818 lines
31 KiB
TeX
818 lines
31 KiB
TeX
\chapter{Data model}
|
|
|
|
\section{Objects, values and types}
|
|
|
|
{\em Objects} are Python's abstraction for data. All data in a Python
|
|
program is represented by objects or by relations between objects.
|
|
(In a sense, and in conformance to Von Neumann's model of a
|
|
``stored program computer'', code is also represented by objects.)
|
|
\index{object}
|
|
\index{data}
|
|
|
|
Every object has an identity, a type and a value. An object's {\em
|
|
identity} never changes once it has been created; you may think of it
|
|
as the object's address in memory. An object's {\em type} is also
|
|
unchangeable. It determines the operations that an object supports
|
|
(e.g. ``does it have a length?'') and also defines the possible
|
|
values for objects of that type. The {\em value} of some objects can
|
|
change. Objects whose value can change are said to be {\em mutable};
|
|
objects whose value is unchangeable once they are created are called
|
|
{\em immutable}. The type determines an object's (im)mutability.
|
|
\index{identity of an object}
|
|
\index{value of an object}
|
|
\index{type of an object}
|
|
\index{mutable object}
|
|
\index{immutable object}
|
|
|
|
Objects are never explicitly destroyed; however, when they become
|
|
unreachable they may be garbage-collected. An implementation is
|
|
allowed to delay garbage collection or omit it altogether --- it is a
|
|
matter of implementation quality how garbage collection is
|
|
implemented, as long as no objects are collected that are still
|
|
reachable. (Implementation note: the current implementation uses a
|
|
reference-counting scheme which collects most objects as soon as they
|
|
become unreachable, but never collects garbage containing circular
|
|
references.)
|
|
\index{garbage collection}
|
|
\index{reference counting}
|
|
\index{unreachable object}
|
|
|
|
Note that the use of the implementation's tracing or debugging
|
|
facilities may keep objects alive that would normally be collectable.
|
|
|
|
Some objects contain references to ``external'' resources such as open
|
|
files or windows. It is understood that these resources are freed
|
|
when the object is garbage-collected, but since garbage collection is
|
|
not guaranteed to happen, such objects also provide an explicit way to
|
|
release the external resource, usually a \verb@close@ method.
|
|
Programs are strongly recommended to always explicitly close such
|
|
objects.
|
|
|
|
Some objects contain references to other objects; these are called
|
|
{\em containers}. Examples of containers are tuples, lists and
|
|
dictionaries. The references are part of a container's value. In
|
|
most cases, when we talk about the value of a container, we imply the
|
|
values, not the identities of the contained objects; however, when we
|
|
talk about the (im)mutability of a container, only the identities of
|
|
the immediately contained objects are implied. (So, if an immutable
|
|
container contains a reference to a mutable object, its value changes
|
|
if that mutable object is changed.)
|
|
\index{container}
|
|
|
|
Types affect almost all aspects of objects' lives. Even the meaning
|
|
of object identity is affected in some sense: for immutable types,
|
|
operations that compute new values may actually return a reference to
|
|
any existing object with the same type and value, while for mutable
|
|
objects this is not allowed. E.g. after
|
|
|
|
\begin{verbatim}
|
|
a = 1; b = 1; c = []; d = []
|
|
\end{verbatim}
|
|
|
|
\verb@a@ and \verb@b@ may or may not refer to the same object with the
|
|
value one, depending on the implementation, but \verb@c@ and \verb@d@
|
|
are guaranteed to refer to two different, unique, newly created empty
|
|
lists.
|
|
|
|
\section{The standard type hierarchy} \label{types}
|
|
|
|
Below is a list of the types that are built into Python. Extension
|
|
modules written in C can define additional types. Future versions of
|
|
Python may add types to the type hierarchy (e.g. rational or complex
|
|
numbers, efficiently stored arrays of integers, etc.).
|
|
\index{type}
|
|
\indexii{data}{type}
|
|
\indexii{type}{hierarchy}
|
|
\indexii{extension}{module}
|
|
\index{C}
|
|
|
|
Some of the type descriptions below contain a paragraph listing
|
|
`special attributes'. These are attributes that provide access to the
|
|
implementation and are not intended for general use. Their definition
|
|
may change in the future. There are also some `generic' special
|
|
attributes, not listed with the individual objects: \verb@__methods__@
|
|
is a list of the method names of a built-in object, if it has any;
|
|
\verb@__members__@ is a list of the data attribute names of a built-in
|
|
object, if it has any.
