1522 lines
37 KiB
C
1522 lines
37 KiB
C
/***********************************************************
|
|
Copyright 1991-1995 by Stichting Mathematisch Centrum, Amsterdam,
|
|
The Netherlands.
|
|
|
|
All Rights Reserved
|
|
|
|
Permission to use, copy, modify, and distribute this software and its
|
|
documentation for any purpose and without fee is hereby granted,
|
|
provided that the above copyright notice appear in all copies and that
|
|
both that copyright notice and this permission notice appear in
|
|
supporting documentation, and that the names of Stichting Mathematisch
|
|
Centrum or CWI or Corporation for National Research Initiatives or
|
|
CNRI not be used in advertising or publicity pertaining to
|
|
distribution of the software without specific, written prior
|
|
permission.
|
|
|
|
While CWI is the initial source for this software, a modified version
|
|
is made available by the Corporation for National Research Initiatives
|
|
(CNRI) at the Internet address ftp://ftp.python.org.
|
|
|
|
STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH
|
|
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH
|
|
CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
|
|
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
|
|
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
|
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
|
PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
******************************************************************/
|
|
|
|
/* List object implementation */
|
|
|
|
#include "Python.h"
|
|
|
|
#ifdef STDC_HEADERS
|
|
#include <stddef.h>
|
|
#else
|
|
#include <sys/types.h> /* For size_t */
|
|
#endif
|
|
|
|
#define ROUNDUP(n, PyTryBlock) \
|
|
((((n)+(PyTryBlock)-1)/(PyTryBlock))*(PyTryBlock))
|
|
|
|
static int
|
|
roundupsize(n)
|
|
int n;
|
|
{
|
|
if (n < 500)
|
|
return ROUNDUP(n, 10);
|
|
else
|
|
return ROUNDUP(n, 100);
|
|
}
|
|
|
|
#define NRESIZE(var, type, nitems) PyMem_RESIZE(var, type, roundupsize(nitems))
|
|
|
|
PyObject *
|
|
PyList_New(size)
|
|
int size;
|
|
{
|
|
int i;
|
|
PyListObject *op;
|
|
size_t nbytes;
|
|
if (size < 0) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
nbytes = size * sizeof(PyObject *);
|
|
/* Check for overflow */
|
|
if (nbytes / sizeof(PyObject *) != (size_t)size) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
op = (PyListObject *) malloc(sizeof(PyListObject));
|
|
if (op == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
if (size <= 0) {
|
|
op->ob_item = NULL;
|
|
}
|
|
else {
|
|
op->ob_item = (PyObject **) malloc(nbytes);
|
|
if (op->ob_item == NULL) {
|
|
free((ANY *)op);
|
|
return PyErr_NoMemory();
|
|
}
|
|
}
|
|
op->ob_type = &PyList_Type;
|
|
op->ob_size = size;
|
|
for (i = 0; i < size; i++)
|
|
op->ob_item[i] = NULL;
|
|
_Py_NewReference((PyObject *)op);
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
int
|
|
PyList_Size(op)
|
|
PyObject *op;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
else
|
|
return ((PyListObject *)op) -> ob_size;
|
|
}
|
|
|
|
static PyObject *indexerr;
|
|
|
|
PyObject *
|
|
PyList_GetItem(op, i)
|
|
PyObject *op;
|
|
int i;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
|
|
if (indexerr == NULL)
|
|
indexerr = PyString_FromString(
|
|
"list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, indexerr);
|
|
return NULL;
|
|
}
|
|
return ((PyListObject *)op) -> ob_item[i];
|
|
}
|
|
|
|
int
|
|
PyList_SetItem(op, i, newitem)
|
|
register PyObject *op;
|
|
register int i;
|
|
register PyObject *newitem;
|
|
{
|
|
register PyObject *olditem;
|
|
register PyObject **p;
|
|
if (!PyList_Check(op)) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (i < 0 || i >= ((PyListObject *)op) -> ob_size) {
|
|
Py_XDECREF(newitem);
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
return -1;
|
|
}
|
|
p = ((PyListObject *)op) -> ob_item + i;
|
|
olditem = *p;
|
|
*p = newitem;
|
|
Py_XDECREF(olditem);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ins1(self, where, v)
|
|
PyListObject *self;
|
|
int where;
|
|
PyObject *v;
|
|
{
|
|
int i;
|
|
PyObject **items;
|
|
if (v == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
items = self->ob_item;
|
|
NRESIZE(items, PyObject *, self->ob_size+1);
|
|
if (items == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
if (where < 0)
|
|
where = 0;
|
|
if (where > self->ob_size)
|
|
where = self->ob_size;
|
|
for (i = self->ob_size; --i >= where; )
|
|
items[i+1] = items[i];
|
|
Py_INCREF(v);
|
|
items[where] = v;
|
|
self->ob_item = items;
|
|
self->ob_size++;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyList_Insert(op, where, newitem)
|
|
PyObject *op;
|
|
int where;
|
|
PyObject *newitem;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ins1((PyListObject *)op, where, newitem);
|
|
}
|
|
|
|
int
|
|
PyList_Append(op, newitem)
|
|
PyObject *op;
|
|
PyObject *newitem;
|
|
{
|
|
if (!PyList_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ins1((PyListObject *)op,
|
|
(int) ((PyListObject *)op)->ob_size, newitem);
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
list_dealloc(op)
|
|
PyListObject *op;
|
|
{
|
|
int i;
|
|
if (op->ob_item != NULL) {
|
|
/* Do it backwards, for Christian Tismer.
