2136 lines
46 KiB
C
2136 lines
46 KiB
C
/* regexpr.c
|
|
*
|
|
* Author: Tatu Ylonen <ylo@ngs.fi>
|
|
*
|
|
* Copyright (c) 1991 Tatu Ylonen, Espoo, Finland
|
|
*
|
|
* Permission to use, copy, modify, distribute, and sell this software
|
|
* and its documentation for any purpose is hereby granted without
|
|
* fee, provided that the above copyright notice appear in all copies.
|
|
* This software is provided "as is" without express or implied
|
|
* warranty.
|
|
*
|
|
* Created: Thu Sep 26 17:14:05 1991 ylo
|
|
* Last modified: Mon Nov 4 17:06:48 1991 ylo
|
|
* Ported to Think C: 19 Jan 1992 guido@cwi.nl
|
|
*
|
|
* This code draws many ideas from the regular expression packages by
|
|
* Henry Spencer of the University of Toronto and Richard Stallman of
|
|
* the Free Software Foundation.
|
|
*
|
|
* Emacs-specific code and syntax table code is almost directly borrowed
|
|
* from GNU regexp.
|
|
*
|
|
* Bugs fixed and lots of reorganization by Jeffrey C. Ollie, April
|
|
* 1997 Thanks for bug reports and ideas from Andrew Kuchling, Tim
|
|
* Peters, Guido van Rossum, Ka-Ping Yee, Sjoerd Mullender, and
|
|
* probably one or two others that I'm forgetting.
|
|
*
|
|
* $Id$ */
|
|
|
|
#include "Python.h"
|
|
#include "regexpr.h"
|
|
#include <assert.h>
|
|
|
|
/* The original code blithely assumed that sizeof(short) == 2. Not
|
|
* always true. Original instances of "(short)x" were replaced by
|
|
* SHORT(x), where SHORT is #defined below. */
|
|
|
|
#define SHORT(x) ((x) & 0x8000 ? (x) - 0x10000 : (x))
|
|
|
|
/* The stack implementation is taken from an idea by Andrew Kuchling.
|
|
* It's a doubly linked list of arrays. The advantages of this over a
|
|
* simple linked list are that the number of mallocs required are
|
|
* reduced. It also makes it possible to statically allocate enough
|
|
* space so that small patterns don't ever need to call malloc.
|
|
*
|
|
* The advantages over a single array is that is periodically
|
|
* realloced when more space is needed is that we avoid ever copying
|
|
* the stack. */
|
|
|
|
/* item_t is the basic stack element. Defined as a union of
|
|
* structures so that both registers, failure points, and counters can
|
|
* be pushed/popped from the stack. There's nothing built into the
|
|
* item to keep track of whether a certain stack item is a register, a
|
|
* failure point, or a counter. */
|
|
|
|
typedef union item_t
|
|
{
|
|
struct
|
|
{
|
|
int num;
|
|
int level;
|
|
unsigned char *start;
|
|
unsigned char *end;
|
|
} reg;
|
|
struct
|
|
{
|
|
int count;
|
|
int level;
|
|
int phantom;
|
|
unsigned char *code;
|
|
unsigned char *text;
|
|
} fail;
|
|
struct
|
|
{
|
|
int num;
|
|
int level;
|
|
int count;
|
|
} cntr;
|
|
} item_t;
|
|
|
|
#define STACK_PAGE_SIZE 256
|
|
#define NUM_REGISTERS 256
|
|
|
|
/* A 'page' of stack items. */
|
|
|
|
typedef struct item_page_t
|
|
{
|
|
item_t items[STACK_PAGE_SIZE];
|
|
struct item_page_t *prev;
|
|
struct item_page_t *next;
|
|
} item_page_t;
|
|
|
|
|
|
typedef struct match_state
|
|
{
|
|
/* The number of registers that have been pushed onto the stack
|
|
* since the last failure point. */
|
|
|
|
int count;
|
|
|
|
/* Used to control when registers need to be pushed onto the
|
|
* stack. */
|
|
|
|
int level;
|
|
|
|
/* The number of failure points on the stack. */
|
|
|
|
int point;
|
|
|
|
/* Storage for the registers. Each register consists of two
|
|
* pointers to characters. So register N is represented as
|
|
* start[N] and end[N]. The pointers must be converted to
|
|
* offsets from the beginning of the string before returning the
|
|
* registers to the calling program. */
|
|
|
|
unsigned char *start[NUM_REGISTERS];
|
|
unsigned char *end[NUM_REGISTERS];
|
|
|
|
/* Keeps track of whether a register has changed recently. */
|
|
|
|
int changed[NUM_REGISTERS];
|
|
|
|
/* Structure to encapsulate the stack. */
|
|
struct
|
|
{
|
|
/* index into the curent page. If index == 0 and you need
|
|
* to pop an item, move to the previous page and set index
|
|
* = STACK_PAGE_SIZE - 1. Otherwise decrement index to
|
|
* push a page. If index == STACK_PAGE_SIZE and you need
|
|
* to push a page move to the next page and set index =
|
|
* 0. If there is no new next page, allocate a new page
|
|
* and link it in. Otherwise, increment index to push a
|
|
* page. */
|
|
|
|
int index;
|
|
item_page_t *current; /* Pointer to the current page. */
|
|
item_page_t first; /* First page is statically allocated. */
|
|
} stack;
|
|
} match_state;
|
|
|
|
/* Initialize a state object */
|
|
|
|
/* #define NEW_STATE(state) \ */
|
|
/* memset(&state, 0, (void *)(&state.stack) - (void *)(&state)); \ */
|
|
/* state.stack.current = &state.stack.first; \ */
|
|
/* state.stack.first.prev = NULL; \ */
|
|
/* state.stack.first.next = NULL; \ */
|
|
/* state.stack.index = 0; \ */
|
|
/* state.level = 1 */
|
|
|
|
#define NEW_STATE(state, nregs) \
|
|
{ \
|
|
int i; \
|
|
for (i = 0; i < nregs; i++) \
|
|
{ \
|
|
state.start[i] = NULL; \
|
|
state.end[i] = NULL; \
|
|
state.changed[i] = 0; \
|
|
} \
|
|
state.stack.current = &state.stack.first; \
|
|
state.stack.first.prev = NULL; \
|
|
state.stack.first.next = NULL; \
|
|
state.stack.index = 0; \
|
|
state.level = 1; \
|
|
state.count = 0; \
|
|
state.level = 0; \
|
|
state.point = 0; \
|
|
}
|
|
|
|
/* Free any memory that might have been malloc'd */
|
|
|
|
#define FREE_STATE(state) \
|
|
while(state.stack.first.next != NULL) \
|
|
{ \
|
|
state.stack.current = state.stack.first.next; \