|
|
\index{attribute}
|
|
\indexii{special}{attribute}
|
|
\indexiii{generic}{special}{attribute}
|
|
\ttindex{__methods__}
|
|
\ttindex{__members__}
|
|
|
|
\begin{description}
|
|
|
|
\item[None]
|
|
This type has a single value. There is a single object with this value.
|
|
This object is accessed through the built-in name \verb@None@.
|
|
It is returned from functions that don't explicitly return an object.
|
|
\ttindex{None}
|
|
\obindex{None@{\tt None}}
|
|
|
|
\item[Numbers]
|
|
These are created by numeric literals and returned as results by
|
|
arithmetic operators and arithmetic built-in functions. Numeric
|
|
objects are immutable; once created their value never changes. Python
|
|
numbers are of course strongly related to mathematical numbers, but
|
|
subject to the limitations of numerical representation in computers.
|
|
\obindex{number}
|
|
\obindex{numeric}
|
|
|
|
Python distinguishes between integers and floating point numbers:
|
|
|
|
\begin{description}
|
|
\item[Integers]
|
|
These represent elements from the mathematical set of whole numbers.
|
|
\obindex{integer}
|
|
|
|
There are two types of integers:
|
|
|
|
\begin{description}
|
|
|
|
\item[Plain integers]
|
|
These represent numbers in the range $-2^{31}$ through $2^{31}-1$.
|
|
(The range may be larger on machines with a larger natural word
|
|
size, but not smaller.)
|
|
When the result of an operation falls outside this range, the
|
|
exception \verb@OverflowError@ is raised.
|
|
For the purpose of shift and mask operations, integers are assumed to
|
|
have a binary, 2's complement notation using 32 or more bits, and
|
|
hiding no bits from the user (i.e., all $2^{32}$ different bit
|
|
patterns correspond to different values).
|
|
\obindex{plain integer}
|
|
|
|
\item[Long integers]
|
|
These represent numbers in an unlimited range, subject to available
|
|
(virtual) memory only. For the purpose of shift and mask operations,
|
|
a binary representation is assumed, and negative numbers are
|
|
represented in a variant of 2's complement which gives the illusion of
|
|
an infinite string of sign bits extending to the left.
|
|
\obindex{long integer}
|
|
|
|
\end{description} % Integers
|
|
|
|
The rules for integer representation are intended to give the most
|
|
meaningful interpretation of shift and mask operations involving
|
|
negative integers and the least surprises when switching between the
|
|
plain and long integer domains. For any operation except left shift,
|
|
if it yields a result in the plain integer domain without causing
|
|
overflow, it will yield the same result in the long integer domain or
|
|
when using mixed operands.
|
|
\indexii{integer}{representation}
|
|
|
|
\item[Floating point numbers]
|
|
These represent machine-level double precision floating point numbers.
|
|
You are at the mercy of the underlying machine architecture and
|
|
C implementation for the accepted range and handling of overflow.
|
|
\obindex{floating point}
|
|
\indexii{floating point}{number}
|
|
\index{C}
|
|
|
|
\end{description} % Numbers
|
|
|
|
\item[Sequences]
|
|
These represent finite ordered sets indexed by natural numbers.
|
|
The built-in function \verb@len()@ returns the number of elements
|
|
of a sequence. When this number is $n$, the index set contains
|
|
the numbers $0, 1, \ldots, n-1$. Element \verb@i@ of sequence
|
|
\verb@a@ is selected by \verb@a[i]@.
|
|
\obindex{seqence}
|
|
\bifuncindex{len}
|
|
\index{index operation}
|
|
\index{item selection}
|
|
\index{subscription}
|
|
|
|
Sequences also support slicing: \verb@a[i:j]@ selects all elements
|
|
with index $k$ such that $i <= k < j$. When used as an expression,
|
|
a slice is a sequence of the same type --- this implies that the
|
|
index set is renumbered so that it starts at 0 again.
|
|
\index{slicing}
|
|
|
|
Sequences are distinguished according to their mutability:
|
|
|
|
\begin{description}
|
|
%
|
|
\item[Immutable sequences]
|
|
An object of an immutable sequence type cannot change once it is
|
|
created. (If the object contains references to other objects,
|
|
these other objects may be mutable and may be changed; however
|
|
the collection of objects directly referenced by an immutable object
|
|
cannot change.)
|
|
\obindex{immutable sequence}
|
|
\obindex{immutable}
|
|
|
|
The following types are immutable sequences:
|
|
|
|
\begin{description}
|
|
|
|
\item[Strings]
|
|
The elements of a string are characters. There is no separate
|
|
character type; a character is represented by a string of one element.