|
|
There's a simple test case where somehow this reduces
|
|
thrashing when a *very* large list is created and
|
|
immediately deleted. */
|
|
i = op->ob_size;
|
|
while (--i >= 0) {
|
|
Py_XDECREF(op->ob_item[i]);
|
|
}
|
|
free((ANY *)op->ob_item);
|
|
}
|
|
free((ANY *)op);
|
|
}
|
|
|
|
static int
|
|
list_print(op, fp, flags)
|
|
PyListObject *op;
|
|
FILE *fp;
|
|
int flags;
|
|
{
|
|
int i;
|
|
|
|
i = Py_ReprEnter((PyObject*)op);
|
|
if (i != 0) {
|
|
if (i < 0)
|
|
return i;
|
|
fprintf(fp, "[...]");
|
|
return 0;
|
|
}
|
|
fprintf(fp, "[");
|
|
for (i = 0; i < op->ob_size; i++) {
|
|
if (i > 0)
|
|
fprintf(fp, ", ");
|
|
if (PyObject_Print(op->ob_item[i], fp, 0) != 0) {
|
|
Py_ReprLeave((PyObject *)op);
|
|
return -1;
|
|
}
|
|
}
|
|
fprintf(fp, "]");
|
|
Py_ReprLeave((PyObject *)op);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
list_repr(v)
|
|
PyListObject *v;
|
|
{
|
|
PyObject *s, *comma;
|
|
int i;
|
|
|
|
i = Py_ReprEnter((PyObject*)v);
|
|
if (i != 0) {
|
|
if (i > 0)
|
|
return PyString_FromString("[...]");
|
|
return NULL;
|
|
}
|
|
s = PyString_FromString("[");
|
|
comma = PyString_FromString(", ");
|
|
for (i = 0; i < v->ob_size && s != NULL; i++) {
|
|
if (i > 0)
|
|
PyString_Concat(&s, comma);
|
|
PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i]));
|
|
}
|
|
Py_XDECREF(comma);
|
|
PyString_ConcatAndDel(&s, PyString_FromString("]"));
|
|
Py_ReprLeave((PyObject *)v);
|
|
return s;
|
|
}
|
|
|
|
static int
|
|
list_compare(v, w)
|
|
PyListObject *v, *w;
|
|
{
|
|
int i;
|
|
for (i = 0; i < v->ob_size && i < w->ob_size; i++) {
|
|
int cmp = PyObject_Compare(v->ob_item[i], w->ob_item[i]);
|
|
if (cmp != 0)
|
|
return cmp;
|
|
}
|
|
return v->ob_size - w->ob_size;
|
|
}
|
|
|
|
static int
|
|
list_length(a)
|
|
PyListObject *a;
|
|
{
|
|
return a->ob_size;
|
|
}
|
|
|
|
static PyObject *
|
|
list_item(a, i)
|
|
PyListObject *a;
|
|
int i;
|
|
{
|
|
if (i < 0 || i >= a->ob_size) {
|
|
if (indexerr == NULL)
|
|
indexerr = PyString_FromString(
|
|
"list index out of range");
|
|
PyErr_SetObject(PyExc_IndexError, indexerr);
|
|
return NULL;
|
|
}
|
|
Py_INCREF(a->ob_item[i]);
|
|
return a->ob_item[i];
|
|
}
|
|
|
|
static PyObject *
|
|
list_slice(a, ilow, ihigh)
|
|
PyListObject *a;
|
|
int ilow, ihigh;
|
|
{
|
|
PyListObject *np;
|
|
int i;
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
else if (ilow > a->ob_size)
|
|
ilow = a->ob_size;
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
else if (ihigh > a->ob_size)
|
|
ihigh = a->ob_size;
|
|
np = (PyListObject *) PyList_New(ihigh - ilow);
|
|
if (np == NULL)
|
|
return NULL;
|
|
for (i = ilow; i < ihigh; i++) {
|
|
PyObject *v = a->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i - ilow] = v;
|
|
}
|
|
return (PyObject *)np;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_GetSlice(a, ilow, ihigh)
|
|
PyObject *a;
|
|
int ilow, ihigh;
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return list_slice((PyListObject *)a, ilow, ihigh);
|
|
}
|
|
|
|
static PyObject *
|
|
list_concat(a, bb)
|
|
PyListObject *a;
|
|
PyObject *bb;
|
|
{
|
|
int size;
|
|
int i;
|
|
PyListObject *np;
|
|
if (!PyList_Check(bb)) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
#define b ((PyListObject *)bb)
|
|
size = a->ob_size + b->ob_size;
|
|
np = (PyListObject *) PyList_New(size);
|
|
if (np == NULL) {
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < a->ob_size; i++) {
|
|
PyObject *v = a->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i] = v;
|
|
}
|
|
for (i = 0; i < b->ob_size; i++) {
|
|
PyObject *v = b->ob_item[i];
|
|
Py_INCREF(v);
|
|
np->ob_item[i + a->ob_size] = v;
|
|
}
|
|
return (PyObject *)np;
|
|
#undef b
|
|
}
|
|
|
|
static PyObject *
|
|
list_repeat(a, n)
|
|
PyListObject *a;
|
|
int n;
|
|
{
|
|
int i, j;
|
|
int size;
|
|
PyListObject *np;
|
|
PyObject **p;
|
|
if (n < 0)
|
|
n = 0;
|
|
size = a->ob_size * n;
|
|
np = (PyListObject *) PyList_New(size);
|
|
if (np == NULL)
|
|
return NULL;
|
|
p = np->ob_item;
|
|
for (i = 0; i < n; i++) {
|
|
for (j = 0; j < a->ob_size; j++) {
|
|
*p = a->ob_item[j];
|
|
Py_INCREF(*p);
|
|
p++;
|
|
}
|
|
}
|
|
return (PyObject *) np;
|
|
}
|
|
|
|
static int
|
|
list_ass_slice(a, ilow, ihigh, v)
|
|
PyListObject *a;
|
|
int ilow, ihigh;
|
|
PyObject *v;
|
|
{
|
|
/* Because [X]DECREF can recursively invoke list operations on
|
|
this list, we must postpone all [X]DECREF activity until
|
|
after the list is back in its canonical shape. Therefore
