cpython/Doc/library/subprocess.rst

1127 lines
40 KiB
ReStructuredText

:mod:`subprocess` --- Subprocess management
===========================================
.. module:: subprocess
:synopsis: Subprocess management.
.. moduleauthor:: Peter Åstrand <astrand@lysator.liu.se>
.. sectionauthor:: Peter Åstrand <astrand@lysator.liu.se>
The :mod:`subprocess` module allows you to spawn new processes, connect to their
input/output/error pipes, and obtain their return codes. This module intends to
replace several other, older modules and functions, such as::
os.system
os.spawn*
Information about how the :mod:`subprocess` module can be used to replace these
modules and functions can be found in the following sections.
.. seealso::
:pep:`324` -- PEP proposing the subprocess module
Using the :mod:`subprocess` Module
----------------------------------
The recommended approach to invoking subprocesses is to use the following
convenience functions for all use cases they can handle. For more advanced
use cases, the underlying :class:`Popen` interface can be used directly.
.. function:: call(args, *, stdin=None, stdout=None, stderr=None, shell=False, timeout=None)
Run the command described by *args*. Wait for command to complete, then
return the :attr:`returncode` attribute.
The arguments shown above are merely the most common ones, described below
in :ref:`frequently-used-arguments` (hence the use of keyword-only notation
in the abbreviated signature). The full function signature is largely the
same as that of the :class:`Popen` constructor - this function passes all
supplied arguments other than *timeout* directly through to that interface.
The *timeout* argument is passed to :meth:`Popen.wait`. If the timeout
expires, the child process will be killed and then waited for again. The
:exc:`TimeoutExpired` exception will be re-raised after the child process
has terminated.
Examples::
>>> subprocess.call(["ls", "-l"])
0
>>> subprocess.call("exit 1", shell=True)
1
.. warning::
Invoking the system shell with ``shell=True`` can be a security hazard
if combined with untrusted input. See the warning under
:ref:`frequently-used-arguments` for details.
.. note::
Do not use ``stdout=PIPE`` or ``stderr=PIPE`` with this function. As
the pipes are not being read in the current process, the child
process may block if it generates enough output to a pipe to fill up
the OS pipe buffer.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_call(args, *, stdin=None, stdout=None, stderr=None, shell=False, timeout=None)
Run command with arguments. Wait for command to complete. If the return
code was zero then return, otherwise raise :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute.
The arguments shown above are merely the most common ones, described below
in :ref:`frequently-used-arguments` (hence the use of keyword-only notation
in the abbreviated signature). The full function signature is largely the
same as that of the :class:`Popen` constructor - this function passes all
supplied arguments other than *timeout* directly through to that interface.
The *timeout* argument is passed to :meth:`Popen.wait`. If the timeout
expires, the child process will be killed and then waited for again. The
:exc:`TimeoutExpired` exception will be re-raised after the child process
has terminated.
Examples::
>>> subprocess.check_call(["ls", "-l"])
0
>>> subprocess.check_call("exit 1", shell=True)
Traceback (most recent call last):
...
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1
.. warning::
Invoking the system shell with ``shell=True`` can be a security hazard
if combined with untrusted input. See the warning under
:ref:`frequently-used-arguments` for details.
.. note::
Do not use ``stdout=PIPE`` or ``stderr=PIPE`` with this function. As
the pipes are not being read in the current process, the child
process may block if it generates enough output to a pipe to fill up
the OS pipe buffer.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_output(args, *, input=None, stdin=None, stderr=None, shell=False, universal_newlines=False, timeout=None)
Run command with arguments and return its output.
If the return code was non-zero it raises a :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute and any output in the :attr:`output`
attribute.
The arguments shown above are merely the most common ones, described below
in :ref:`frequently-used-arguments` (hence the use of keyword-only notation
in the abbreviated signature). The full function signature is largely the
same as that of the :class:`Popen` constructor - this functions passes all
supplied arguments other than *input* and *timeout* directly through to
that interface. In addition, *stdout* is not permitted as an argument, as
it is used internally to collect the output from the subprocess.
