>>> ''.join(sorted(c.elements())) # list elements with repetitions
|
|
'aaaaabbcdrr'
|
|
>>> sum(c.values()) # total of all counts
|
|
11
|
|
|
|
>>> c['a'] # count of letter 'a'
|
|
5
|
|
>>> for elem in 'shazam': # update counts from an iterable
|
|
... c[elem] += 1 # by adding 1 to each element's count
|
|
>>> c['a'] # now there are seven 'a'
|
|
7
|
|
>>> del c['r'] # remove all 'r'
|
|
>>> c['r'] # now there are zero 'r'
|
|
0
|
|
|
|
>>> d = Counter('simsalabim') # make another counter
|
|
>>> c.update(d) # add in the second counter
|
|
>>> c['a'] # now there are nine 'a'
|
|
9
|
|
|
|
>>> c.clear() # empty the counter
|
|
>>> c
|
|
Counter()
|
|
|
|
Note: If a count is set to zero or reduced to zero, it will remain
|
|
in the counter until the entry is deleted or the counter is cleared:
|
|
|
|
>>> c = Counter('aaabbc')
|
|
>>> c['b'] -= 2 # reduce the count of 'b' by two
|
|
>>> c.most_common() # 'b' is still in, but its count is zero
|
|
[('a', 3), ('c', 1), ('b', 0)]
|
|
|
|
'''
|
|
# References:
|
|
# http://en.wikipedia.org/wiki/Multiset
|
|
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
|
|
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
|
|
# http://code.activestate.com/recipes/259174/
|
|
# Knuth, TAOCP Vol. II section 4.6.3
|
|
|
|
def __init__(self, iterable=None):
|
|
'''Create a new, empty Counter object. And if given, count elements
|
|
from an input iterable. Or, initialize the count from another mapping
|
|
of elements to their counts.
|
|
|
|
>>> c = Counter() # a new, empty counter
|
|
>>> c = Counter('gallahad') # a new counter from an iterable
|
|
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
|
|
|
|
'''
|
|
self.update(iterable)
|
|
|
|
def __missing__(self, key):
|
|
'The count of elements not in the Counter is zero.'
|
|
# Needed so that self[missing_item] does not raise KeyError
|
|
return 0
|
|
|
|
def most_common(self, n=None):
|
|
'''List the n most common elements and their counts from the most
|
|
common to the least. If n is None, then list all element counts.
|
|
|
|
>>> Counter('abracadabra').most_common(3)
|
|
[('a', 5), ('r', 2), ('b', 2)]
|
|
|
|
'''
|
|
# Emulate Bag.sortedByCount from Smalltalk
|
|
if n is None:
|
|
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
|
|
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
|
|
|
|
def elements(self):
|
|
'''Iterator over elements repeating each as many times as its count.
|
|
|
|
>>> c = Counter('ABCABC')
|
|
>>> sorted(c.elements())
|
|
['A', 'A', 'B', 'B', 'C', 'C']
|
|
|
|
# Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
|
|
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
|
|
>>> product = 1
|
|
>>> for factor in prime_factors.elements(): # loop over factors
|
|
... product *= factor # and multiply them
|
|
>>> product
|
|
1836
|
|
|
|
Note, if an element's count has been set to zero or is a negative
|
|
number, elements() will ignore it.
|
|
|
|
'''
|
|
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
|
|
return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
|
|
|
|
# Override dict methods where necessary
|
|
|
|
@classmethod
|
|
def fromkeys(cls, iterable, v=None):
|
|
# There is no equivalent method for counters because setting v=1
|
|
# means that no element can have a count greater than one.
|
|
raise NotImplementedError(
|
|
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
|
|
|
|
def update(self, iterable=None):
|
|
'''Like dict.update() but add counts instead of replacing them.
|
|
|
|
Source can be an iterable, a dictionary, or another Counter instance.
|
|
|
|
>>> c = Counter('which')
|
|
>>> c.update('witch') # add elements from another iterable
|
|
>>> d = Counter('watch')
|
|
>>> c.update(d) # add elements from another counter
|
|
>>> c['h'] # four 'h' in which, witch, and watch
|
|
4
|
|
|
|
'''
|
|
# The regular dict.update() operation makes no sense here because the
|
|
# replace behavior results in the some of original untouched counts
|
|
# being mixed-in with all of the other counts for a mismash that
|
|
# doesn't have a straight-forward interpretation in most counting
|
|
# contexts. Instead, we look to Knuth for suggested operations on
|
|
# multisets and implement the union-add operation discussed in
|
|
# TAOCP Volume II section 4.6.3 exercise 19. The Wikipedia entry for
|
|
# multisets calls that operation a sum or join.
|
|
|
|
if iterable is not None:
|
|
if isinstance(iterable, Mapping):
|
|
for elem, count in iterable.iteritems():
|
|
self[elem] += count
|
|
else:
|
|
for elem in iterable:
|
|
self[elem] += 1
|
|
|
|
def copy(self):
|
|
'Like dict.copy() but returns a Counter instance instead of a dict.'
|
|
return Counter(self)
|
|
|
|
def __repr__(self):
|
|
if not self:
|
|
return '%s()' % self.__class__.__name__
|
|
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
|
|
return '%s({%s})' % (self.__class__.__name__, items)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# verify that instances can be pickled
|
|
from cPickle import loads, dumps
|
|
Point = namedtuple('Point', 'x, y', True)
|
|
p = Point(x=10, y=20)
|
|
assert p == loads(dumps(p))
|
|
|
|
# test and demonstrate ability to override methods
|
|
class Point(namedtuple('Point', 'x y')):
|
|
__slots__ = ()
|
|
@property
|
|
def hypot(self):
|
|
return (self.x ** 2 + self.y ** 2) ** 0.5
|
|
def __str__(self):
|
|
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
|
|
|
|
for p in Point(3, 4), Point(14, 5/7.):
|
|
print p
|
|
|
|
class Point(namedtuple('Point', 'x y')):
|
|
'Point class with optimized _make() and _replace() without error-checking'
|
|
__slots__ = ()
|
|
_make = classmethod(tuple.__new__)
|
|
def _replace(self, _map=map, **kwds):
|
|
return self._make(_map(kwds.get, ('x', 'y'), self))
|
|
|
|
print Point(11, 22)._replace(x=100)
|
|
|
|
Point3D = namedtuple('Point3D', Point._fields + ('z',))
|
|
print Point3D.__doc__
|
|
|
|
import doctest
|
|
TestResults = namedtuple('TestResults', 'failed attempted')
|
|
print TestResults(*doctest.testmod())
|