|
|
we must allocate an additional array, 'recycle', into which
|
|
we temporarily copy the items that are deleted from the
|
|
list. :-( */
|
|
PyObject **recycle, **p;
|
|
PyObject **item;
|
|
int n; /* Size of replacement list */
|
|
int d; /* Change in size */
|
|
int k; /* Loop index */
|
|
#define b ((PyListObject *)v)
|
|
if (v == NULL)
|
|
n = 0;
|
|
else if (PyList_Check(v)) {
|
|
n = b->ob_size;
|
|
if (a == b) {
|
|
/* Special case "a[i:j] = a" -- copy b first */
|
|
int ret;
|
|
v = list_slice(b, 0, n);
|
|
ret = list_ass_slice(a, ilow, ihigh, v);
|
|
Py_DECREF(v);
|
|
return ret;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_BadArgument();
|
|
return -1;
|
|
}
|
|
if (ilow < 0)
|
|
ilow = 0;
|
|
else if (ilow > a->ob_size)
|
|
ilow = a->ob_size;
|
|
if (ihigh < ilow)
|
|
ihigh = ilow;
|
|
else if (ihigh > a->ob_size)
|
|
ihigh = a->ob_size;
|
|
item = a->ob_item;
|
|
d = n - (ihigh-ilow);
|
|
if (ihigh > ilow)
|
|
p = recycle = PyMem_NEW(PyObject *, (ihigh-ilow));
|
|
else
|
|
p = recycle = NULL;
|
|
if (d <= 0) { /* Delete -d items; recycle ihigh-ilow items */
|
|
for (k = ilow; k < ihigh; k++)
|
|
*p++ = item[k];
|
|
if (d < 0) {
|
|
for (/*k = ihigh*/; k < a->ob_size; k++)
|
|
item[k+d] = item[k];
|
|
a->ob_size += d;
|
|
NRESIZE(item, PyObject *, a->ob_size); /* Can't fail */
|
|
a->ob_item = item;
|
|
}
|
|
}
|
|
else { /* Insert d items; recycle ihigh-ilow items */
|
|
NRESIZE(item, PyObject *, a->ob_size + d);
|
|
if (item == NULL) {
|
|
PyMem_XDEL(recycle);
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
for (k = a->ob_size; --k >= ihigh; )
|
|
item[k+d] = item[k];
|
|
for (/*k = ihigh-1*/; k >= ilow; --k)
|
|
*p++ = item[k];
|
|
a->ob_item = item;
|
|
a->ob_size += d;
|
|
}
|
|
for (k = 0; k < n; k++, ilow++) {
|
|
PyObject *w = b->ob_item[k];
|
|
Py_XINCREF(w);
|
|
item[ilow] = w;
|
|
}
|
|
if (recycle) {
|
|
while (--p >= recycle)
|
|
Py_XDECREF(*p);
|
|
PyMem_DEL(recycle);
|
|
}
|
|
return 0;
|
|
#undef b
|
|
}
|
|
|
|
int
|
|
PyList_SetSlice(a, ilow, ihigh, v)
|
|
PyObject *a;
|
|
int ilow, ihigh;
|
|
PyObject *v;
|
|
{
|
|
if (!PyList_Check(a)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return list_ass_slice((PyListObject *)a, ilow, ihigh, v);
|
|
}
|
|
|
|
static int
|
|
list_ass_item(a, i, v)
|
|
PyListObject *a;
|
|
int i;
|
|
PyObject *v;
|
|
{
|
|
PyObject *old_value;
|
|
if (i < 0 || i >= a->ob_size) {
|
|
PyErr_SetString(PyExc_IndexError,
|
|
"list assignment index out of range");
|
|
return -1;
|
|
}
|
|
if (v == NULL)
|
|
return list_ass_slice(a, i, i+1, v);
|
|
Py_INCREF(v);
|
|
old_value = a->ob_item[i];
|
|
a->ob_item[i] = v;
|
|
Py_DECREF(old_value);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
ins(self, where, v)
|
|
PyListObject *self;
|
|
int where;
|
|
PyObject *v;
|
|
{
|
|
if (ins1(self, where, v) != 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
static PyObject *
|
|
listinsert(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
PyObject *v;
|
|
if (!PyArg_Parse(args, "(iO)", &i, &v))
|
|
return NULL;
|
|
return ins(self, i, v);
|
|
}
|
|
|
|
static PyObject *
|
|
listappend(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
PyObject *v;
|
|
if (!PyArg_Parse(args, "O", &v))
|
|
return NULL;
|
|
return ins(self, (int) self->ob_size, v);
|
|
}
|
|
|
|
static PyObject *
|
|
listextend(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
PyObject *b = NULL, *res = NULL;
|
|
PyObject **items;
|
|
int selflen = PyList_GET_SIZE(self);
|
|
int blen;
|
|
register int i;
|
|
|
|
if (!PyArg_ParseTuple(args, "O", &b))
|
|
return NULL;
|
|
|
|
if (!PyList_Check(b)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"list.extend() argument must be a list");
|
|
return NULL;
|
|
}
|
|
if (PyList_GET_SIZE(b) == 0) {
|
|
/* short circuit when b is empty */
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
if (self == (PyListObject*)b) {
|
|
/* as in list_ass_slice() we must special case the
|
|
* situation: a.extend(a)
|
|
*
|
|
* XXX: I think this way ought to be faster than using
|
|
* list_slice() the way list_ass_slice() does.
|
|
*/
|
|
b = PyList_New(selflen);
|
|
if (!b)
|
|
return NULL;
|
|
for (i = 0; i < selflen; i++) {
|
|
PyObject *o = PyList_GET_ITEM(self, i);
|
|
Py_INCREF(o);
|
|
PyList_SET_ITEM(b, i, o);
|
|
}
|
|
}
|
|
else
|
|
/* we want b to have the same refcount semantics for the
|
|
* Py_XDECREF() in the finally clause regardless of which
|
|
* branch in the above conditional we took.