|
|
state.stack.first.next = state.stack.current->next; \
|
|
free(state.stack.current); \
|
|
}
|
|
|
|
/* Discard the top 'count' stack items. */
|
|
|
|
#define STACK_DISCARD(stack, count, on_error) \
|
|
stack.index -= count; \
|
|
while (stack.index < 0) \
|
|
{ \
|
|
if (stack.current->prev == NULL) \
|
|
on_error; \
|
|
stack.current = stack.current->prev; \
|
|
stack.index += STACK_PAGE_SIZE; \
|
|
}
|
|
|
|
/* Store a pointer to the previous item on the stack. Used to pop an
|
|
* item off of the stack. */
|
|
|
|
#define STACK_PREV(stack, top, on_error) \
|
|
if (stack.index == 0) \
|
|
{ \
|
|
if (stack.current->prev == NULL) \
|
|
on_error; \
|
|
stack.current = stack.current->prev; \
|
|
stack.index = STACK_PAGE_SIZE - 1; \
|
|
} \
|
|
else \
|
|
{ \
|
|
stack.index--; \
|
|
} \
|
|
top = &(stack.current->items[stack.index])
|
|
|
|
/* Store a pointer to the next item on the stack. Used to push an item
|
|
* on to the stack. */
|
|
|
|
#define STACK_NEXT(stack, top, on_error) \
|
|
if (stack.index == STACK_PAGE_SIZE) \
|
|
{ \
|
|
if (stack.current->next == NULL) \
|
|
{ \
|
|
stack.current->next = (item_page_t *)malloc(sizeof(item_page_t)); \
|
|
if (stack.current->next == NULL) \
|
|
on_error; \
|
|
stack.current->next->prev = stack.current; \
|
|
stack.current->next->next = NULL; \
|
|
} \
|
|
stack.current = stack.current->next; \
|
|
stack.index = 0; \
|
|
} \
|
|
top = &(stack.current->items[stack.index++])
|
|
|
|
/* Store a pointer to the item that is 'count' items back in the
|
|
* stack. STACK_BACK(stack, top, 1, on_error) is equivalent to
|
|
* STACK_TOP(stack, top, on_error). */
|
|
|
|
#define STACK_BACK(stack, top, count, on_error) \
|
|
{ \
|
|
int index; \
|
|
item_page_t *current; \
|
|
current = stack.current; \
|
|
index = stack.index - (count); \
|
|
while (index < 0) \
|
|
{ \
|
|
if (current->prev == NULL) \
|
|
on_error; \
|
|
current = current->prev; \
|
|
index += STACK_PAGE_SIZE; \
|
|
} \
|
|
top = &(current->items[index]); \
|
|
}
|
|
|
|
/* Store a pointer to the top item on the stack. Execute the
|
|
* 'on_error' code if there are no items on the stack. */
|
|
|
|
#define STACK_TOP(stack, top, on_error) \
|
|
if (stack.index == 0) \
|
|
{ \
|
|
if (stack.current->prev == NULL) \
|
|
on_error; \
|
|
top = &(stack.current->prev->items[STACK_PAGE_SIZE - 1]); \
|
|
} \
|
|
else \
|
|
{ \
|
|
top = &(stack.current->items[stack.index - 1]); \
|
|
}
|
|
|
|
/* Test to see if the stack is empty */
|
|
|
|
#define STACK_EMPTY(stack) ((stack.index == 0) && \
|
|
(stack.current->prev == NULL))
|
|
|
|
/* Return the start of register 'reg' */
|
|
|
|
#define GET_REG_START(state, reg) (state.start[reg])
|
|
|
|
/* Return the end of register 'reg' */
|
|
|
|
#define GET_REG_END(state, reg) (state.end[reg])
|
|
|
|
/* Set the start of register 'reg'. If the state of the register needs
|
|
* saving, push it on the stack. */
|
|
|
|
#define SET_REG_START(state, reg, text, on_error) \
|
|
if(state.changed[reg] < state.level) \
|
|
{ \
|
|
item_t *item; \
|
|
STACK_NEXT(state.stack, item, on_error); \
|
|
item->reg.num = reg; \
|
|
item->reg.start = state.start[reg]; \
|
|
item->reg.end = state.end[reg]; \
|
|
item->reg.level = state.changed[reg]; \
|
|
state.changed[reg] = state.level; \
|
|
state.count++; \
|
|
} \
|
|
state.start[reg] = text
|
|
|
|
/* Set the end of register 'reg'. If the state of the register needs
|
|
* saving, push it on the stack. */
|
|
|
|
#define SET_REG_END(state, reg, text, on_error) \
|
|
if(state.changed[reg] < state.level) \
|
|
{ \
|
|
item_t *item; \
|
|
STACK_NEXT(state.stack, item, on_error); \
|
|
item->reg.num = reg; \
|
|
item->reg.start = state.start[reg]; \
|
|
item->reg.end = state.end[reg]; \
|
|
item->reg.level = state.changed[reg]; \
|
|
state.changed[reg] = state.level; \
|
|
state.count++; \
|
|
} \
|
|
state.end[reg] = text
|
|
|
|
#define PUSH_FAILURE(state, xcode, xtext, on_error) \
|
|
{ \
|
|
item_t *item; \
|
|
STACK_NEXT(state.stack, item, on_error); \
|
|
item->fail.code = xcode; \
|
|
item->fail.text = xtext; \
|
|
item->fail.count = state.count; \
|
|
item->fail.level = state.level; \
|
|
item->fail.phantom = 0; \
|
|
state.count = 0; \
|
|
state.level++; \
|
|
state.point++; \
|
|
}
|
|
|
|
/* Update the last failure point with a new position in the text. */
|
|
|
|
#define UPDATE_FAILURE(state, xtext, on_error) \
|
|
{ \
|
|
item_t *item; \
|
|
STACK_BACK(state.stack, item, state.count + 1, on_error); \
|
|
if (!item->fail.phantom) \
|
|
{ \
|
|
item_t *item2; \
|
|
STACK_NEXT(state.stack, item2, on_error); \
|
|
item2->fail.code = item->fail.code; \
|
|
item2->fail.text = xtext; \
|
|
item2->fail.count = state.count; \
|
|
item2->fail.level = state.level; \
|
|
item2->fail.phantom = 1; \
|
|
state.count = 0; \
|
|
state.level++; \
|
|
state.point++; \
|
|
} \
|
|
else \
|
|
{ \
|
|
STACK_DISCARD(state.stack, state.count, on_error); \
|
|
STACK_TOP(state.stack, item, on_error); \
|
|
item->fail.text = xtext; \
|
|
state.count = 0; \
|
|
state.level++; \
|
|
} \
|
|
}
|
|
|
|
#define POP_FAILURE(state, xcode, xtext, on_empty, on_error) \
|
|
{ \
|
|
item_t *item; \
|
|
do \
|
|
{ \
|
|
while(state.count > 0) \
|
|
{ \
|
|
STACK_PREV(state.stack, item, on_error); \
|
|
state.start[item->reg.num] = item->reg.start; \
|
|
state.end[item->reg.num] = item->reg.end; \
|
|
state.changed[item->reg.num] = item->reg.level; \
|
|
state.count--; \
|
|
} \
|
|
STACK_PREV(state.stack, item, on_empty); \
|
|
xcode = item->fail.code; \
|
|