|
|
Characters represent (at least) 8-bit bytes. The built-in
|
|
functions \verb@chr()@ and \verb@ord()@ convert between characters
|
|
and nonnegative integers representing the byte values.
|
|
Bytes with the values 0-127 represent the corresponding ASCII values.
|
|
The string data type is also used to represent arrays of bytes, e.g.
|
|
to hold data read from a file.
|
|
\obindex{string}
|
|
\index{character}
|
|
\index{byte}
|
|
\index{ASCII}
|
|
\bifuncindex{chr}
|
|
\bifuncindex{ord}
|
|
|
|
(On systems whose native character set is not ASCII, strings may use
|
|
EBCDIC in their internal representation, provided the functions
|
|
\verb@chr()@ and \verb@ord()@ implement a mapping between ASCII and
|
|
EBCDIC, and string comparison preserves the ASCII order.
|
|
Or perhaps someone can propose a better rule?)
|
|
\index{ASCII}
|
|
\index{EBCDIC}
|
|
\index{character set}
|
|
\indexii{string}{comparison}
|
|
\bifuncindex{chr}
|
|
\bifuncindex{ord}
|
|
|
|
\item[Tuples]
|
|
The elements of a tuple are arbitrary Python objects.
|
|
Tuples of two or more elements are formed by comma-separated lists
|
|
of expressions. A tuple of one element (a `singleton') can be formed
|
|
by affixing a comma to an expression (an expression by itself does
|
|
not create a tuple, since parentheses must be usable for grouping of
|
|
expressions). An empty tuple can be formed by enclosing `nothing' in
|
|
parentheses.
|
|
\obindex{tuple}
|
|
\indexii{singleton}{tuple}
|
|
\indexii{empty}{tuple}
|
|
|
|
\end{description} % Immutable sequences
|
|
|
|
\item[Mutable sequences]
|
|
Mutable sequences can be changed after they are created. The
|
|
subscription and slicing notations can be used as the target of
|
|
assignment and \verb@del@ (delete) statements.
|
|
\obindex{mutable sequece}
|
|
\obindex{mutable}
|
|
\indexii{assignment}{statement}
|
|
\index{delete}
|
|
\stindex{del}
|
|
\index{subscription}
|
|
\index{slicing}
|
|
|
|
There is currently a single mutable sequence type:
|
|
|
|
\begin{description}
|
|
|
|
\item[Lists]
|
|
The elements of a list are arbitrary Python objects. Lists are formed
|
|
by placing a comma-separated list of expressions in square brackets.
|
|
(Note that there are no special cases needed to form lists of length 0
|
|
or 1.)
|
|
\obindex{list}
|
|
|
|
\end{description} % Mutable sequences
|
|
|
|
\end{description} % Sequences
|
|
|
|
\item[Mapping types]
|
|
These represent finite sets of objects indexed by arbitrary index sets.
|
|
The subscript notation \verb@a[k]@ selects the element indexed
|
|
by \verb@k@ from the mapping \verb@a@; this can be used in
|
|
expressions and as the target of assignments or \verb@del@ statements.
|
|
The built-in function \verb@len()@ returns the number of elements
|
|
in a mapping.
|
|
\bifuncindex{len}
|
|
\index{subscription}
|
|
\obindex{mapping}
|
|
|
|
There is currently a single mapping type:
|
|
|
|
\begin{description}
|
|
|
|
\item[Dictionaries]
|
|
These represent finite sets of objects indexed by almost arbitrary
|
|
values. The only types of values not acceptable as keys are values
|
|
containing lists or dictionaries or other mutable types that are
|
|
compared by value rather than by object identity --- the reason being
|
|
that the implementation requires that a key's hash value be constant.
|
|
Numeric types used for keys obey the normal rules for numeric
|
|
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they
|
|
can be used interchangeably to index the same dictionary entry.
|
|
|
|
Dictionaries are mutable; they are created by the \verb@{...}@
|
|
notation (see section \ref{dict}).
|
|
\obindex{dictionary}
|
|
\obindex{mutable}
|
|
|
|
\end{description} % Mapping types
|
|
|
|
\item[Callable types]
|
|
These are the types to which the function call (invocation) operation,
|
|
written as \verb@function(argument, argument, ...)@, can be applied:
|
|
\indexii{function}{call}
|
|
\index{invocation}
|
|
\indexii{function}{argument}
|
|
\obindex{callable}
|
|
|
|
\begin{description}
|
|
|
|
\item[User-defined functions]
|
|
A user-defined function object is created by a function definition
|
|
(see section \ref{function}). It should be called with an argument
|
|
list containing the same number of items as the function's formal
|
|
parameter list.