The *timeout* argument is passed to :meth:`Popen.wait`. If the timeout
expires, the child process will be killed and then waited for again. The
:exc:`TimeoutExpired` exception will be re-raised after the child process
has terminated.
The *input* argument is passed to :meth:`Popen.communicate` and thus to the
subprocess's stdin. If used it must be a byte sequence, or a string if
``universal_newlines=True``. When used, the internal :class:`Popen` object
is automatically created with ``stdin=PIPE``, and the *stdin* argument may
not be used as well.
Examples::
>>> subprocess.check_output(["echo", "Hello World!"])
b'Hello World!\n'
>>> subprocess.check_output(["echo", "Hello World!"], universal_newlines=True)
'Hello World!\n'
>>> subprocess.check_output(["sed", "-e", "s/foo/bar/"],
... input=b"when in the course of fooman events\n")
b'when in the course of barman events\n'
>>> subprocess.check_output("exit 1", shell=True)
Traceback (most recent call last):
...
subprocess.CalledProcessError: Command 'exit 1' returned non-zero exit status 1
By default, this function will return the data as encoded bytes. The actual
encoding of the output data may depend on the command being invoked, so the
decoding to text will often need to be handled at the application level.
This behaviour may be overridden by setting *universal_newlines* to
``True`` as described below in :ref:`frequently-used-arguments`.
To also capture standard error in the result, use
``stderr=subprocess.STDOUT``::
>>> subprocess.check_output(
... "ls non_existent_file; exit 0",
... stderr=subprocess.STDOUT,
... shell=True)
'ls: non_existent_file: No such file or directory\n'
.. warning::
Invoking the system shell with ``shell=True`` can be a security hazard
if combined with untrusted input. See the warning under
:ref:`frequently-used-arguments` for details.
.. note::
Do not use ``stderr=PIPE`` with this function. As the pipe is not being
read in the current process, the child process may block if it
generates enough output to the pipe to fill up the OS pipe buffer.
.. versionadded:: 3.1
.. versionchanged:: 3.3
*timeout* was added.
.. versionchanged:: 3.4
*input* was added.
.. data:: DEVNULL
Special value that can be used as the *stdin*, *stdout* or *stderr* argument
to :class:`Popen` and indicates that the special file :data:`os.devnull`
will be used.
.. versionadded:: 3.3
.. data:: PIPE
Special value that can be used as the *stdin*, *stdout* or *stderr* argument
to :class:`Popen` and indicates that a pipe to the standard stream should be
opened.
.. data:: STDOUT
Special value that can be used as the *stderr* argument to :class:`Popen` and
indicates that standard error should go into the same handle as standard
output.
.. exception:: SubprocessError
Base class for all other exceptions from this module.
.. versionadded:: 3.3
.. exception:: TimeoutExpired
Subclass of :exc:`SubprocessError`, raised when a timeout expires
while waiting for a child process.
.. attribute:: cmd
Command that was used to spawn the child process.
.. attribute:: timeout
Timeout in seconds.
.. attribute:: output
Output of the child process if this exception is raised by
:func:`check_output`. Otherwise, ``None``.
.. versionadded:: 3.3
.. exception:: CalledProcessError
Subclass of :exc:`SubprocessError`, raised when a process run by
:func:`check_call` or :func:`check_output` returns a non-zero exit status.
.. attribute:: returncode
Exit status of the child process.
.. attribute:: cmd
Command that was used to spawn the child process.
.. attribute:: output
Output of the child process if this exception is raised by
:func:`check_output`. Otherwise, ``None``.