|
|
*/
|
|
Py_INCREF(b);
|
|
|
|
blen = PyList_GET_SIZE(b);
|
|
/* resize a using idiom */
|
|
items = self->ob_item;
|
|
NRESIZE(items, PyObject*, selflen + blen);
|
|
if (items == NULL ) {
|
|
PyErr_NoMemory();
|
|
goto finally;
|
|
}
|
|
self->ob_item = items;
|
|
|
|
/* populate the end self with b's items */
|
|
for (i = 0; i < blen; i++) {
|
|
PyObject *o = PyList_GET_ITEM(b, i);
|
|
Py_INCREF(o);
|
|
PyList_SET_ITEM(self, self->ob_size++, o);
|
|
}
|
|
res = Py_None;
|
|
Py_INCREF(res);
|
|
finally:
|
|
Py_XDECREF(b);
|
|
return res;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
listpop(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i = -1;
|
|
PyObject *v;
|
|
if (!PyArg_ParseTuple(args, "|i", &i))
|
|
return NULL;
|
|
if (self->ob_size == 0) {
|
|
/* Special-case most common failure cause */
|
|
PyErr_SetString(PyExc_IndexError, "pop from empty list");
|
|
return NULL;
|
|
}
|
|
if (i < 0)
|
|
i += self->ob_size;
|
|
if (i < 0 || i >= self->ob_size) {
|
|
PyErr_SetString(PyExc_IndexError, "pop index out of range");
|
|
return NULL;
|
|
}
|
|
v = self->ob_item[i];
|
|
Py_INCREF(v);
|
|
if (list_ass_slice(self, i, i+1, (PyObject *)NULL) != 0) {
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* New quicksort implementation for arrays of object pointers.
|
|
Thanks to discussions with Tim Peters. */
|
|
|
|
/* CMPERROR is returned by our comparison function when an error
|
|
occurred. This is the largest negative integer (0x80000000 on a
|
|
32-bit system). */
|
|
#define CMPERROR ( (int) ((unsigned int)1 << (8*sizeof(int) - 1)) )
|
|
|
|
/* Comparison function. Takes care of calling a user-supplied
|
|
comparison function (any callable Python object). Calls the
|
|
standard comparison function, PyObject_Compare(), if the user-
|
|
supplied function is NULL. */
|
|
|
|
static int
|
|
docompare(x, y, compare)
|
|
PyObject *x;
|
|
PyObject *y;
|
|
PyObject *compare;
|
|
{
|
|
PyObject *args, *res;
|
|
int i;
|
|
|
|
if (compare == NULL) {
|
|
i = PyObject_Compare(x, y);
|
|
if (i && PyErr_Occurred())
|
|
i = CMPERROR;
|
|
return i;
|
|
}
|
|
|
|
args = Py_BuildValue("(OO)", x, y);
|
|
if (args == NULL)
|
|
return CMPERROR;
|
|
res = PyEval_CallObject(compare, args);
|
|
Py_DECREF(args);
|
|
if (res == NULL)
|
|
return CMPERROR;
|
|
if (!PyInt_Check(res)) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"comparison function must return int");
|
|
return CMPERROR;
|
|
}
|
|
i = PyInt_AsLong(res);
|
|
Py_DECREF(res);
|
|
if (i < 0)
|
|
return -1;
|
|
if (i > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* MINSIZE is the smallest array that will get a full-blown samplesort
|
|
treatment; smaller arrays are sorted using binary insertion. It must
|
|
be at least 7 for the samplesort implementation to work. Binary
|
|
insertion does fewer compares, but can suffer O(N**2) data movement.
|
|
The more expensive compares, the larger MINSIZE should be. */
|
|
#define MINSIZE 100
|
|
|
|
/* MINPARTITIONSIZE is the smallest array slice samplesort will bother to
|
|
partition; smaller slices are passed to binarysort. It must be at
|
|
least 2, and no larger than MINSIZE. Setting it higher reduces the #
|
|
of compares slowly, but increases the amount of data movement quickly.
|
|
The value here was chosen assuming a compare costs ~25x more than
|
|
swapping a pair of memory-resident pointers -- but under that assumption,
|
|
changing the value by a few dozen more or less has aggregate effect
|
|
under 1%. So the value is crucial, but not touchy <wink>. */
|
|
#define MINPARTITIONSIZE 40
|
|
|
|
/* MAXMERGE is the largest number of elements we'll always merge into
|
|
a known-to-be sorted chunk via binary insertion, regardless of the
|
|
size of that chunk. Given a chunk of N sorted elements, and a group
|
|
of K unknowns, the largest K for which it's better to do insertion
|
|
(than a full-blown sort) is a complicated function of N and K mostly
|
|
involving the expected number of compares and data moves under each
|
|
approach, and the relative cost of those operations on a specific
|
|
architecure. The fixed value here is conservative, and should be a
|
|
clear win regardless of architecture or N. */
|
|
#define MAXMERGE 15
|
|
|
|
/* STACKSIZE is the size of our work stack. A rough estimate is that
|
|
this allows us to sort arrays of size N where
|
|
N / ln(N) = MINPARTITIONSIZE * 2**STACKSIZE, so 60 is more than enough
|
|
for arrays of size 2**64. Because we push the biggest partition
|
|
first, the worst case occurs when all subarrays are always partitioned
|
|
exactly in two. */
|
|
#define STACKSIZE 60
|
|
|
|
|
|
#define SETK(X,Y) if ((k = docompare(X,Y,compare))==CMPERROR) goto fail
|
|
|
|
/* binarysort is the best method for sorting small arrays: it does
|
|
few compares, but can do data movement quadratic in the number of
|
|
elements.
|
|
[lo, hi) is a contiguous slice of a list, and is sorted via
|
|
binary insertion.
|
|
On entry, must have lo <= start <= hi, and that [lo, start) is already
|
|
sorted (pass start == lo if you don't know!).
|
|
If docompare complains (returns CMPERROR) return -1, else 0.
|
|
Even in case of error, the output slice will be some permutation of
|
|
the input (nothing is lost or duplicated).
|
|
*/
|
|
|
|
static int
|
|
binarysort(lo, hi, start, compare)
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
PyObject **start;
|
|
PyObject *compare;/* Comparison function object, or NULL for default */
|
|
{
|
|
/* assert lo <= start <= hi
|
|
assert [lo, start) is sorted */
|
|
register int k;
|
|
register PyObject **l, **p, **r;
|
|
register PyObject *pivot;
|
|
|
|
if (lo == start)
|
|
++start;
|
|
for (; start < hi; ++start) {
|
|
/* set l to where *start belongs */
|
|
l = lo;
|
|
r = start;
|
|
pivot = *r;
|
|
do {
|
|
p = l + ((r - l) >> 1);
|
|
SETK(pivot, *p);
|
|
if (k < 0)
|
|
r = p;
|
|
else
|
|
l = p + 1;
|
|
} while (l < r);
|
|
/* Pivot should go at l -- slide over to make room.