|
|
\indexii{user-defined}{function}
|
|
\obindex{function}
|
|
\obindex{user-defined function}
|
|
|
|
Special read-only attributes: \verb@func_code@ is the code object
|
|
representing the compiled function body, and \verb@func_globals@ is (a
|
|
reference to) the dictionary that holds the function's global
|
|
variables --- it implements the global name space of the module in
|
|
which the function was defined.
|
|
\ttindex{func_code}
|
|
\ttindex{func_globals}
|
|
\indexii{global}{name space}
|
|
|
|
\item[User-defined methods]
|
|
A user-defined method (a.k.a. {\em object closure}) is a pair of a
|
|
class instance object and a user-defined function. It should be
|
|
called with an argument list containing one item less than the number
|
|
of items in the function's formal parameter list. When called, the
|
|
class instance becomes the first argument, and the call arguments are
|
|
shifted one to the right.
|
|
\obindex{method}
|
|
\obindex{user-defined method}
|
|
\indexii{user-defined}{method}
|
|
\index{object closure}
|
|
|
|
Special read-only attributes: \verb@im_self@ is the class instance
|
|
object, \verb@im_func@ is the function object.
|
|
\ttindex{im_func}
|
|
\ttindex{im_self}
|
|
|
|
\item[Built-in functions]
|
|
A built-in function object is a wrapper around a C function. Examples
|
|
of built-in functions are \verb@len@ and \verb@math.sin@. There
|
|
are no special attributes. The number and type of the arguments are
|
|
determined by the C function.
|
|
\obindex{built-in function}
|
|
\obindex{function}
|
|
\index{C}
|
|
|
|
\item[Built-in methods]
|
|
This is really a different disguise of a built-in function, this time
|
|
containing an object passed to the C function as an implicit extra
|
|
argument. An example of a built-in method is \verb@list.append@ if
|
|
\verb@list@ is a list object.
|
|
\obindex{built-in method}
|
|
\obindex{method}
|
|
\indexii{built-in}{method}
|
|
|
|
\item[Classes]
|
|
Class objects are described below. When a class object is called as a
|
|
function, a new class instance (also described below) is created and
|
|
returned. This implies a call to the class's \verb@__init__@ method
|
|
if it has one. Any arguments are passed on to the \verb@__init__@
|
|
method -- if there is \verb@__init__@ method, the class must be called
|
|
without arguments.
|
|
\ttindex{__init__}
|
|
\obindex{class}
|
|
\obindex{class instance}
|
|
\obindex{instance}
|
|
\indexii{class object}{call}
|
|
|
|
\end{description}
|
|
|
|
\item[Modules]
|
|
Modules are imported by the \verb@import@ statement (see section
|
|
\ref{import}). A module object is a container for a module's name
|
|
space, which is a dictionary (the same dictionary as referenced by the
|
|
\verb@func_globals@ attribute of functions defined in the module).
|
|
Module attribute references are translated to lookups in this
|
|
dictionary. A module object does not contain the code object used to
|
|
initialize the module (since it isn't needed once the initialization
|
|
is done).
|
|
\stindex{import}
|
|
\obindex{module}
|
|
|
|
Attribute assignment update the module's name space dictionary.
|
|
|
|
Special read-only attributes: \verb@__dict__@ yields the module's name
|
|
space as a dictionary object; \verb@__name__@ yields the module's name
|
|
as a string object.
|
|
\ttindex{__dict__}
|
|
\ttindex{__name__}
|
|
\indexii{module}{name space}
|
|
|
|
\item[Classes]
|
|
Class objects are created by class definitions (see section
|
|
\ref{class}). A class is a container for a dictionary containing the
|
|
class's name space. Class attribute references are translated to
|
|
lookups in this dictionary. When an attribute name is not found
|
|
there, the attribute search continues in the base classes. The search
|
|
is depth-first, left-to-right in the order of their occurrence in the
|
|
base class list.
|
|
\obindex{class}
|
|
\obindex{class instance}
|
|
\obindex{instance}
|
|
\indexii{class object}{call}
|
|
\index{container}
|
|
\obindex{dictionary}
|
|
\indexii{class}{attribute}
|
|
|
|
Class attribute assignments update the class's dictionary, never the
|
|
dictionary of a base class.
|
|
\indexiii{class}{attribute}{assignment}
|
|
|
|
A class can be called as a function to yield a class instance (see
|
|
above).