.. _frequently-used-arguments:
Frequently Used Arguments
^^^^^^^^^^^^^^^^^^^^^^^^^
To support a wide variety of use cases, the :class:`Popen` constructor (and
the convenience functions) accept a large number of optional arguments. For
most typical use cases, many of these arguments can be safely left at their
default values. The arguments that are most commonly needed are:
*args* is required for all calls and should be a string, or a sequence of
program arguments. Providing a sequence of arguments is generally
preferred, as it allows the module to take care of any required escaping
and quoting of arguments (e.g. to permit spaces in file names). If passing
a single string, either *shell* must be :const:`True` (see below) or else
the string must simply name the program to be executed without specifying
any arguments.
*stdin*, *stdout* and *stderr* specify the executed program's standard input,
standard output and standard error file handles, respectively. Valid values
are :data:`PIPE`, :data:`DEVNULL`, an existing file descriptor (a positive
integer), an existing file object, and ``None``. :data:`PIPE` indicates
that a new pipe to the child should be created. :data:`DEVNULL` indicates
that the special file :data:`os.devnull` will be used. With the default
settings of ``None``, no redirection will occur; the child's file handles
will be inherited from the parent. Additionally, *stderr* can be
:data:`STDOUT`, which indicates that the stderr data from the child
process should be captured into the same file handle as for *stdout*.
.. index::
single: universal newlines; subprocess module
If *universal_newlines* is ``False`` the file objects *stdin*, *stdout* and
*stderr* will be opened as binary streams, and no line ending conversion is
done.
If *universal_newlines* is ``True``, these file objects
will be opened as text streams in :term:`universal newlines` mode
using the encoding returned by :func:`locale.getpreferredencoding(False)
<locale.getpreferredencoding>`. For *stdin*, line ending characters
``'\n'`` in the input will be converted to the default line separator
:data:`os.linesep`. For *stdout* and *stderr*, all line endings in the
output will be converted to ``'\n'``. For more information see the
documentation of the :class:`io.TextIOWrapper` class when the *newline*
argument to its constructor is ``None``.
.. note::
The newlines attribute of the file objects :attr:`Popen.stdin`,
:attr:`Popen.stdout` and :attr:`Popen.stderr` are not updated by
the :meth:`Popen.communicate` method.
If *shell* is ``True``, the specified command will be executed through
the shell. This can be useful if you are using Python primarily for the
enhanced control flow it offers over most system shells and still want
convenient access to other shell features such as shell pipes, filename
wildcards, environment variable expansion, and expansion of ``~`` to a
user's home directory. However, note that Python itself offers
implementations of many shell-like features (in particular, :mod:`glob`,
:mod:`fnmatch`, :func:`os.walk`, :func:`os.path.expandvars`,
:func:`os.path.expanduser`, and :mod:`shutil`).
.. versionchanged:: 3.3
When *universal_newlines* is ``True``, the class uses the encoding
:func:`locale.getpreferredencoding(False) <locale.getpreferredencoding>`
instead of ``locale.getpreferredencoding()``. See the
:class:`io.TextIOWrapper` class for more information on this change.
.. warning::
Executing shell commands that incorporate unsanitized input from an
untrusted source makes a program vulnerable to `shell injection
<http://en.wikipedia.org/wiki/Shell_injection#Shell_injection>`_,
a serious security flaw which can result in arbitrary command execution.
For this reason, the use of ``shell=True`` is **strongly discouraged**
in cases where the command string is constructed from external input::
>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...
``shell=False`` disables all shell based features, but does not suffer
from this vulnerability; see the Note in the :class:`Popen` constructor
documentation for helpful hints in getting ``shell=False`` to work.
When using ``shell=True``, :func:`shlex.quote` can be used to properly
escape whitespace and shell metacharacters in strings that are going to
be used to construct shell commands.
These options, along with all of the other options, are described in more
detail in the :class:`Popen` constructor documentation.
Popen Constructor
^^^^^^^^^^^^^^^^^
The underlying process creation and management in this module is handled by
the :class:`Popen` class. It offers a lot of flexibility so that developers
are able to handle the less common cases not covered by the convenience
functions.