xtext = item->fail.text; \
|
|
state.count = item->fail.count; \
|
|
state.level = item->fail.level; \
|
|
state.point--; \
|
|
} \
|
|
while (item->fail.text == NULL); \
|
|
}
|
|
|
|
enum regexp_compiled_ops /* opcodes for compiled regexp */
|
|
{
|
|
Cend, /* end of pattern reached */
|
|
Cbol, /* beginning of line */
|
|
Ceol, /* end of line */
|
|
Cset, /* character set. Followed by 32 bytes of set. */
|
|
Cexact, /* followed by a byte to match */
|
|
Canychar, /* matches any character except newline */
|
|
Cstart_memory, /* set register start addr (followed by reg number) */
|
|
Cend_memory, /* set register end addr (followed by reg number) */
|
|
Cmatch_memory, /* match a duplicate of reg contents (regnum follows)*/
|
|
Cjump, /* followed by two bytes (lsb,msb) of displacement. */
|
|
Cstar_jump, /* will change to jump/update_failure_jump at runtime */
|
|
Cfailure_jump, /* jump to addr on failure */
|
|
Cupdate_failure_jump, /* update topmost failure point and jump */
|
|
Cdummy_failure_jump, /* push a dummy failure point and jump */
|
|
Cbegbuf, /* match at beginning of buffer */
|
|
Cendbuf, /* match at end of buffer */
|
|
Cwordbeg, /* match at beginning of word */
|
|
Cwordend, /* match at end of word */
|
|
Cwordbound, /* match if at word boundary */
|
|
Cnotwordbound, /* match if not at word boundary */
|
|
Csyntaxspec, /* matches syntax code (1 byte follows) */
|
|
Cnotsyntaxspec, /* matches if syntax code does not match (1 byte follows) */
|
|
Crepeat1
|
|
};
|
|
|
|
enum regexp_syntax_op /* syntax codes for plain and quoted characters */
|
|
{
|
|
Rend, /* special code for end of regexp */
|
|
Rnormal, /* normal character */
|
|
Ranychar, /* any character except newline */
|
|
Rquote, /* the quote character */
|
|
Rbol, /* match beginning of line */
|
|
Reol, /* match end of line */
|
|
Roptional, /* match preceding expression optionally */
|
|
Rstar, /* match preceding expr zero or more times */
|
|
Rplus, /* match preceding expr one or more times */
|
|
Ror, /* match either of alternatives */
|
|
Ropenpar, /* opening parenthesis */
|
|
Rclosepar, /* closing parenthesis */
|
|
Rmemory, /* match memory register */
|
|
Rextended_memory, /* \vnn to match registers 10-99 */
|
|
Ropenset, /* open set. Internal syntax hard-coded below. */
|
|
/* the following are gnu extensions to "normal" regexp syntax */
|
|
Rbegbuf, /* beginning of buffer */
|
|
Rendbuf, /* end of buffer */
|
|
Rwordchar, /* word character */
|
|
Rnotwordchar, /* not word character */
|
|
Rwordbeg, /* beginning of word */
|
|
Rwordend, /* end of word */
|
|
Rwordbound, /* word bound */
|
|
Rnotwordbound, /* not word bound */
|
|
Rnum_ops
|
|
};
|
|
|
|
static int re_compile_initialized = 0;
|
|
static int regexp_syntax = 0;
|
|
int re_syntax = 0; /* Exported copy of regexp_syntax */
|
|
static unsigned char regexp_plain_ops[256];
|
|
static unsigned char regexp_quoted_ops[256];
|
|
static unsigned char regexp_precedences[Rnum_ops];
|
|
static int regexp_context_indep_ops;
|
|
static int regexp_ansi_sequences;
|
|
|
|
#define NUM_LEVELS 5 /* number of precedence levels in use */
|
|
#define MAX_NESTING 100 /* max nesting level of operators */
|
|
|
|
#define SYNTAX(ch) re_syntax_table[(unsigned char)(ch)]
|
|
|
|
unsigned char re_syntax_table[256];
|
|
|
|
void re_compile_initialize()
|
|
{
|
|
int a;
|
|
|
|
static int syntax_table_inited = 0;
|
|
|
|
if (!syntax_table_inited)
|
|
{
|
|
syntax_table_inited = 1;
|
|
memset(re_syntax_table, 0, 256);
|
|
for (a = 'a'; a <= 'z'; a++)
|
|
re_syntax_table[a] = Sword;
|
|
for (a = 'A'; a <= 'Z'; a++)
|
|
re_syntax_table[a] = Sword;
|
|
for (a = '0'; a <= '9'; a++)
|
|
re_syntax_table[a] = Sword | Sdigit | Shexdigit;
|
|
for (a = '0'; a <= '7'; a++)
|
|
re_syntax_table[a] |= Soctaldigit;
|
|
for (a = 'A'; a <= 'F'; a++)
|
|
re_syntax_table[a] |= Shexdigit;
|
|
for (a = 'a'; a <= 'f'; a++)
|
|
re_syntax_table[a] |= Shexdigit;
|
|
re_syntax_table['_'] = Sword;
|
|
for (a = 9; a <= 13; a++)
|
|
re_syntax_table[a] = Swhitespace;
|
|
re_syntax_table[' '] = Swhitespace;
|
|
}
|
|
re_compile_initialized = 1;
|
|
for (a = 0; a < 256; a++)
|
|
{
|
|
regexp_plain_ops[a] = Rnormal;
|
|
regexp_quoted_ops[a] = Rnormal;
|
|
}
|
|
for (a = '0'; a <= '9'; a++)
|
|
regexp_quoted_ops[a] = Rmemory;
|
|
regexp_plain_ops['\134'] = Rquote;
|
|
if (regexp_syntax & RE_NO_BK_PARENS)
|
|
{
|
|
regexp_plain_ops['('] = Ropenpar;
|
|
regexp_plain_ops[')'] = Rclosepar;
|
|
}
|
|
else
|
|
{
|
|
regexp_quoted_ops['('] = Ropenpar;
|
|
regexp_quoted_ops[')'] = Rclosepar;
|
|
}
|
|
if (regexp_syntax & RE_NO_BK_VBAR)
|
|
regexp_plain_ops['\174'] = Ror;
|
|
else
|
|
regexp_quoted_ops['\174'] = Ror;
|
|
regexp_plain_ops['*'] = Rstar;
|
|
if (regexp_syntax & RE_BK_PLUS_QM)
|
|
{
|
|
regexp_quoted_ops['+'] = Rplus;
|
|
regexp_quoted_ops['?'] = Roptional;
|
|
}
|
|
else
|
|
{
|
|
regexp_plain_ops['+'] = Rplus;
|
|
regexp_plain_ops['?'] = Roptional;
|
|
}
|
|
if (regexp_syntax & RE_NEWLINE_OR)
|
|
regexp_plain_ops['\n'] = Ror;
|
|
regexp_plain_ops['\133'] = Ropenset;
|
|
regexp_plain_ops['\136'] = Rbol;
|
|
regexp_plain_ops['$'] = Reol;
|
|
regexp_plain_ops['.'] = Ranychar;
|
|
if (!(regexp_syntax & RE_NO_GNU_EXTENSIONS))
|
|
{
|
|
regexp_quoted_ops['w'] = Rwordchar;
|
|
regexp_quoted_ops['W'] = Rnotwordchar;
|
|
regexp_quoted_ops['<'] = Rwordbeg;
|
|
regexp_quoted_ops['>'] = Rwordend;
|
|
regexp_quoted_ops['b'] = Rwordbound;
|
|
regexp_quoted_ops['B'] = Rnotwordbound;
|
|
regexp_quoted_ops['`'] = Rbegbuf;
|
|