|
|
\indexii{class object}{call}
|
|
|
|
Special read-only attributes: \verb@__dict__@ yields the dictionary
|
|
containing the class's name space; \verb@__bases__@ yields a tuple
|
|
(possibly empty or a singleton) containing the base classes, in the
|
|
order of their occurrence in the base class list.
|
|
\ttindex{__dict__}
|
|
\ttindex{__bases__}
|
|
|
|
\item[Class instances]
|
|
A class instance is created by calling a class object as a
|
|
function. A class instance has a dictionary in which
|
|
attribute references are searched. When an attribute is not found
|
|
there, and the instance's class has an attribute by that name, and
|
|
that class attribute is a user-defined function (and in no other
|
|
cases), the instance attribute reference yields a user-defined method
|
|
object (see above) constructed from the instance and the function.
|
|
\obindex{class instance}
|
|
\obindex{instance}
|
|
\indexii{class}{instance}
|
|
\indexii{class instance}{attribute}
|
|
|
|
Attribute assignments update the instance's dictionary.
|
|
\indexiii{class instance}{attribute}{assignment}
|
|
|
|
Class instances can pretend to be numbers, sequences, or mappings if
|
|
they have methods with certain special names. These are described in
|
|
section \ref{specialnames}.
|
|
\obindex{number}
|
|
\obindex{sequence}
|
|
\obindex{mapping}
|
|
|
|
Special read-only attributes: \verb@__dict__@ yields the attribute
|
|
dictionary; \verb@__class__@ yields the instance's class.
|
|
\ttindex{__dict__}
|
|
\ttindex{__class__}
|
|
|
|
\item[Files]
|
|
A file object represents an open file. (It is a wrapper around a C
|
|
{\tt stdio} file pointer.) File objects are created by the
|
|
\verb@open()@ built-in function, and also by \verb@posix.popen()@ and
|
|
the \verb@makefile@ method of socket objects. \verb@sys.stdin@,
|
|
\verb@sys.stdout@ and \verb@sys.stderr@ are file objects corresponding
|
|
to the interpreter's standard input, output and error streams.
|
|
See the Python Library Reference for methods of file objects and other
|
|
details.
|
|
\obindex{file}
|
|
\index{C}
|
|
\index{stdio}
|
|
\bifuncindex{open}
|
|
\bifuncindex{popen}
|
|
\bifuncindex{makefile}
|
|
\ttindex{stdin}
|
|
\ttindex{stdout}
|
|
\ttindex{stderr}
|
|
\ttindex{sys.stdin}
|
|
\ttindex{sys.stdout}
|
|
\ttindex{sys.stderr}
|
|
|
|
\item[Internal types]
|
|
A few types used internally by the interpreter are exposed to the user.
|
|
Their definition may change with future versions of the interpreter,
|
|
but they are mentioned here for completeness.
|
|
\index{internal type}
|
|
|
|
\begin{description}
|
|
|
|
\item[Code objects]
|
|
Code objects represent executable code. The difference between a code
|
|
object and a function object is that the function object contains an
|
|
explicit reference to the function's context (the module in which it
|
|
was defined) while a code object contains no context. There is no way
|
|
to execute a bare code object.
|
|
\obindex{code}
|
|
|
|
Special read-only attributes: \verb@co_code@ is a string representing
|
|
the sequence of instructions; \verb@co_consts@ is a list of literals
|
|
used by the code; \verb@co_names@ is a list of names (strings) used by
|
|
the code; \verb@co_filename@ is the filename from which the code was
|
|
compiled. (To find out the line numbers, you would have to decode the
|
|
instructions; the standard library module \verb@dis@ contains an
|
|
example of how to do this.)
|
|
\ttindex{co_code}
|
|
\ttindex{co_consts}
|
|
\ttindex{co_names}
|
|
\ttindex{co_filename}
|
|
|
|
\item[Frame objects]
|
|
Frame objects represent execution frames. They may occur in traceback
|
|
objects (see below).
|
|
\obindex{frame}
|
|
|
|
Special read-only attributes: \verb@f_back@ is to the previous
|
|
stack frame (towards the caller), or \verb@None@ if this is the bottom
|
|
stack frame; \verb@f_code@ is the code object being executed in this
|
|
frame; \verb@f_globals@ is the dictionary used to look up global
|
|
variables; \verb@f_locals@ is used for local variables;
|
|
\verb@f_lineno@ gives the line number and \verb@f_lasti@ gives the
|
|
precise instruction (this is an index into the instruction string of
|
|
the code object).