.. class:: Popen(args, bufsize=-1, executable=None, stdin=None, stdout=None, \
stderr=None, preexec_fn=None, close_fds=True, shell=False, \
cwd=None, env=None, universal_newlines=False, \
startupinfo=None, creationflags=0, restore_signals=True, \
start_new_session=False, pass_fds=())
Execute a child program in a new process. On Unix, the class uses
:meth:`os.execvp`-like behavior to execute the child program. On Windows,
the class uses the Windows ``CreateProcess()`` function. The arguments to
:class:`Popen` are as follows.
*args* should be a sequence of program arguments or else a single string.
By default, the program to execute is the first item in *args* if *args* is
a sequence. If *args* is a string, the interpretation is
platform-dependent and described below. See the *shell* and *executable*
arguments for additional differences from the default behavior. Unless
otherwise stated, it is recommended to pass *args* as a sequence.
On Unix, if *args* is a string, the string is interpreted as the name or
path of the program to execute. However, this can only be done if not
passing arguments to the program.
.. note::
:meth:`shlex.split` can be useful when determining the correct
tokenization for *args*, especially in complex cases::
>>> import shlex, subprocess
>>> command_line = input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print(args)
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!
Note in particular that options (such as *-input*) and arguments (such
as *eggs.txt*) that are separated by whitespace in the shell go in separate
list elements, while arguments that need quoting or backslash escaping when
used in the shell (such as filenames containing spaces or the *echo* command
shown above) are single list elements.
On Windows, if *args* is a sequence, it will be converted to a string in a
manner described in :ref:`converting-argument-sequence`. This is because
the underlying ``CreateProcess()`` operates on strings.
The *shell* argument (which defaults to *False*) specifies whether to use
the shell as the program to execute. If *shell* is *True*, it is
recommended to pass *args* as a string rather than as a sequence.
On Unix with ``shell=True``, the shell defaults to :file:`/bin/sh`. If
*args* is a string, the string specifies the command
to execute through the shell. This means that the string must be
formatted exactly as it would be when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with spaces in
them. If *args* is a sequence, the first item specifies the command string, and
any additional items will be treated as additional arguments to the shell
itself. That is to say, :class:`Popen` does the equivalent of::
Popen(['/bin/sh', '-c', args[0], args[1], ...])
On Windows with ``shell=True``, the :envvar:`COMSPEC` environment variable
specifies the default shell. The only time you need to specify
``shell=True`` on Windows is when the command you wish to execute is built
into the shell (e.g. :command:`dir` or :command:`copy`). You do not need
``shell=True`` to run a batch file or console-based executable.
.. warning::
Passing ``shell=True`` can be a security hazard if combined with
untrusted input. See the warning under :ref:`frequently-used-arguments`
for details.
*bufsize* will be supplied as the corresponding argument to the :meth:`io.open`
function when creating the stdin/stdout/stderr pipe file objects:
:const:`0` means unbuffered (read and write are one system call and can return short),
:const:`1` means line buffered, any other positive value means use a buffer of
approximately that size. A negative bufsize (the default) means
the system default of io.DEFAULT_BUFFER_SIZE will be used.
.. versionchanged:: 3.2.4, 3.3.1
*bufsize* now defaults to -1 to enable buffering by default to match the
behavior that most code expects. In 3.2.0 through 3.2.3 and 3.3.0 it
incorrectly defaulted to :const:`0` which was unbuffered and allowed
short reads. This was unintentional and did not match the behavior of
Python 2 as most code expected.
The *executable* argument specifies a replacement program to execute. It
is very seldom needed. When ``shell=False``, *executable* replaces the
program to execute specified by *args*. However, the original *args* is
still passed to the program. Most programs treat the program specified
by *args* as the command name, which can then be different from the program
actually executed. On Unix, the *args* name
becomes the display name for the executable in utilities such as
:program:`ps`. If ``shell=True``, on Unix the *executable* argument
specifies a replacement shell for the default :file:`/bin/sh`.