regexp_quoted_ops['\''] = Rendbuf;
|
|
}
|
|
if (regexp_syntax & RE_ANSI_HEX)
|
|
regexp_quoted_ops['v'] = Rextended_memory;
|
|
for (a = 0; a < Rnum_ops; a++)
|
|
regexp_precedences[a] = 4;
|
|
if (regexp_syntax & RE_TIGHT_VBAR)
|
|
{
|
|
regexp_precedences[Ror] = 3;
|
|
regexp_precedences[Rbol] = 2;
|
|
regexp_precedences[Reol] = 2;
|
|
}
|
|
else
|
|
{
|
|
regexp_precedences[Ror] = 2;
|
|
regexp_precedences[Rbol] = 3;
|
|
regexp_precedences[Reol] = 3;
|
|
}
|
|
regexp_precedences[Rclosepar] = 1;
|
|
regexp_precedences[Rend] = 0;
|
|
regexp_context_indep_ops = (regexp_syntax & RE_CONTEXT_INDEP_OPS) != 0;
|
|
regexp_ansi_sequences = (regexp_syntax & RE_ANSI_HEX) != 0;
|
|
}
|
|
|
|
int re_set_syntax(syntax)
|
|
int syntax;
|
|
{
|
|
int ret;
|
|
|
|
ret = regexp_syntax;
|
|
regexp_syntax = syntax;
|
|
re_syntax = syntax; /* Exported copy */
|
|
re_compile_initialize();
|
|
return ret;
|
|
}
|
|
|
|
static int hex_char_to_decimal(ch)
|
|
int ch;
|
|
{
|
|
if (ch >= '0' && ch <= '9')
|
|
return ch - '0';
|
|
if (ch >= 'a' && ch <= 'f')
|
|
return ch - 'a' + 10;
|
|
if (ch >= 'A' && ch <= 'F')
|
|
return ch - 'A' + 10;
|
|
return 16;
|
|
}
|
|
|
|
static void re_compile_fastmap_aux(code,
|
|
pos,
|
|
visited,
|
|
can_be_null,
|
|
fastmap)
|
|
unsigned char *code;
|
|
int pos;
|
|
unsigned char *visited;
|
|
unsigned char *can_be_null;
|
|
unsigned char *fastmap;
|
|
{
|
|
int a;
|
|
int b;
|
|
int syntaxcode;
|
|
|
|
if (visited[pos])
|
|
return; /* we have already been here */
|
|
visited[pos] = 1;
|
|
for (;;)
|
|
switch (code[pos++]) {
|
|
case Cend:
|
|
{
|
|
*can_be_null = 1;
|
|
return;
|
|
}
|
|
case Cbol:
|
|
case Cbegbuf:
|
|
case Cendbuf:
|
|
case Cwordbeg:
|
|
case Cwordend:
|
|
case Cwordbound:
|
|
case Cnotwordbound:
|
|
{
|
|
for (a = 0; a < 256; a++)
|
|
fastmap[a] = 1;
|
|
break;
|
|
}
|
|
case Csyntaxspec:
|
|
{
|
|
syntaxcode = code[pos++];
|
|
for (a = 0; a < 256; a++)
|
|
if (SYNTAX(a) & syntaxcode)
|
|
fastmap[a] = 1;
|
|
return;
|
|
}
|
|
case Cnotsyntaxspec:
|
|
{
|
|
syntaxcode = code[pos++];
|
|
for (a = 0; a < 256; a++)
|
|
if (!(SYNTAX(a) & syntaxcode) )
|
|
fastmap[a] = 1;
|
|
return;
|
|
}
|
|
case Ceol:
|
|
{
|
|
fastmap['\n'] = 1;
|
|
if (*can_be_null == 0)
|
|
*can_be_null = 2; /* can match null, but only at end of buffer*/
|
|
return;
|
|
}
|
|
case Cset:
|
|
{
|
|
for (a = 0; a < 256/8; a++)
|
|
if (code[pos + a] != 0)
|
|
for (b = 0; b < 8; b++)
|
|
if (code[pos + a] & (1 << b))
|
|
fastmap[(a << 3) + b] = 1;
|
|
pos += 256/8;
|
|
return;
|
|
}
|
|
case Cexact:
|
|
{
|
|
fastmap[(unsigned char)code[pos]] = 1;
|
|
return;
|
|
}
|
|
case Canychar:
|
|
{
|
|
for (a = 0; a < 256; a++)
|
|
if (a != '\n')
|
|
fastmap[a] = 1;
|
|
return;
|
|
}
|
|
case Cstart_memory:
|
|
case Cend_memory:
|
|
{
|
|
pos++;
|
|
break;
|
|
}
|
|
case Cmatch_memory:
|
|
{
|
|
for (a = 0; a < 256; a++)
|
|
fastmap[a] = 1;
|
|
*can_be_null = 1;
|
|
return;
|
|
}
|
|
case Cjump:
|
|
case Cdummy_failure_jump:
|
|
case Cupdate_failure_jump:
|
|
case Cstar_jump:
|
|
{
|
|
a = (unsigned char)code[pos++];
|
|
a |= (unsigned char)code[pos++] << 8;
|
|
pos += (int)SHORT(a);
|
|
if (visited[pos])
|
|
{
|
|
/* argh... the regexp contains empty loops. This is not
|
|
good, as this may cause a failure stack overflow when
|
|
matching. Oh well. */
|
|
/* this path leads nowhere; pursue other paths. */
|
|
return;
|
|
}
|
|
visited[pos] = 1;
|
|
break;
|
|
}
|
|
case Cfailure_jump:
|
|
{
|
|
a = (unsigned char)code[pos++];
|
|
a |= (unsigned char)code[pos++] << 8;
|
|
a = pos + (int)SHORT(a);
|
|
re_compile_fastmap_aux(code, a, visited, can_be_null, fastmap);
|
|
break;
|
|
}
|
|
case Crepeat1:
|
|
{
|
|
pos += 2;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?");
|
|
return;
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
}
|
|
|
|
static int re_do_compile_fastmap(buffer,
|
|
used,
|
|
pos,
|
|
can_be_null,
|
|
fastmap)
|
|
unsigned char *buffer;
|
|
int used;
|
|
int pos;
|
|
unsigned char *can_be_null;
|
|
unsigned char *fastmap;
|
|
{
|
|
unsigned char small_visited[512], *visited;
|
|
|
|
if (used <= sizeof(small_visited))
|
|
visited = small_visited;
|
|
else
|
|
{
|
|
visited = malloc(used);
|
|
if (!visited)
|
|
return 0;
|
|
}
|
|
*can_be_null = 0;
|
|
memset(fastmap, 0, 256);
|
|
memset(visited, 0, used);
|
|
re_compile_fastmap_aux(buffer, pos, visited, can_be_null, fastmap);
|
|
if (visited != small_visited)
|
|
free(visited);
|
|
return 1;
|
|
}
|
|
|
|
void re_compile_fastmap(bufp)
|
|
regexp_t bufp;
|
|
{
|
|
if (!bufp->fastmap || bufp->fastmap_accurate)
|
|
return;
|
|
assert(bufp->used > 0);
|
|
if (!re_do_compile_fastmap(bufp->buffer,
|
|
bufp->used,
|
|
0,
|
|
&bufp->can_be_null,
|
|
bufp->fastmap))
|
|
return;
|
|
if (PyErr_Occurred()) return;
|
|
if (bufp->buffer[0] == Cbol)
|
|
bufp->anchor = 1; /* begline */
|
|
else
|
|
if (bufp->buffer[0] == Cbegbuf)
|
|
bufp->anchor = 2; /* begbuf */
|
|
else
|
|
bufp->anchor = 0; /* none */
|
|
bufp->fastmap_accurate = 1;
|
|
}
|
|
|
|
/*
|
|
* star is coded as:
|
|
* 1: failure_jump 2
|
|
* ... code for operand of star
|
|
* star_jump 1
|
|
* 2: ... code after star
|
|
*
|
|
* We change the star_jump to update_failure_jump if we can determine
|
|
* that it is safe to do so; otherwise we change it to an ordinary
|
|
* jump.
|
|
*
|
|
* plus is coded as
|
|
*
|
|
* jump 2
|
|
* 1: failure_jump 3
|
|
* 2: ... code for operand of plus
|
|
* star_jump 1
|
|
* 3: ... code after plus
|
|
*
|
|
* For star_jump considerations this is processed identically to star.