|
|
Caution: using memmove is much slower under MSVC 5;
|
|
we're not usually moving many slots. */
|
|
for (p = start; p > l; --p)
|
|
*p = *(p-1);
|
|
*l = pivot;
|
|
}
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
/* samplesortslice is the sorting workhorse.
|
|
[lo, hi) is a contiguous slice of a list, to be sorted in place.
|
|
On entry, must have lo <= hi,
|
|
If docompare complains (returns CMPERROR) return -1, else 0.
|
|
Even in case of error, the output slice will be some permutation of
|
|
the input (nothing is lost or duplicated).
|
|
|
|
samplesort is basically quicksort on steroids: a power of 2 close
|
|
to n/ln(n) is computed, and that many elements (less 1) are picked at
|
|
random from the array and sorted. These 2**k - 1 elements are then
|
|
used as preselected pivots for an equal number of quicksort
|
|
partitioning steps, partitioning the slice into 2**k chunks each of
|
|
size about ln(n). These small final chunks are then usually handled
|
|
by binarysort. Note that when k=1, this is roughly the same as an
|
|
ordinary quicksort using a random pivot, and when k=2 this is roughly
|
|
a median-of-3 quicksort. From that view, using k ~= lg(n/ln(n)) makes
|
|
this a "median of n/ln(n)" quicksort. You can also view it as a kind
|
|
of bucket sort, where 2**k-1 bucket boundaries are picked dynamically.
|
|
|
|
The large number of samples makes a quadratic-time case almost
|
|
impossible, and asymptotically drives the average-case number of
|
|
compares from quicksort's 2 N ln N (or 12/7 N ln N for the median-of-
|
|
3 variant) down to N lg N.
|
|
|
|
We also play lots of low-level tricks to cut the number of compares.
|
|
|
|
Very obscure: To avoid using extra memory, the PPs are stored in the
|
|
array and shuffled around as partitioning proceeds. At the start of a
|
|
partitioning step, we'll have 2**m-1 (for some m) PPs in sorted order,
|
|
adjacent (either on the left or the right!) to a chunk of X elements
|
|
that are to be partitioned: P X or X P. In either case we need to
|
|
shuffle things *in place* so that the 2**(m-1) smaller PPs are on the
|
|
left, followed by the PP to be used for this step (that's the middle
|
|
of the PPs), followed by X, followed by the 2**(m-1) larger PPs:
|
|
P X or X P -> Psmall pivot X Plarge
|
|
and the order of the PPs must not be altered. It can take a while
|
|
to realize this isn't trivial! It can take even longer <wink> to
|
|
understand why the simple code below works, using only 2**(m-1) swaps.
|
|
The key is that the order of the X elements isn't necessarily
|
|
preserved: X can end up as some cyclic permutation of its original
|
|
order. That's OK, because X is unsorted anyway. If the order of X
|
|
had to be preserved too, the simplest method I know of using O(1)
|
|
scratch storage requires len(X) + 2**(m-1) swaps, spread over 2 passes.
|
|
Since len(X) is typically several times larger than 2**(m-1), that
|
|
would slow things down.
|
|
*/
|
|
|
|
struct SamplesortStackNode {
|
|
/* Represents a slice of the array, from (& including) lo up
|
|
to (but excluding) hi. "extra" additional & adjacent elements
|
|
are pre-selected pivots (PPs), spanning [lo-extra, lo) if
|
|
extra > 0, or [hi, hi-extra) if extra < 0. The PPs are
|
|
already sorted, but nothing is known about the other elements
|
|
in [lo, hi). |extra| is always one less than a power of 2.
|
|
When extra is 0, we're out of PPs, and the slice must be
|
|
sorted by some other means. */
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
int extra;
|
|
};
|
|
|
|
/* The number of PPs we want is 2**k - 1, where 2**k is as close to
|
|
N / ln(N) as possible. So k ~= lg(N / ln(N)). Calling libm routines
|
|
is undesirable, so cutoff values are canned in the "cutoff" table
|
|
below: cutoff[i] is the smallest N such that k == CUTOFFBASE + i. */
|
|
#define CUTOFFBASE 4
|
|
static long cutoff[] = {
|
|
43, /* smallest N such that k == 4 */
|
|
106, /* etc */
|
|
250,
|
|
576,
|
|
1298,
|
|
2885,
|
|
6339,
|
|
13805,
|
|
29843,
|
|
64116,
|
|
137030,
|
|
291554,
|
|
617916,
|
|
1305130,
|
|
2748295,
|
|
5771662,
|
|
12091672,
|
|
25276798,
|
|
52734615,
|
|
109820537,
|
|
228324027,
|
|
473977813,
|
|
982548444, /* smallest N such that k == 26 */
|
|
2034159050 /* largest N that fits in signed 32-bit; k == 27 */
|
|
};
|
|
|
|
static int
|
|
samplesortslice(lo, hi, compare)
|
|
PyObject **lo;
|
|
PyObject **hi;
|
|
PyObject *compare;/* Comparison function object, or NULL for default */
|
|
{
|
|
register PyObject **l, **r;
|
|
register PyObject *tmp, *pivot;
|
|
register int k;
|
|
int n, extra, top, extraOnRight;
|
|
struct SamplesortStackNode stack[STACKSIZE];
|
|
|
|
/* assert lo <= hi */
|
|
n = hi - lo;
|
|
|
|
/* ----------------------------------------------------------
|
|
* Special cases
|
|
* --------------------------------------------------------*/
|
|
if (n < 2)
|
|
return 0;
|
|
|
|
/* Set r to the largest value such that [lo,r) is sorted.
|
|
This catches the already-sorted case, the all-the-same
|
|
case, and the appended-a-few-elements-to-a-sorted-list case.
|
|
If the array is unsorted, we're very likely to get out of
|
|
the loop fast, so the test is cheap if it doesn't pay off.