*stdin*, *stdout* and *stderr* specify the executed program's standard input,
standard output and standard error file handles, respectively. Valid values
are :data:`PIPE`, :data:`DEVNULL`, an existing file descriptor (a positive
integer), an existing :term:`file object`, and ``None``. :data:`PIPE`
indicates that a new pipe to the child should be created. :data:`DEVNULL`
indicates that the special file :data:`os.devnull` will be used. With the
default settings of ``None``, no redirection will occur; the child's file
handles will be inherited from the parent. Additionally, *stderr* can be
:data:`STDOUT`, which indicates that the stderr data from the applications
should be captured into the same file handle as for stdout.
If *preexec_fn* is set to a callable object, this object will be called in the
child process just before the child is executed.
(Unix only)
.. warning::
The *preexec_fn* parameter is not safe to use in the presence of threads
in your application. The child process could deadlock before exec is
called.
If you must use it, keep it trivial! Minimize the number of libraries
you call into.
.. note::
If you need to modify the environment for the child use the *env*
parameter rather than doing it in a *preexec_fn*.
The *start_new_session* parameter can take the place of a previously
common use of *preexec_fn* to call os.setsid() in the child.
If *close_fds* is true, all file descriptors except :const:`0`, :const:`1` and
:const:`2` will be closed before the child process is executed. (Unix only).
The default varies by platform: Always true on Unix. On Windows it is
true when *stdin*/*stdout*/*stderr* are :const:`None`, false otherwise.
On Windows, if *close_fds* is true then no handles will be inherited by the
child process. Note that on Windows, you cannot set *close_fds* to true and
also redirect the standard handles by setting *stdin*, *stdout* or *stderr*.
.. versionchanged:: 3.2
The default for *close_fds* was changed from :const:`False` to
what is described above.
*pass_fds* is an optional sequence of file descriptors to keep open
between the parent and child. Providing any *pass_fds* forces
*close_fds* to be :const:`True`. (Unix only)
.. versionadded:: 3.2
The *pass_fds* parameter was added.
If *cwd* is not ``None``, the function changes the working directory to
*cwd* before executing the child. In particular, the function looks for
*executable* (or for the first item in *args*) relative to *cwd* if the
executable path is a relative path.
If *restore_signals* is True (the default) all signals that Python has set to
SIG_IGN are restored to SIG_DFL in the child process before the exec.
Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(Unix only)
.. versionchanged:: 3.2
*restore_signals* was added.
If *start_new_session* is True the setsid() system call will be made in the
child process prior to the execution of the subprocess. (Unix only)
.. versionchanged:: 3.2
*start_new_session* was added.
If *env* is not ``None``, it must be a mapping that defines the environment
variables for the new process; these are used instead of the default
behavior of inheriting the current process' environment.
.. note::
If specified, *env* must provide any variables required for the program to
execute. On Windows, in order to run a `side-by-side assembly`_ the
specified *env* **must** include a valid :envvar:`SystemRoot`.
.. _side-by-side assembly: http://en.wikipedia.org/wiki/Side-by-Side_Assembly
If *universal_newlines* is ``True``, the file objects *stdin*, *stdout*
and *stderr* are opened as text streams in universal newlines mode, as
described above in :ref:`frequently-used-arguments`, otherwise they are
opened as binary streams.
If given, *startupinfo* will be a :class:`STARTUPINFO` object, which is
passed to the underlying ``CreateProcess`` function.
*creationflags*, if given, can be :data:`CREATE_NEW_CONSOLE` or
:data:`CREATE_NEW_PROCESS_GROUP`. (Windows only)
Popen objects are supported as context managers via the :keyword:`with` statement:
on exit, standard file descriptors are closed, and the process is waited for.
::
with Popen(["ifconfig"], stdout=PIPE) as proc:
log.write(proc.stdout.read())
.. versionchanged:: 3.2
Added context manager support.
Exceptions
^^^^^^^^^^
Exceptions raised in the child process, before the new program has started to
execute, will be re-raised in the parent. Additionally, the exception object
will have one extra attribute called :attr:`child_traceback`, which is a string
containing traceback information from the child's point of view.