|
|
*
|
|
*/
|
|
|
|
static int re_optimize_star_jump(bufp, code)
|
|
regexp_t bufp;
|
|
unsigned char *code;
|
|
{
|
|
unsigned char map[256];
|
|
unsigned char can_be_null;
|
|
unsigned char *p1;
|
|
unsigned char *p2;
|
|
unsigned char ch;
|
|
int a;
|
|
int b;
|
|
int num_instructions = 0;
|
|
|
|
a = (unsigned char)*code++;
|
|
a |= (unsigned char)*code++ << 8;
|
|
a = (int)SHORT(a);
|
|
|
|
p1 = code + a + 3; /* skip the failure_jump */
|
|
/* Check that the jump is within the pattern */
|
|
if (p1<bufp->buffer || bufp->buffer+bufp->used<p1)
|
|
{
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (failure_jump opt)");
|
|
return 0;
|
|
}
|
|
|
|
assert(p1[-3] == Cfailure_jump);
|
|
p2 = code;
|
|
/* p1 points inside loop, p2 points to after loop */
|
|
if (!re_do_compile_fastmap(bufp->buffer, bufp->used,
|
|
p2 - bufp->buffer, &can_be_null, map))
|
|
goto make_normal_jump;
|
|
|
|
/* If we might introduce a new update point inside the
|
|
* loop, we can't optimize because then update_jump would
|
|
* update a wrong failure point. Thus we have to be
|
|
* quite careful here.
|
|
*/
|
|
|
|
/* loop until we find something that consumes a character */
|
|
loop_p1:
|
|
num_instructions++;
|
|
switch (*p1++)
|
|
{
|
|
case Cbol:
|
|
case Ceol:
|
|
case Cbegbuf:
|
|
case Cendbuf:
|
|
case Cwordbeg:
|
|
case Cwordend:
|
|
case Cwordbound:
|
|
case Cnotwordbound:
|
|
{
|
|
goto loop_p1;
|
|
}
|
|
case Cstart_memory:
|
|
case Cend_memory:
|
|
{
|
|
p1++;
|
|
goto loop_p1;
|
|
}
|
|
case Cexact:
|
|
{
|
|
ch = (unsigned char)*p1++;
|
|
if (map[(int)ch])
|
|
goto make_normal_jump;
|
|
break;
|
|
}
|
|
case Canychar:
|
|
{
|
|
for (b = 0; b < 256; b++)
|
|
if (b != '\n' && map[b])
|
|
goto make_normal_jump;
|
|
break;
|
|
}
|
|
case Cset:
|
|
{
|
|
for (b = 0; b < 256; b++)
|
|
if ((p1[b >> 3] & (1 << (b & 7))) && map[b])
|
|
goto make_normal_jump;
|
|
p1 += 256/8;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
goto make_normal_jump;
|
|
}
|
|
}
|
|
/* now we know that we can't backtrack. */
|
|
while (p1 != p2 - 3)
|
|
{
|
|
num_instructions++;
|
|
switch (*p1++)
|
|
{
|
|
case Cend:
|
|
{
|
|
return 0;
|
|
}
|
|
case Cbol:
|
|
case Ceol:
|
|
case Canychar:
|
|
case Cbegbuf:
|
|
case Cendbuf:
|
|
case Cwordbeg:
|
|
case Cwordend:
|
|
case Cwordbound:
|
|
case Cnotwordbound:
|
|
{
|
|
break;
|
|
}
|
|
case Cset:
|
|
{
|
|
p1 += 256/8;
|
|
break;
|
|
}
|
|
case Cexact:
|
|
case Cstart_memory:
|
|
case Cend_memory:
|
|
case Cmatch_memory:
|
|
case Csyntaxspec:
|
|
case Cnotsyntaxspec:
|
|
{
|
|
p1++;
|
|
break;
|
|
}
|
|
case Cjump:
|
|
case Cstar_jump:
|
|
case Cfailure_jump:
|
|
case Cupdate_failure_jump:
|
|
case Cdummy_failure_jump:
|
|
{
|
|
goto make_normal_jump;
|
|
}
|
|
default:
|
|
{
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* make_update_jump: */
|
|
code -= 3;
|
|
a += 3; /* jump to after the Cfailure_jump */
|
|
code[0] = Cupdate_failure_jump;
|
|
code[1] = a & 0xff;
|
|
code[2] = a >> 8;
|
|
if (num_instructions > 1)
|
|
return 1;
|
|
assert(num_instructions == 1);
|
|
/* if the only instruction matches a single character, we can do
|
|
* better */
|
|
p1 = code + 3 + a; /* start of sole instruction */
|
|
if (*p1 == Cset || *p1 == Cexact || *p1 == Canychar ||
|
|
*p1 == Csyntaxspec || *p1 == Cnotsyntaxspec)
|
|
code[0] = Crepeat1;
|
|
return 1;
|
|
|
|
make_normal_jump:
|
|
code -= 3;
|
|
*code = Cjump;
|
|
return 1;
|
|
}
|
|
|
|
static int re_optimize(bufp)
|
|
regexp_t bufp;
|
|
{
|
|
unsigned char *code;
|
|
|
|
code = bufp->buffer;
|
|
|
|
while(1)
|
|
{
|
|
switch (*code++)
|
|
{
|
|
case Cend:
|
|
{
|
|
return 1;
|
|
}
|
|
case Canychar:
|
|
case Cbol:
|
|
case Ceol:
|
|
case Cbegbuf:
|
|
case Cendbuf:
|
|
case Cwordbeg:
|
|
case Cwordend:
|
|
case Cwordbound:
|
|
case Cnotwordbound:
|
|
{
|
|
break;
|
|
}
|
|
case Cset:
|
|
{
|
|
code += 256/8;
|
|
break;
|
|
}
|
|
case Cexact:
|
|
case Cstart_memory:
|
|
case Cend_memory:
|
|
case Cmatch_memory:
|
|
case Csyntaxspec:
|
|
case Cnotsyntaxspec:
|
|
{
|
|
code++;
|
|
break;
|
|
}
|
|
case Cstar_jump:
|
|
{
|
|
if (!re_optimize_star_jump(bufp, code))
|
|
{
|
|
return 0;
|
|
}
|
|
/* fall through */
|
|
}
|
|
case Cupdate_failure_jump:
|
|
case Cjump:
|
|
case Cdummy_failure_jump:
|
|
case Cfailure_jump:
|
|
case Crepeat1:
|
|
{
|
|
code += 2;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define NEXTCHAR(var) \
|
|
{ \
|
|
if (pos >= size) \
|
|
goto ends_prematurely; \
|
|
(var) = regex[pos]; \
|
|
pos++; \
|
|
}
|
|
|
|
#define ALLOC(amount) \
|
|
{ \
|
|
if (pattern_offset+(amount) > alloc) \
|
|
{ \
|
|
alloc += 256 + (amount); \
|
|
pattern = realloc(pattern, alloc); \
|
|
if (!pattern) \
|
|
goto out_of_memory; \
|
|
} \
|
|
}
|
|
|
|
#define STORE(ch) pattern[pattern_offset++] = (ch)
|
|
|
|
#define CURRENT_LEVEL_START (starts[starts_base + current_level])
|
|
|
|
#define SET_LEVEL_START starts[starts_base + current_level] = pattern_offset
|
|
|
|
#define PUSH_LEVEL_STARTS \
|
|
if (starts_base < (MAX_NESTING-1)*NUM_LEVELS) \
|
|
starts_base += NUM_LEVELS; \
|
|
else \
|
|
goto too_complex \
|
|
|
|
#define POP_LEVEL_STARTS starts_base -= NUM_LEVELS