|
|
*/
|
|
/* assert lo < hi */
|
|
for (r = lo+1; r < hi; ++r) {
|
|
SETK(*r, *(r-1));
|
|
if (k < 0)
|
|
break;
|
|
}
|
|
/* [lo,r) is sorted, [r,hi) unknown. Get out cheap if there are
|
|
few unknowns, or few elements in total. */
|
|
if (hi - r <= MAXMERGE || n < MINSIZE)
|
|
return binarysort(lo, hi, r, compare);
|
|
|
|
/* Check for the array already being reverse-sorted. Typical
|
|
benchmark-driven silliness <wink>. */
|
|
/* assert lo < hi */
|
|
for (r = lo+1; r < hi; ++r) {
|
|
SETK(*(r-1), *r);
|
|
if (k < 0)
|
|
break;
|
|
}
|
|
if (hi - r <= MAXMERGE) {
|
|
/* Reverse the reversed prefix, then insert the tail */
|
|
PyObject **originalr = r;
|
|
l = lo;
|
|
do {
|
|
--r;
|
|
tmp = *l; *l = *r; *r = tmp;
|
|
++l;
|
|
} while (l < r);
|
|
return binarysort(lo, hi, originalr, compare);
|
|
}
|
|
|
|
/* ----------------------------------------------------------
|
|
* Normal case setup: a large array without obvious pattern.
|
|
* --------------------------------------------------------*/
|
|
|
|
/* extra := a power of 2 ~= n/ln(n), less 1.
|
|
First find the smallest extra s.t. n < cutoff[extra] */
|
|
for (extra = 0;
|
|
extra < sizeof(cutoff) / sizeof(cutoff[0]);
|
|
++extra) {
|
|
if (n < cutoff[extra])
|
|
break;
|
|
/* note that if we fall out of the loop, the value of
|
|
extra still makes *sense*, but may be smaller than
|
|
we would like (but the array has more than ~= 2**31
|
|
elements in this case!) */
|
|
}
|
|
/* Now k == extra - 1 + CUTOFFBASE. The smallest value k can
|
|
have is CUTOFFBASE-1, so
|
|
assert MINSIZE >= 2**(CUTOFFBASE-1) - 1 */
|
|
extra = (1 << (extra - 1 + CUTOFFBASE)) - 1;
|
|
/* assert extra > 0 and n >= extra */
|
|
|
|
/* Swap that many values to the start of the array. The
|
|
selection of elements is pseudo-random, but the same on
|
|
every run (this is intentional! timing algorithm changes is
|
|
a pain if timing varies across runs). */
|
|
{
|
|
unsigned int seed = n / extra; /* arbitrary */
|
|
unsigned int i;
|
|
for (i = 0; i < (unsigned)extra; ++i) {
|
|
/* j := random int in [i, n) */
|
|
unsigned int j;
|
|
seed = seed * 69069 + 7;
|
|
j = i + seed % (n - i);
|
|
tmp = lo[i]; lo[i] = lo[j]; lo[j] = tmp;
|
|
}
|
|
}
|
|
|
|
/* Recursively sort the preselected pivots. */
|
|
if (samplesortslice(lo, lo + extra, compare) < 0)
|
|
goto fail;
|
|
|
|
top = 0; /* index of available stack slot */
|
|
lo += extra; /* point to first unknown */
|
|
extraOnRight = 0; /* the PPs are at the left end */
|
|
|
|
/* ----------------------------------------------------------
|
|
* Partition [lo, hi), and repeat until out of work.
|
|
* --------------------------------------------------------*/
|
|
for (;;) {
|
|
/* assert lo <= hi, so n >= 0 */
|
|
n = hi - lo;
|
|
|
|
/* We may not want, or may not be able, to partition:
|
|
If n is small, it's quicker to insert.
|
|
If extra is 0, we're out of pivots, and *must* use
|
|
another method.
|
|
*/
|
|
if (n < MINPARTITIONSIZE || extra == 0) {
|
|
if (n >= MINSIZE) {
|
|
/* assert extra == 0
|
|
This is rare, since the average size
|
|
of a final block is only about
|
|
ln(original n). */
|
|
if (samplesortslice(lo, hi, compare) < 0)
|
|
goto fail;
|
|
}
|
|
else {
|
|
/* Binary insertion should be quicker,
|
|
and we can take advantage of the PPs
|
|
already being sorted. */
|
|
if (extraOnRight && extra) {
|
|
/* swap the PPs to the left end */
|
|
k = extra;
|
|
do {
|
|
tmp = *lo;
|
|
*lo = *hi;
|
|
*hi = tmp;
|
|
++lo; ++hi;
|
|
} while (--k);
|
|
}
|
|
if (binarysort(lo - extra, hi, lo,
|
|
compare) < 0)
|
|
goto fail;
|
|
}
|
|
|
|
/* Find another slice to work on. */
|
|
if (--top < 0)
|
|
break; /* no more -- done! */
|
|
lo = stack[top].lo;
|
|
hi = stack[top].hi;
|
|
extra = stack[top].extra;
|
|
extraOnRight = 0;
|
|
if (extra < 0) {
|
|
extraOnRight = 1;
|
|
extra = -extra;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Pretend the PPs are indexed 0, 1, ..., extra-1.
|
|
Then our preselected pivot is at (extra-1)/2, and we
|
|
want to move the PPs before that to the left end of
|
|
the slice, and the PPs after that to the right end.
|
|
The following section changes extra, lo, hi, and the
|
|
slice such that:
|
|
[lo-extra, lo) contains the smaller PPs.
|
|
*lo == our PP.
|
|
(lo, hi) contains the unknown elements.
|
|
[hi, hi+extra) contains the larger PPs.
|
|
*/
|
|
k = extra >>= 1; /* num PPs to move */
|
|
if (extraOnRight) {
|
|
/* Swap the smaller PPs to the left end.
|
|
Note that this loop actually moves k+1 items:
|
|
the last is our PP */
|
|
do {
|
|
tmp = *lo; *lo = *hi; *hi = tmp;
|
|
++lo; ++hi;
|
|
} while (k--);
|
|
}
|
|
else {
|
|
/* Swap the larger PPs to the right end. */
|
|
while (k--) {
|
|
--lo; --hi;
|
|
tmp = *lo; *lo = *hi; *hi = tmp;
|
|
}
|
|
}
|
|
--lo; /* *lo is now our PP */
|
|
pivot = *lo;
|
|
|
|
/* Now an almost-ordinary quicksort partition step.