The most common exception raised is :exc:`OSError`. This occurs, for example,
when trying to execute a non-existent file. Applications should prepare for
:exc:`OSError` exceptions.
A :exc:`ValueError` will be raised if :class:`Popen` is called with invalid
arguments.
:func:`check_call` and :func:`check_output` will raise
:exc:`CalledProcessError` if the called process returns a non-zero return
code.
All of the functions and methods that accept a *timeout* parameter, such as
:func:`call` and :meth:`Popen.communicate` will raise :exc:`TimeoutExpired` if
the timeout expires before the process exits.
Exceptions defined in this module all inherit from :exc:`SubprocessError`.
.. versionadded:: 3.3
The :exc:`SubprocessError` base class was added.
Security
^^^^^^^^
Unlike some other popen functions, this implementation will never call a
system shell implicitly. This means that all characters, including shell
metacharacters, can safely be passed to child processes. Obviously, if the
shell is invoked explicitly, then it is the application's responsibility to
ensure that all whitespace and metacharacters are quoted appropriately.
Popen Objects
-------------
Instances of the :class:`Popen` class have the following methods:
.. method:: Popen.poll()
Check if child process has terminated. Set and return :attr:`returncode`
attribute.
.. method:: Popen.wait(timeout=None)
Wait for child process to terminate. Set and return :attr:`returncode`
attribute.
If the process does not terminate after *timeout* seconds, raise a
:exc:`TimeoutExpired` exception. It is safe to catch this exception and
retry the wait.
.. warning::
This will deadlock when using ``stdout=PIPE`` and/or
``stderr=PIPE`` and the child process generates enough output to
a pipe such that it blocks waiting for the OS pipe buffer to
accept more data. Use :meth:`communicate` to avoid that.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr,
until end-of-file is reached. Wait for process to terminate. The optional
*input* argument should be data to be sent to the child process, or
``None``, if no data should be sent to the child. The type of *input*
must be bytes or, if *universal_newlines* was ``True``, a string.
:meth:`communicate` returns a tuple ``(stdoutdata, stderrdata)``.
Note that if you want to send data to the process's stdin, you need to create
the Popen object with ``stdin=PIPE``. Similarly, to get anything other than
``None`` in the result tuple, you need to give ``stdout=PIPE`` and/or
``stderr=PIPE`` too.
If the process does not terminate after *timeout* seconds, a
:exc:`TimeoutExpired` exception will be raised. Catching this exception and
retrying communication will not lose any output.
The child process is not killed if the timeout expires, so in order to
cleanup properly a well-behaved application should kill the child process and
finish communication::
proc = subprocess.Popen(...)
try:
outs, errs = proc.communicate(timeout=15)
except TimeoutExpired:
proc.kill()
outs, errs = proc.communicate()
.. note::
The data read is buffered in memory, so do not use this method if the data
size is large or unlimited.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.send_signal(signal)
Sends the signal *signal* to the child.
.. note::
On Windows, SIGTERM is an alias for :meth:`terminate`. CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a *creationflags*
parameter which includes `CREATE_NEW_PROCESS_GROUP`.
.. method:: Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the
child. On Windows the Win32 API function :c:func:`TerminateProcess` is called
to stop the child.
.. method:: Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child.
On Windows :meth:`kill` is an alias for :meth:`terminate`.
The following attributes are also available:
.. warning::
Use :meth:`~Popen.communicate` rather than :attr:`.stdin.write <Popen.stdin>`,
:attr:`.stdout.read <Popen.stdout>` or :attr:`.stderr.read <Popen.stderr>` to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the
child process.
.. attribute:: Popen.stdin
If the *stdin* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides input to the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stdout
If the *stdout* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides output from the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stderr
If the *stderr* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides error output from the child process. Otherwise, it is
``None``.
.. attribute:: Popen.pid
The process ID of the child process.