|
|
|
|
#define PUT_ADDR(offset,addr) \
|
|
{ \
|
|
int disp = (addr) - (offset) - 2; \
|
|
pattern[(offset)] = disp & 0xff; \
|
|
pattern[(offset)+1] = (disp>>8) & 0xff; \
|
|
}
|
|
|
|
#define INSERT_JUMP(pos,type,addr) \
|
|
{ \
|
|
int a, p = (pos), t = (type), ad = (addr); \
|
|
for (a = pattern_offset - 1; a >= p; a--) \
|
|
pattern[a + 3] = pattern[a]; \
|
|
pattern[p] = t; \
|
|
PUT_ADDR(p+1,ad); \
|
|
pattern_offset += 3; \
|
|
}
|
|
|
|
#define SETBIT(buf,offset,bit) (buf)[(offset)+(bit)/8] |= (1<<((bit) & 7))
|
|
|
|
#define SET_FIELDS \
|
|
{ \
|
|
bufp->allocated = alloc; \
|
|
bufp->buffer = pattern; \
|
|
bufp->used = pattern_offset; \
|
|
}
|
|
|
|
#define GETHEX(var) \
|
|
{ \
|
|
unsigned char gethex_ch, gethex_value; \
|
|
NEXTCHAR(gethex_ch); \
|
|
gethex_value = hex_char_to_decimal(gethex_ch); \
|
|
if (gethex_value == 16) \
|
|
goto hex_error; \
|
|
NEXTCHAR(gethex_ch); \
|
|
gethex_ch = hex_char_to_decimal(gethex_ch); \
|
|
if (gethex_ch == 16) \
|
|
goto hex_error; \
|
|
(var) = gethex_value * 16 + gethex_ch; \
|
|
}
|
|
|
|
#define ANSI_TRANSLATE(ch) \
|
|
{ \
|
|
switch (ch) \
|
|
{ \
|
|
case 'a': \
|
|
case 'A': \
|
|
{ \
|
|
ch = 7; /* audible bell */ \
|
|
break; \
|
|
} \
|
|
case 'b': \
|
|
case 'B': \
|
|
{ \
|
|
ch = 8; /* backspace */ \
|
|
break; \
|
|
} \
|
|
case 'f': \
|
|
case 'F': \
|
|
{ \
|
|
ch = 12; /* form feed */ \
|
|
break; \
|
|
} \
|
|
case 'n': \
|
|
case 'N': \
|
|
{ \
|
|
ch = 10; /* line feed */ \
|
|
break; \
|
|
} \
|
|
case 'r': \
|
|
case 'R': \
|
|
{ \
|
|
ch = 13; /* carriage return */ \
|
|
break; \
|
|
} \
|
|
case 't': \
|
|
case 'T': \
|
|
{ \
|
|
ch = 9; /* tab */ \
|
|
break; \
|
|
} \
|
|
case 'v': \
|
|
case 'V': \
|
|
{ \
|
|
ch = 11; /* vertical tab */ \
|
|
break; \
|
|
} \
|
|
case 'x': /* hex code */ \
|
|
case 'X': \
|
|
{ \
|
|
GETHEX(ch); \
|
|
break; \
|
|
} \
|
|
default: \
|
|
{ \
|
|
/* other characters passed through */ \
|
|
if (translate) \
|
|
ch = translate[(unsigned char)ch]; \
|
|
break; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
char *re_compile_pattern(regex, size, bufp)
|
|
unsigned char *regex;
|
|
int size;
|
|
regexp_t bufp;
|
|
{
|
|
int a;
|
|
int pos;
|
|
int op;
|
|
int current_level;
|
|
int level;
|
|
int opcode;
|
|
int pattern_offset = 0, alloc;
|
|
int starts[NUM_LEVELS * MAX_NESTING];
|
|
int starts_base;
|
|
int future_jumps[MAX_NESTING];
|
|
int num_jumps;
|
|
unsigned char ch = '\0';
|
|
unsigned char *pattern;
|
|
unsigned char *translate;
|
|
int next_register;
|
|
int paren_depth;
|
|
int num_open_registers;
|
|
int open_registers[RE_NREGS];
|
|
int beginning_context;
|
|
|
|
if (!re_compile_initialized)
|
|
re_compile_initialize();
|
|
bufp->used = 0;
|
|
bufp->fastmap_accurate = 0;
|
|
bufp->uses_registers = 1;
|
|
bufp->num_registers = 1;
|
|
translate = bufp->translate;
|
|
pattern = bufp->buffer;
|
|
alloc = bufp->allocated;
|
|
if (alloc == 0 || pattern == NULL)
|
|
{
|
|
alloc = 256;
|
|
pattern = malloc(alloc);
|
|
if (!pattern)
|
|
goto out_of_memory;
|
|
}
|
|
pattern_offset = 0;
|
|
starts_base = 0;
|
|
num_jumps = 0;
|
|
current_level = 0;
|
|
SET_LEVEL_START;
|
|
num_open_registers = 0;
|
|
next_register = 1;
|
|
paren_depth = 0;
|
|
beginning_context = 1;
|
|
op = -1;
|
|
/* we use Rend dummy to ensure that pending jumps are updated
|
|
(due to low priority of Rend) before exiting the loop. */
|
|
pos = 0;
|
|
while (op != Rend)
|
|
{
|
|
if (pos >= size)
|
|
op = Rend;
|
|
else
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (translate)
|
|
ch = translate[(unsigned char)ch];
|
|
op = regexp_plain_ops[(unsigned char)ch];
|
|
if (op == Rquote)
|
|
{
|
|
NEXTCHAR(ch);
|
|
op = regexp_quoted_ops[(unsigned char)ch];
|
|
if (op == Rnormal && regexp_ansi_sequences)
|
|
ANSI_TRANSLATE(ch);
|
|
}
|
|
}
|
|
level = regexp_precedences[op];
|
|
/* printf("ch='%c' op=%d level=%d current_level=%d
|
|
curlevstart=%d\n", ch, op, level, current_level,
|
|
CURRENT_LEVEL_START); */
|
|
if (level > current_level)
|
|
{
|
|
for (current_level++; current_level < level; current_level++)
|
|
SET_LEVEL_START;
|
|
SET_LEVEL_START;
|
|
}
|
|
else
|
|
if (level < current_level)
|
|
{
|
|
current_level = level;
|
|
for (;num_jumps > 0 &&
|
|
future_jumps[num_jumps-1] >= CURRENT_LEVEL_START;
|
|
num_jumps--)
|
|
PUT_ADDR(future_jumps[num_jumps-1], pattern_offset);
|
|
}
|
|
switch (op)
|
|
{
|
|
case Rend:
|
|
{
|
|
break;
|
|
}
|
|
case Rnormal:
|
|
{
|
|
normal_char:
|
|
opcode = Cexact;
|
|
store_opcode_and_arg: /* opcode & ch must be set */
|
|
SET_LEVEL_START;
|
|
ALLOC(2);
|
|
STORE(opcode);
|
|
STORE(ch);
|
|
break;
|
|
}
|
|
case Ranychar:
|
|
{
|
|
opcode = Canychar;
|
|
store_opcode:
|
|
SET_LEVEL_START;
|
|
ALLOC(1);
|
|
STORE(opcode);
|
|
break;
|
|
}
|
|
case Rquote:
|
|
{
|
|
abort();
|
|
/*NOTREACHED*/
|
|
}
|
|
case Rbol:
|
|
{
|
|
if (!beginning_context) {
|
|
if (regexp_context_indep_ops)
|
|
goto op_error;
|
|
else
|
|
goto normal_char;
|
|
}
|
|
opcode = Cbol;
|
|
goto store_opcode;
|
|
}
|
|
case Reol:
|
|
{
|
|
if (!((pos >= size) ||
|
|
((regexp_syntax & RE_NO_BK_VBAR) ?