|
|
Note that most of the time is spent here!
|
|
Only odd thing is that we partition into < and >=,
|
|
instead of the usual <= and >=. This helps when
|
|
there are lots of duplicates of different values,
|
|
because it eventually tends to make subfiles
|
|
"pure" (all duplicates), and we special-case for
|
|
duplicates later. */
|
|
l = lo + 1;
|
|
r = hi - 1;
|
|
/* assert lo < l < r < hi (small n weeded out above) */
|
|
|
|
do {
|
|
/* slide l right, looking for key >= pivot */
|
|
do {
|
|
SETK(*l, pivot);
|
|
if (k < 0)
|
|
++l;
|
|
else
|
|
break;
|
|
} while (l < r);
|
|
|
|
/* slide r left, looking for key < pivot */
|
|
while (l < r) {
|
|
register PyObject *rval = *r--;
|
|
SETK(rval, pivot);
|
|
if (k < 0) {
|
|
/* swap and advance */
|
|
r[1] = *l;
|
|
*l++ = rval;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} while (l < r);
|
|
|
|
/* assert lo < r <= l < hi
|
|
assert r == l or r+1 == l
|
|
everything to the left of l is < pivot, and
|
|
everything to the right of r is >= pivot */
|
|
|
|
if (l == r) {
|
|
SETK(*r, pivot);
|
|
if (k < 0)
|
|
++l;
|
|
else
|
|
--r;
|
|
}
|
|
/* assert lo <= r and r+1 == l and l <= hi
|
|
assert r == lo or a[r] < pivot
|
|
assert a[lo] is pivot
|
|
assert l == hi or a[l] >= pivot
|
|
Swap the pivot into "the middle", so we can henceforth
|
|
ignore it.
|
|
*/
|
|
*lo = *r;
|
|
*r = pivot;
|
|
|
|
/* The following is true now, & will be preserved:
|
|
All in [lo,r) are < pivot
|
|
All in [r,l) == pivot (& so can be ignored)
|
|
All in [l,hi) are >= pivot */
|
|
|
|
/* Check for duplicates of the pivot. One compare is
|
|
wasted if there are no duplicates, but can win big
|
|
when there are.
|
|
Tricky: we're sticking to "<" compares, so deduce
|
|
equality indirectly. We know pivot <= *l, so they're
|
|
equal iff not pivot < *l.
|
|
*/
|
|
while (l < hi) {
|
|
/* pivot <= *l known */
|
|
SETK(pivot, *l);
|
|
if (k < 0)
|
|
break;
|
|
else
|
|
/* <= and not < implies == */
|
|
++l;
|
|
}
|
|
|
|
/* assert lo <= r < l <= hi
|
|
Partitions are [lo, r) and [l, hi) */
|
|
|
|
/* push fattest first; remember we still have extra PPs
|
|
to the left of the left chunk and to the right of
|
|
the right chunk! */
|
|
/* assert top < STACKSIZE */
|
|
if (r - lo <= hi - l) {
|
|
/* second is bigger */
|
|
stack[top].lo = l;
|
|
stack[top].hi = hi;
|
|
stack[top].extra = -extra;
|
|
hi = r;
|
|
extraOnRight = 0;
|
|
}
|
|
else {
|
|
/* first is bigger */
|
|
stack[top].lo = lo;
|
|
stack[top].hi = r;
|
|
stack[top].extra = extra;
|
|
lo = l;
|
|
extraOnRight = 1;
|
|
}
|
|
++top;
|
|
|
|
} /* end of partitioning loop */
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return -1;
|
|
}
|
|
|
|
#undef SETK
|
|
|
|
staticforward PyTypeObject immutable_list_type;
|
|
|
|
static PyObject *
|
|
listsort(self, compare)
|
|
PyListObject *self;
|
|
PyObject *compare;
|
|
{
|
|
int err;
|
|
|
|
self->ob_type = &immutable_list_type;
|
|
err = samplesortslice(self->ob_item,
|
|
self->ob_item + self->ob_size,
|
|
compare);
|
|
self->ob_type = &PyList_Type;
|
|
if (err < 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
int
|
|
PyList_Sort(v)
|
|
PyObject *v;
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
v = listsort((PyListObject *)v, (PyObject *)NULL);
|
|
if (v == NULL)
|
|
return -1;
|
|
Py_DECREF(v);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
listreverse(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
register PyObject **p, **q;
|
|
register PyObject *tmp;
|
|
|
|
if (args != NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
|
|
if (self->ob_size > 1) {
|
|
for (p = self->ob_item, q = self->ob_item + self->ob_size - 1;
|
|
p < q; p++, q--) {
|
|
tmp = *p;
|
|
*p = *q;
|
|
*q = tmp;
|
|
}
|
|
}
|
|
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
int
|
|
PyList_Reverse(v)
|
|
PyObject *v;
|
|
{
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
v = listreverse((PyListObject *)v, (PyObject *)NULL);
|
|
if (v == NULL)
|
|
return -1;
|
|
Py_DECREF(v);
|
|
return 0;
|
|
}
|
|
|
|
PyObject *
|
|
PyList_AsTuple(v)
|
|
PyObject *v;
|
|
{
|
|
PyObject *w;
|
|
PyObject **p;
|
|
int n;
|
|
if (v == NULL || !PyList_Check(v)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
n = ((PyListObject *)v)->ob_size;
|
|
w = PyTuple_New(n);
|
|
if (w == NULL)
|
|
return NULL;
|
|
p = ((PyTupleObject *)w)->ob_item;
|
|
memcpy((ANY *)p,
|
|
(ANY *)((PyListObject *)v)->ob_item,
|
|
n*sizeof(PyObject *));
|
|
while (--n >= 0) {
|
|
Py_INCREF(*p);
|
|
p++;
|
|
}
|
|
return w;
|
|
}
|
|
|
|
static PyObject *
|
|
listindex(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0)
|
|
return PyInt_FromLong((long)i);
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "list.index(x): x not in list");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
listcount(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int count = 0;
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"list.count(x): argument missing");
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0)
|
|
count++;
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