|
|
\ttindex{f_back}
|
|
\ttindex{f_code}
|
|
\ttindex{f_globals}
|
|
\ttindex{f_locals}
|
|
\ttindex{f_lineno}
|
|
\ttindex{f_lasti}
|
|
|
|
\item[Traceback objects] \label{traceback}
|
|
Traceback objects represent a stack trace of an exception. A
|
|
traceback object is created when an exception occurs. When the search
|
|
for an exception handler unwinds the execution stack, at each unwound
|
|
level a traceback object is inserted in front of the current
|
|
traceback. When an exception handler is entered
|
|
(see also section \ref{try}), the stack trace is
|
|
made available to the program as \verb@sys.exc_traceback@. When the
|
|
program contains no suitable handler, the stack trace is written
|
|
(nicely formatted) to the standard error stream; if the interpreter is
|
|
interactive, it is also made available to the user as
|
|
\verb@sys.last_traceback@.
|
|
\obindex{traceback}
|
|
\indexii{stack}{trace}
|
|
\indexii{exception}{handler}
|
|
\indexii{execution}{stack}
|
|
\ttindex{exc_traceback}
|
|
\ttindex{last_traceback}
|
|
\ttindex{sys.exc_traceback}
|
|
\ttindex{sys.last_traceback}
|
|
|
|
Special read-only attributes: \verb@tb_next@ is the next level in the
|
|
stack trace (towards the frame where the exception occurred), or
|
|
\verb@None@ if there is no next level; \verb@tb_frame@ points to the
|
|
execution frame of the current level; \verb@tb_lineno@ gives the line
|
|
number where the exception occurred; \verb@tb_lasti@ indicates the
|
|
precise instruction. The line number and last instruction in the
|
|
traceback may differ from the line number of its frame object if the
|
|
exception occurred in a \verb@try@ statement with no matching
|
|
\verb@except@ clause or with a \verb@finally@ clause.
|
|
\ttindex{tb_next}
|
|
\ttindex{tb_frame}
|
|
\ttindex{tb_lineno}
|
|
\ttindex{tb_lasti}
|
|
\stindex{try}
|
|
|
|
\end{description} % Internal types
|
|
|
|
\end{description} % Types
|
|
|
|
|
|
\section{Special method names} \label{specialnames}
|
|
|
|
A class can implement certain operations that are invoked by special
|
|
syntax (such as subscription or arithmetic operations) by defining
|
|
methods with special names. For instance, if a class defines a
|
|
method named \verb@__getitem__@, and \verb@x@ is an instance of this
|
|
class, then \verb@x[i]@ is equivalent to \verb@x.__getitem__(i)@.
|
|
(The reverse is not true --- if \verb@x@ is a list object,
|
|
\verb@x.__getitem__(i)@ is not equivalent to \verb@x[i]@.)
|
|
|
|
Except for \verb@__repr__@, \verb@__str__@ and \verb@__cmp__@,
|
|
attempts to execute an
|
|
operation raise an exception when no appropriate method is defined.
|
|
For \verb@__repr__@, the default is to return a string describing the
|
|
object's class and address.
|
|
For \verb@__cmp__@, the default is to compare instances based on their
|
|
address.
|
|
For \verb@__str__@, the default is to use \verb@__repr__@.
|
|
|
|
|
|
\subsection{Special methods for any type}
|
|
|
|
\begin{description}
|
|
|
|
\item[\tt __init__(self, args...)]
|
|
Called when the instance is created. The arguments are those passed
|
|
to the class constructor expression. If a base class has an
|
|
\code{__init__} method the derived class's \code{__init__} method must
|
|
explicitly call it to ensure proper initialization of the base class
|
|
part of the instance.
|
|
|
|
\item[\tt __del__(self)]
|
|
Called when the instance is about to be destroyed. If a base class
|
|
has an \code{__del__} method the derived class's \code{__del__} method
|
|
must explicitly call it to ensure proper deletion of the base class
|
|
part of the instance. Note that it is possible for the \code{__del__}
|
|
method to postpone destruction of the instance by creating a new
|
|
reference to it. It may then be called at a later time when this new
|
|
reference is deleted. It is not guaranteed that
|
|
\code{__del__} methods are called for objects that still exist when
|
|
the interpreter exits.
|
|
|
|
Note that \code{del x} doesn't directly call \code{x.__del__} -- the
|
|
former decrements the reference count for \code{x} by one, but
|
|
\code{x,__del__} is only called when its reference count reaches zero.
|
|
|
|
\item[\tt __repr__(self)]
|
|
Called by the \verb@repr()@ built-in function and by string conversions
|
|
(reverse or backward quotes) to compute the string representation of an object.