|
|
(regex[pos] == '\174') :
|
|
(pos+1 < size && regex[pos] == '\134' &&
|
|
regex[pos+1] == '\174')) ||
|
|
((regexp_syntax & RE_NO_BK_PARENS)?
|
|
(regex[pos] == ')'):
|
|
(pos+1 < size && regex[pos] == '\134' &&
|
|
regex[pos+1] == ')')))) {
|
|
if (regexp_context_indep_ops)
|
|
goto op_error;
|
|
else
|
|
goto normal_char;
|
|
}
|
|
opcode = Ceol;
|
|
goto store_opcode;
|
|
/* NOTREACHED */
|
|
break;
|
|
}
|
|
case Roptional:
|
|
{
|
|
if (beginning_context) {
|
|
if (regexp_context_indep_ops)
|
|
goto op_error;
|
|
else
|
|
goto normal_char;
|
|
}
|
|
if (CURRENT_LEVEL_START == pattern_offset)
|
|
break; /* ignore empty patterns for ? */
|
|
ALLOC(3);
|
|
INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump,
|
|
pattern_offset + 3);
|
|
break;
|
|
}
|
|
case Rstar:
|
|
case Rplus:
|
|
{
|
|
if (beginning_context) {
|
|
if (regexp_context_indep_ops)
|
|
goto op_error;
|
|
else
|
|
goto normal_char;
|
|
}
|
|
if (CURRENT_LEVEL_START == pattern_offset)
|
|
break; /* ignore empty patterns for + and * */
|
|
ALLOC(9);
|
|
INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump,
|
|
pattern_offset + 6);
|
|
INSERT_JUMP(pattern_offset, Cstar_jump, CURRENT_LEVEL_START);
|
|
if (op == Rplus) /* jump over initial failure_jump */
|
|
INSERT_JUMP(CURRENT_LEVEL_START, Cdummy_failure_jump,
|
|
CURRENT_LEVEL_START + 6);
|
|
break;
|
|
}
|
|
case Ror:
|
|
{
|
|
ALLOC(6);
|
|
INSERT_JUMP(CURRENT_LEVEL_START, Cfailure_jump,
|
|
pattern_offset + 6);
|
|
if (num_jumps >= MAX_NESTING)
|
|
goto too_complex;
|
|
STORE(Cjump);
|
|
future_jumps[num_jumps++] = pattern_offset;
|
|
STORE(0);
|
|
STORE(0);
|
|
SET_LEVEL_START;
|
|
break;
|
|
}
|
|
case Ropenpar:
|
|
{
|
|
SET_LEVEL_START;
|
|
if (next_register < RE_NREGS)
|
|
{
|
|
bufp->uses_registers = 1;
|
|
ALLOC(2);
|
|
STORE(Cstart_memory);
|
|
STORE(next_register);
|
|
open_registers[num_open_registers++] = next_register;
|
|
bufp->num_registers++;
|
|
next_register++;
|
|
}
|
|
paren_depth++;
|
|
PUSH_LEVEL_STARTS;
|
|
current_level = 0;
|
|
SET_LEVEL_START;
|
|
break;
|
|
}
|
|
case Rclosepar:
|
|
{
|
|
if (paren_depth <= 0)
|
|
goto parenthesis_error;
|
|
POP_LEVEL_STARTS;
|
|
current_level = regexp_precedences[Ropenpar];
|
|
paren_depth--;
|
|
if (paren_depth < num_open_registers)
|
|
{
|
|
bufp->uses_registers = 1;
|
|
ALLOC(2);
|
|
STORE(Cend_memory);
|
|
num_open_registers--;
|
|
STORE(open_registers[num_open_registers]);
|
|
}
|
|
break;
|
|
}
|
|
case Rmemory:
|
|
{
|
|
if (ch == '0')
|
|
goto bad_match_register;
|
|
assert(ch >= '0' && ch <= '9');
|
|
bufp->uses_registers = 1;
|
|
opcode = Cmatch_memory;
|
|
ch -= '0';
|
|
goto store_opcode_and_arg;
|
|
}
|
|
case Rextended_memory:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (ch < '0' || ch > '9')
|
|
goto bad_match_register;
|
|
NEXTCHAR(a);
|
|
if (a < '0' || a > '9')
|
|
goto bad_match_register;
|
|
ch = 10 * (a - '0') + ch - '0';
|
|
if (ch <= 0 || ch >= RE_NREGS)
|
|
goto bad_match_register;
|
|
bufp->uses_registers = 1;
|
|
opcode = Cmatch_memory;
|
|
goto store_opcode_and_arg;
|
|
}
|
|
case Ropenset:
|
|
{
|
|
int complement;
|
|
int prev;
|
|
int offset;
|
|
int range;
|
|
int firstchar;
|
|
|
|
SET_LEVEL_START;
|
|
ALLOC(1+256/8);
|
|
STORE(Cset);
|
|
offset = pattern_offset;
|
|
for (a = 0; a < 256/8; a++)
|
|
STORE(0);
|
|
NEXTCHAR(ch);
|
|
if (translate)
|
|
ch = translate[(unsigned char)ch];
|
|
if (ch == '\136')
|
|
{
|
|
complement = 1;
|
|
NEXTCHAR(ch);
|
|
if (translate)
|
|
ch = translate[(unsigned char)ch];
|
|
}
|
|
else
|
|
complement = 0;
|
|
prev = -1;
|
|
range = 0;
|
|
firstchar = 1;
|
|
while (ch != '\135' || firstchar)
|
|
{
|
|
firstchar = 0;
|
|
if (regexp_ansi_sequences && ch == '\134')
|
|
{
|
|
NEXTCHAR(ch);
|
|
ANSI_TRANSLATE(ch);
|
|
}
|
|
if (range)
|
|
{
|
|
for (a = prev; a <= (int)ch; a++)
|
|
SETBIT(pattern, offset, a);
|
|
prev = -1;
|
|
range = 0;
|
|
}
|
|
else
|
|
if (prev != -1 && ch == '-')
|
|
range = 1;
|
|
else
|
|
{
|
|
SETBIT(pattern, offset, ch);
|
|
prev = ch;
|
|
}
|
|
NEXTCHAR(ch);
|
|
if (translate)
|
|
ch = translate[(unsigned char)ch];
|
|
}
|
|
if (range)
|
|
SETBIT(pattern, offset, '-');
|
|
if (complement)
|
|
{
|
|
for (a = 0; a < 256/8; a++)
|
|
pattern[offset+a] ^= 0xff;
|
|
}
|
|
break;
|
|
}
|
|
case Rbegbuf:
|
|
{
|
|
opcode = Cbegbuf;
|
|
goto store_opcode;
|
|
}
|
|
case Rendbuf:
|
|
{
|
|
opcode = Cendbuf;
|
|
goto store_opcode;
|
|
}
|
|
case Rwordchar:
|
|
{
|
|
opcode = Csyntaxspec;
|
|
ch = Sword;
|
|
goto store_opcode_and_arg;
|
|
}
|
|
case Rnotwordchar:
|
|
{
|
|
opcode = Cnotsyntaxspec;
|
|
ch = Sword;
|
|
goto store_opcode_and_arg;
|
|
}
|
|
case Rwordbeg:
|
|
{
|
|
opcode = Cwordbeg;
|
|
goto store_opcode;
|
|
}
|
|
case Rwordend:
|
|
{
|
|
opcode = Cwordend;
|
|
goto store_opcode;
|
|
}
|
|
case Rwordbound:
|
|
{
|
|
opcode = Cwordbound;
|
|
goto store_opcode;
|
|
}
|
|
case Rnotwordbound:
|
|
{
|
|
opcode = Cnotwordbound;
|
|
goto store_opcode;
|
|
}
|
|
default:
|
|
{
|
|
abort();
|
|
}
|
|
}
|
|
beginning_context = (op == Ropenpar || op == Ror);
|
|
}
|
|
if (starts_base != 0)
|
|
goto parenthesis_error;
|
|
assert(num_jumps == 0);
|
|
ALLOC(1);
|
|
STORE(Cend);
|
|
SET_FIELDS;
|
|
if(!re_optimize(bufp))
|
|
return "Optimization error";
|
|
return NULL;
|
|
|
|
op_error:
|
|
SET_FIELDS;
|
|