return PyInt_FromLong((long)count);
|
|
}
|
|
|
|
static PyObject *
|
|
listremove(self, args)
|
|
PyListObject *self;
|
|
PyObject *args;
|
|
{
|
|
int i;
|
|
|
|
if (args == NULL) {
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < self->ob_size; i++) {
|
|
if (PyObject_Compare(self->ob_item[i], args) == 0) {
|
|
if (list_ass_slice(self, i, i+1,
|
|
(PyObject *)NULL) != 0)
|
|
return NULL;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list");
|
|
return NULL;
|
|
}
|
|
|
|
static char append_doc[] =
|
|
"L.append(object) -- append object to end";
|
|
static char extend_doc[] =
|
|
"L.extend(list) -- extend list by appending list elements";
|
|
static char insert_doc[] =
|
|
"L.insert(index, object) -- insert object before index";
|
|
static char pop_doc[] =
|
|
"L.pop([index]) -> item -- remove and return item at index (default last)";
|
|
static char remove_doc[] =
|
|
"L.remove(value) -- remove first occurrence of value";
|
|
static char index_doc[] =
|
|
"L.index(value) -> integer -- return index of first occurrence of value";
|
|
static char count_doc[] =
|
|
"L.count(value) -> integer -- return number of occurrences of value";
|
|
static char reverse_doc[] =
|
|
"L.reverse() -- reverse *IN PLACE*";
|
|
static char sort_doc[] =
|
|
"L.sort([cmpfunc]) -- sort *IN PLACE*; if given, cmpfunc(x, y) -> -1, 0, 1";
|
|
|
|
static PyMethodDef list_methods[] = {
|
|
{"append", (PyCFunction)listappend, 0, append_doc},
|
|
{"insert", (PyCFunction)listinsert, 0, insert_doc},
|
|
{"extend", (PyCFunction)listextend, 1, extend_doc},
|
|
{"pop", (PyCFunction)listpop, 1, pop_doc},
|
|
{"remove", (PyCFunction)listremove, 0, remove_doc},
|
|
{"index", (PyCFunction)listindex, 0, index_doc},
|
|
{"count", (PyCFunction)listcount, 0, count_doc},
|
|
{"reverse", (PyCFunction)listreverse, 0, reverse_doc},
|
|
{"sort", (PyCFunction)listsort, 0, sort_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *
|
|
list_getattr(f, name)
|
|
PyListObject *f;
|
|
char *name;
|
|
{
|
|
return Py_FindMethod(list_methods, (PyObject *)f, name);
|
|
}
|
|
|
|
static PySequenceMethods list_as_sequence = {
|
|
(inquiry)list_length, /*sq_length*/
|
|
(binaryfunc)list_concat, /*sq_concat*/
|
|
(intargfunc)list_repeat, /*sq_repeat*/
|
|
(intargfunc)list_item, /*sq_item*/
|
|
(intintargfunc)list_slice, /*sq_slice*/
|
|
(intobjargproc)list_ass_item, /*sq_ass_item*/
|
|
(intintobjargproc)list_ass_slice, /*sq_ass_slice*/
|
|
};
|
|
|
|
PyTypeObject PyList_Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"list",
|
|
sizeof(PyListObject),
|
|
0,
|
|
(destructor)list_dealloc, /*tp_dealloc*/
|
|
(printfunc)list_print, /*tp_print*/
|
|
(getattrfunc)list_getattr, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
(cmpfunc)list_compare, /*tp_compare*/
|
|
(reprfunc)list_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
&list_as_sequence, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
};
|
|
|
|
|
|
/* During a sort, we really can't have anyone modifying the list; it could
|
|
cause core dumps. Thus, we substitute a dummy type that raises an
|
|
explanatory exception when a modifying operation is used. Caveat:
|
|
comparisons may behave differently; but I guess it's a bad idea anyway to
|
|
compare a list that's being sorted... */
|
|
|
|
static PyObject *
|
|
immutable_list_op(/*No args!*/)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"a list cannot be modified while it is being sorted");
|
|
return NULL;
|
|
}
|
|
|
|
static PyMethodDef immutable_list_methods[] = {
|
|
{"append", (PyCFunction)immutable_list_op},
|
|
{"insert", (PyCFunction)immutable_list_op},
|
|
{"remove", (PyCFunction)immutable_list_op},
|
|
{"index", (PyCFunction)listindex},
|
|
{"count", (PyCFunction)listcount},
|
|
{"reverse", (PyCFunction)immutable_list_op},
|
|
{"sort", (PyCFunction)immutable_list_op},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *
|
|
immutable_list_getattr(f, name)
|
|
PyListObject *f;
|
|
char *name;
|
|
{
|
|
return Py_FindMethod(immutable_list_methods, (PyObject *)f, name);
|
|
}
|
|
|
|
static int
|
|
immutable_list_ass(/*No args!*/)
|
|
{
|
|
immutable_list_op();
|
|
return -1;
|
|
}
|
|
|
|
static PySequenceMethods immutable_list_as_sequence = {
|
|
(inquiry)list_length, /*sq_length*/
|
|
(binaryfunc)list_concat, /*sq_concat*/
|
|
(intargfunc)list_repeat, /*sq_repeat*/
|
|
(intargfunc)list_item, /*sq_item*/
|
|
(intintargfunc)list_slice, /*sq_slice*/
|
|
(intobjargproc)immutable_list_ass, /*sq_ass_item*/
|
|
(intintobjargproc)immutable_list_ass, /*sq_ass_slice*/
|
|
};
|
|
|
|
static PyTypeObject immutable_list_type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"list (immutable, during sort)",
|
|
sizeof(PyListObject),
|
|
0,
|
|
0, /*tp_dealloc*/ /* Cannot happen */
|
|
(printfunc)list_print, /*tp_print*/
|
|
(getattrfunc)immutable_list_getattr, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/ /* Won't be called */
|
|
(reprfunc)list_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
&immutable_list_as_sequence, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
};
|
|
|