Note that if you set the *shell* argument to ``True``, this is the process ID
of the spawned shell.
.. attribute:: Popen.returncode
The child return code, set by :meth:`poll` and :meth:`wait` (and indirectly
by :meth:`communicate`). A ``None`` value indicates that the process
hasn't terminated yet.
A negative value ``-N`` indicates that the child was terminated by signal
``N`` (Unix only).
Windows Popen Helpers
---------------------
The :class:`STARTUPINFO` class and following constants are only available
on Windows.
.. class:: STARTUPINFO()
Partial support of the Windows
`STARTUPINFO <http://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx>`__
structure is used for :class:`Popen` creation.
.. attribute:: dwFlags
A bit field that determines whether certain :class:`STARTUPINFO`
attributes are used when the process creates a window. ::
si = subprocess.STARTUPINFO()
si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW
.. attribute:: hStdInput
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard input handle for the process. If
:data:`STARTF_USESTDHANDLES` is not specified, the default for standard
input is the keyboard buffer.
.. attribute:: hStdOutput
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard output handle for the process. Otherwise, this attribute
is ignored and the default for standard output is the console window's
buffer.
.. attribute:: hStdError
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard error handle for the process. Otherwise, this attribute is
ignored and the default for standard error is the console window's buffer.
.. attribute:: wShowWindow
If :attr:`dwFlags` specifies :data:`STARTF_USESHOWWINDOW`, this attribute
can be any of the values that can be specified in the ``nCmdShow``
parameter for the
`ShowWindow <http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx>`__
function, except for ``SW_SHOWDEFAULT``. Otherwise, this attribute is
ignored.
:data:`SW_HIDE` is provided for this attribute. It is used when
:class:`Popen` is called with ``shell=True``.
Constants
^^^^^^^^^
The :mod:`subprocess` module exposes the following constants.
.. data:: STD_INPUT_HANDLE
The standard input device. Initially, this is the console input buffer,
``CONIN$``.
.. data:: STD_OUTPUT_HANDLE
The standard output device. Initially, this is the active console screen
buffer, ``CONOUT$``.
.. data:: STD_ERROR_HANDLE
The standard error device. Initially, this is the active console screen
buffer, ``CONOUT$``.
.. data:: SW_HIDE
Hides the window. Another window will be activated.
.. data:: STARTF_USESTDHANDLES
Specifies that the :attr:`STARTUPINFO.hStdInput`,
:attr:`STARTUPINFO.hStdOutput`, and :attr:`STARTUPINFO.hStdError` attributes
contain additional information.
.. data:: STARTF_USESHOWWINDOW
Specifies that the :attr:`STARTUPINFO.wShowWindow` attribute contains
additional information.
.. data:: CREATE_NEW_CONSOLE
The new process has a new console, instead of inheriting its parent's
console (the default).
.. data:: CREATE_NEW_PROCESS_GROUP
A :class:`Popen` ``creationflags`` parameter to specify that a new process
group will be created. This flag is necessary for using :func:`os.kill`
on the subprocess.
This flag is ignored if :data:`CREATE_NEW_CONSOLE` is specified.
.. _subprocess-replacements:
Replacing Older Functions with the :mod:`subprocess` Module
-----------------------------------------------------------
In this section, "a becomes b" means that b can be used as a replacement for a.
.. note::
All "a" functions in this section fail (more or less) silently if the
executed program cannot be found; the "b" replacements raise :exc:`OSError`
instead.
In addition, the replacements using :func:`check_output` will fail with a
:exc:`CalledProcessError` if the requested operation produces a non-zero
return code. The output is still available as the ``output`` attribute of
the raised exception.
In the following examples, we assume that the relevant functions have already
been imported from the :mod:`subprocess` module.
Replacing /bin/sh shell backquote
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`mycmd myarg`
# becomes
output = check_output(["mycmd", "myarg"])
Replacing shell pipeline
^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`dmesg | grep hda`
# becomes
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]
The p1.stdout.close() call after starting the p2 is important in order for p1
to receive a SIGPIPE if p2 exits before p1.