|
|
\indexii{string}{conversion}
|
|
\indexii{reverse}{quotes}
|
|
\indexii{backward}{quotes}
|
|
\index{back-quotes}
|
|
|
|
\item[\tt __str__(self)]
|
|
Called by the \verb@str()@ built-in function and by the \verb@print@
|
|
statement compute the string representation of an object.
|
|
|
|
\item[\tt __cmp__(self, other)]
|
|
Called by all comparison operations. Should return -1 if
|
|
\verb@self < other@, 0 if \verb@self == other@, +1 if
|
|
\verb@self > other@. If no \code{__cmp__} operation is defined, class
|
|
instances are compared by object identity (``address'').
|
|
(Implementation note: due to limitations in the interpreter,
|
|
exceptions raised by comparisons are ignored, and the objects will be
|
|
considered equal in this case.)
|
|
|
|
\item[\tt __hash__(self)]
|
|
Called for the key object for dictionary operations,
|
|
and by the built-in function
|
|
\code{hash()}. Should return a 32-bit integer usable as a hash value
|
|
for dictionary operations. The only required property is that objects
|
|
which compare equal have the same hash value; it is advised to somehow
|
|
mix together (e.g. using exclusing or) the hash values for the
|
|
components of the object that also play a part in comparison of
|
|
objects. If a class does not define a \code{__cmp__} method it should
|
|
not define a \code{__hash__} operation either; if it defines
|
|
\code{__cmp__} but not \code{__hash__} its instances will not be
|
|
usable as dictionary keys. If a class defines mutable objects and
|
|
implements a \code{__cmp__} method it should not implement
|
|
\code{__hash__}, since the dictionary implementation assumes that a
|
|
key's hash value is a constant.
|
|
\obindex{dictionary}
|
|
|
|
\item[\tt __call__(self, *args)]
|
|
Called when the instance is ``called'' as a function.
|
|
|
|
\end{description}
|
|
|
|
|
|
\subsection{Special methods for attribute access}
|
|
|
|
The following methods can be used to change the meaning of attribute
|
|
access for class instances.
|
|
|
|
\begin{description}
|
|
|
|
\item[\tt __getattr__(self, name)]
|
|
Called when an attribute lookup has not found the attribute in the
|
|
usual places (i.e. it is not an instance attribute nor is it found in
|
|
the class tree for \code{self}). \code{name} is the attribute name.
|
|
|
|
Note that if the attribute is found through the normal mechanism,
|
|
\code{__getattr__} is not called. (This is an asymmetry between
|
|
\code{__getattr__} and \code{__setattr__}.)
|
|
This is done both for efficiency reasons and because otherwise
|
|
\code{__getattr__} would have no way to access other attributes of the
|
|
instance.
|
|
Note that at least for instance variables, \code{__getattr__} can fake
|
|
total control by simply not inserting any values in the instance
|
|
attribute dictionary.
|
|
|
|
\item[\tt __setattr__(self, name, value)]
|
|
Called when an attribute assignment is attempted. This is called
|
|
instead of the normal mechanism (i.e. store the value as an instance
|
|
attribute). \code{name} is the attribute name, \code{value} is the
|
|
value to be assigned to it.
|
|
|
|
If \code{__setattr__} wants to assign to an instance attribute, it
|
|
should not simply execute \code{self.\var{name} = value} -- this would
|
|
cause a recursive call. Instead, it should insert the value in the
|
|
dictionary of instance attributes, e.g. \code{self.__dict__[name] =
|
|
value}.
|
|
|
|
\item[\tt __delattr__(self, name)]
|
|
Like \code{__setattr__} but for attribute deletion instead of
|
|
assignment.
|
|
|
|
\end{description}
|
|
|
|
|
|
\subsection{Special methods for sequence and mapping types}
|
|
|
|
\begin{description}
|
|
|
|
\item[\tt __len__(self)]
|
|
Called to implement the built-in function \verb@len()@. Should return
|
|
the length of the object, an integer \verb@>=@ 0. Also, an object
|
|
whose \verb@__len__()@ method returns 0 is considered to be false in a
|
|
Boolean context.
|
|
|
|
\item[\tt __getitem__(self, key)]
|
|
Called to implement evaluation of \verb@self[key]@. Note that the
|
|
special interpretation of negative keys (if the class wishes to
|
|
emulate a sequence type) is up to the \verb@__getitem__@ method.
|
|
|
|
\item[\tt __setitem__(self, key, value)]
|
|
Called to implement assignment to \verb@self[key]@. Same note as for
|
|
\verb@__getitem__@.
|
|
|
|
\item[\tt __delitem__(self, key)]
|
|
Called to implement deletion of \verb@self[key]@. Same note as for
|
|
\verb@__getitem__@.