Alternatively, for trusted input, the shell's own pipeline support may still
be used directly::
output=`dmesg | grep hda`
# becomes
output=check_output("dmesg | grep hda", shell=True)
Replacing :func:`os.system`
^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
sts = os.system("mycmd" + " myarg")
# becomes
sts = call("mycmd" + " myarg", shell=True)
Notes:
* Calling the program through the shell is usually not required.
A more realistic example would look like this::
try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:
print("Child was terminated by signal", -retcode, file=sys.stderr)
else:
print("Child returned", retcode, file=sys.stderr)
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
Replacing the :func:`os.spawn <os.spawnl>` family
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
P_NOWAIT example::
pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid
P_WAIT example::
retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])
Vector example::
os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])
Environment example::
os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})
Replacing :func:`os.popen`, :func:`os.popen2`, :func:`os.popen3`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)
::
(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)
::
(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)
Return code handling translates as follows::
pipe = os.popen(cmd, 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:
print("There were some errors")
==>
process = Popen(cmd, 'w', stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
print("There were some errors")
Replacing functions from the :mod:`popen2` module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
If the cmd argument to popen2 functions is a string, the command is executed
through /bin/sh. If it is a list, the command is directly executed.
::
(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
::
(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
:class:`popen2.Popen3` and :class:`popen2.Popen4` basically work as
:class:`subprocess.Popen`, except that:
* :class:`Popen` raises an exception if the execution fails.
* the *capturestderr* argument is replaced with the *stderr* argument.
* ``stdin=PIPE`` and ``stdout=PIPE`` must be specified.
* popen2 closes all file descriptors by default, but you have to specify
``close_fds=True`` with :class:`Popen` to guarantee this behavior on
all platforms or past Python versions.
Legacy Shell Invocation Functions
---------------------------------
This module also provides the following legacy functions from the 2.x
``commands`` module. These operations implicitly invoke the system shell and
none of the guarantees described above regarding security and exception
handling consistency are valid for these functions.
.. function:: getstatusoutput(cmd)
Return ``(status, output)`` of executing *cmd* in a shell.
Execute the string *cmd* in a shell with :func:`os.popen` and return a 2-tuple
``(status, output)``. *cmd* is actually run as ``{ cmd ; } 2>&1``, so that the
returned output will contain output or error messages. A trailing newline is
stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function :c:func:`wait`. Example::
>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> subprocess.getstatusoutput('cat /bin/junk')
(256, 'cat: /bin/junk: No such file or directory')
>>> subprocess.getstatusoutput('/bin/junk')
(256, 'sh: /bin/junk: not found')
Availability: UNIX.
.. function:: getoutput(cmd)
Return output (stdout and stderr) of executing *cmd* in a shell.
Like :func:`getstatusoutput`, except the exit status is ignored and the return
value is a string containing the command's output. Example::
>>> subprocess.getoutput('ls /bin/ls')
'/bin/ls'
Availability: UNIX.
Notes
-----
.. _converting-argument-sequence:
Converting an argument sequence to a string on Windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
On Windows, an *args* sequence is converted to a string that can be parsed
using the following rules (which correspond to the rules used by the MS C
runtime):
1. Arguments are delimited by white space, which is either a
space or a tab.
2. A string surrounded by double quotation marks is
interpreted as a single argument, regardless of white space
contained within. A quoted string can be embedded in an
argument.
3. A double quotation mark preceded by a backslash is
interpreted as a literal double quotation mark.
4. Backslashes are interpreted literally, unless they
immediately precede a double quotation mark.
5. If backslashes immediately precede a double quotation mark,
every pair of backslashes is interpreted as a literal
backslash. If the number of backslashes is odd, the last
backslash escapes the next double quotation mark as
described in rule 3.
.. seealso::
:mod:`shlex`
Module which provides function to parse and escape command lines.