|
|
|
|
\end{description}
|
|
|
|
|
|
\subsection{Special methods for sequence types}
|
|
|
|
\begin{description}
|
|
|
|
\item[\tt __getslice__(self, i, j)]
|
|
Called to implement evaluation of \verb@self[i:j]@. Note that missing
|
|
\verb@i@ or \verb@j@ are replaced by 0 or \verb@len(self)@,
|
|
respectively, and \verb@len(self)@ has been added (once) to originally
|
|
negative \verb@i@ or \verb@j@ by the time this function is called
|
|
(unlike for \verb@__getitem__@).
|
|
|
|
\item[\tt __setslice__(self, i, j, sequence)]
|
|
Called to implement assignment to \verb@self[i:j]@. Same notes as for
|
|
\verb@__getslice__@.
|
|
|
|
\item[\tt __delslice__(self, i, j)]
|
|
Called to implement deletion of \verb@self[i:j]@. Same notes as for
|
|
\verb@__getslice__@.
|
|
|
|
\end{description}
|
|
|
|
|
|
\subsection{Special methods for numeric types}
|
|
|
|
\begin{description}
|
|
|
|
\item[\tt __add__(self, other)]\itemjoin
|
|
\item[\tt __sub__(self, other)]\itemjoin
|
|
\item[\tt __mul__(self, other)]\itemjoin
|
|
\item[\tt __div__(self, other)]\itemjoin
|
|
\item[\tt __mod__(self, other)]\itemjoin
|
|
\item[\tt __divmod__(self, other)]\itemjoin
|
|
\item[\tt __pow__(self, other)]\itemjoin
|
|
\item[\tt __lshift__(self, other)]\itemjoin
|
|
\item[\tt __rshift__(self, other)]\itemjoin
|
|
\item[\tt __and__(self, other)]\itemjoin
|
|
\item[\tt __xor__(self, other)]\itemjoin
|
|
\item[\tt __or__(self, other)]\itembreak
|
|
Called to implement the binary arithmetic operations (\verb@+@,
|
|
\verb@-@, \verb@*@, \verb@/@, \verb@%@, \verb@divmod()@, \verb@pow()@,
|
|
\verb@<<@, \verb@>>@, \verb@&@, \verb@^@, \verb@|@).
|
|
|
|
\item[\tt __neg__(self)]\itemjoin
|
|
\item[\tt __pos__(self)]\itemjoin
|
|
\item[\tt __abs__(self)]\itemjoin
|
|
\item[\tt __invert__(self)]\itembreak
|
|
Called to implement the unary arithmetic operations (\verb@-@, \verb@+@,
|
|
\verb@abs()@ and \verb@~@).
|
|
|
|
\item[\tt __nonzero__(self)]
|
|
Called to implement boolean testing; should return 0 or 1. An
|
|
alternative name for this method is \verb@__len__@.
|
|
|
|
\item[\tt __coerce__(self, other)]
|
|
Called to implement ``mixed-mode'' numeric arithmetic. Should either
|
|
return a tuple containing self and other converted to a common numeric
|
|
type, or None if no way of conversion is known. When the common type
|
|
would be the type of other, it is sufficient to return None, since the
|
|
interpreter will also ask the other object to attempt a coercion (but
|
|
sometimes, if the implementation of the other type cannot be changed,
|
|
it is useful to do the conversion to the other type here).
|
|
|
|
Note that this method is not called to coerce the arguments to \verb@+@
|
|
and \verb@*@, because these are also used to implement sequence
|
|
concatenation and repetition, respectively. Also note that, for the
|
|
same reason, in \verb@n*x@, where \verb@n@ is a built-in number and
|
|
\verb@x@ is an instance, a call to \verb@x.__mul__(n)@ is made.%
|
|
\footnote{The interpreter should really distinguish between
|
|
user-defined classes implementing sequences, mappings or numbers, but
|
|
currently it doesn't --- hence this strange exception.}
|
|
|
|
\item[\tt __int__(self)]\itemjoin
|
|
\item[\tt __long__(self)]\itemjoin
|
|
\item[\tt __float__(self)]\itembreak
|
|
Called to implement the built-in functions \verb@int()@, \verb@long()@
|
|
and \verb@float()@. Should return a value of the appropriate type.
|
|
|
|
\item[\tt __oct__(self)]\itemjoin
|
|
\item[\tt __hex__(self)]\itembreak
|
|
Called to implement the built-in functions \verb@oct()@ and
|
|
\verb@hex()@. Should return a string value.
|
|
|
|
\end{description}
|