return "Badly placed special character";
|
|
|
|
bad_match_register:
|
|
SET_FIELDS;
|
|
return "Bad match register number";
|
|
|
|
hex_error:
|
|
SET_FIELDS;
|
|
return "Bad hexadecimal number";
|
|
|
|
parenthesis_error:
|
|
SET_FIELDS;
|
|
return "Badly placed parenthesis";
|
|
|
|
out_of_memory:
|
|
SET_FIELDS;
|
|
return "Out of memory";
|
|
|
|
ends_prematurely:
|
|
SET_FIELDS;
|
|
return "Regular expression ends prematurely";
|
|
|
|
too_complex:
|
|
SET_FIELDS;
|
|
return "Regular expression too complex";
|
|
}
|
|
|
|
#undef CHARAT
|
|
#undef NEXTCHAR
|
|
#undef GETHEX
|
|
#undef ALLOC
|
|
#undef STORE
|
|
#undef CURRENT_LEVEL_START
|
|
#undef SET_LEVEL_START
|
|
#undef PUSH_LEVEL_STARTS
|
|
#undef POP_LEVEL_STARTS
|
|
#undef PUT_ADDR
|
|
#undef INSERT_JUMP
|
|
#undef SETBIT
|
|
#undef SET_FIELDS
|
|
|
|
#define PREFETCH if (text == textend) goto fail
|
|
|
|
#define NEXTCHAR(var) \
|
|
PREFETCH; \
|
|
var = (unsigned char)*text++; \
|
|
if (translate) \
|
|
var = translate[var]
|
|
|
|
int re_match(bufp,
|
|
string,
|
|
size,
|
|
pos,
|
|
old_regs)
|
|
regexp_t bufp;
|
|
unsigned char *string;
|
|
int size;
|
|
int pos;
|
|
regexp_registers_t old_regs;
|
|
{
|
|
unsigned char *code;
|
|
unsigned char *translate;
|
|
unsigned char *text;
|
|
unsigned char *textstart;
|
|
unsigned char *textend;
|
|
int a;
|
|
int b;
|
|
int ch;
|
|
int reg;
|
|
int match_end;
|
|
unsigned char *regstart;
|
|
unsigned char *regend;
|
|
int regsize;
|
|
match_state state;
|
|
|
|
assert(pos >= 0 && size >= 0);
|
|
assert(pos <= size);
|
|
|
|
text = string + pos;
|
|
textstart = string;
|
|
textend = string + size;
|
|
|
|
code = bufp->buffer;
|
|
|
|
translate = bufp->translate;
|
|
|
|
NEW_STATE(state, bufp->num_registers);
|
|
|
|
continue_matching:
|
|
switch (*code++)
|
|
{
|
|
case Cend:
|
|
{
|
|
match_end = text - textstart;
|
|
if (old_regs)
|
|
{
|
|
old_regs->start[0] = pos;
|
|
old_regs->end[0] = match_end;
|
|
if (!bufp->uses_registers)
|
|
{
|
|
for (a = 1; a < RE_NREGS; a++)
|
|
{
|
|
old_regs->start[a] = -1;
|
|
old_regs->end[a] = -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (a = 1; a < bufp->num_registers; a++)
|
|
{
|
|
if ((GET_REG_START(state, a) == NULL) ||
|
|
(GET_REG_END(state, a) == NULL))
|
|
{
|
|
old_regs->start[a] = -1;
|
|
old_regs->end[a] = -1;
|
|
continue;
|
|
}
|
|
old_regs->start[a] = GET_REG_START(state, a) - textstart;
|
|
old_regs->end[a] = GET_REG_END(state, a) - textstart;
|
|
}
|
|
for (; a < RE_NREGS; a++)
|
|
{
|
|
old_regs->start[a] = -1;
|
|
old_regs->end[a] = -1;
|
|
}
|
|
}
|
|
}
|
|
FREE_STATE(state);
|
|
return match_end - pos;
|
|
}
|
|
case Cbol:
|
|
{
|
|
if (text == textstart || text[-1] == '\n')
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Ceol:
|
|
{
|
|
if (text == textend || *text == '\n')
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cset:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (code[ch/8] & (1<<(ch & 7)))
|
|
{
|
|
code += 256/8;
|
|
goto continue_matching;
|
|
}
|
|
goto fail;
|
|
}
|
|
case Cexact:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (ch != (unsigned char)*code++)
|
|
goto fail;
|
|
goto continue_matching;
|
|
}
|
|
case Canychar:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (ch == '\n')
|
|
goto fail;
|
|
goto continue_matching;
|
|
}
|
|
case Cstart_memory:
|
|
{
|
|
reg = *code++;
|
|
SET_REG_START(state, reg, text, goto error);
|
|
goto continue_matching;
|
|
}
|
|
case Cend_memory:
|
|
{
|
|
reg = *code++;
|
|
SET_REG_END(state, reg, text, goto error);
|
|
goto continue_matching;
|
|
}
|
|
case Cmatch_memory:
|
|
{
|
|
reg = *code++;
|
|
regstart = GET_REG_START(state, reg);
|
|
regend = GET_REG_END(state, reg);
|
|
if ((regstart == NULL) || (regend == NULL))
|
|
goto fail; /* or should we just match nothing? */
|
|
regsize = regend - regstart;
|
|
|
|
if (regsize > (textend - text))
|
|
goto fail;
|
|
if(translate)
|
|
{
|
|
for (; regstart < regend; regstart++, text++)
|
|
if (translate[*regstart] != translate[*text])
|
|
goto fail;
|
|
}
|
|
else
|
|
for (; regstart < regend; regstart++, text++)
|
|
if (*regstart != *text)
|
|
goto fail;
|
|
goto continue_matching;
|
|
}
|
|
case Cupdate_failure_jump:
|
|
{
|
|
UPDATE_FAILURE(state, text, goto error);
|
|
/* fall to next case */
|
|
}
|
|
/* treat Cstar_jump just like Cjump if it hasn't been optimized */
|
|
case Cstar_jump:
|
|
case Cjump:
|
|
{
|
|
a = (unsigned char)*code++;
|
|
a |= (unsigned char)*code++ << 8;
|
|
code += (int)SHORT(a);
|
|
if (code<bufp->buffer || bufp->buffer+bufp->used<code) {
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cjump)");
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
goto continue_matching;
|
|
}
|
|
case Cdummy_failure_jump:
|
|
{
|
|
unsigned char *failuredest;
|
|
|
|
a = (unsigned char)*code++;
|
|
a |= (unsigned char)*code++ << 8;
|
|
a = (int)SHORT(a);
|
|
assert(*code == Cfailure_jump);
|
|
b = (unsigned char)code[1];
|
|
b |= (unsigned char)code[2] << 8;
|
|
failuredest = code + (int)SHORT(b) + 3;
|
|
if (failuredest<bufp->buffer || bufp->buffer+bufp->used < failuredest) {
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cdummy_failure_jump failuredest)");
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
PUSH_FAILURE(state, failuredest, NULL, goto error);
|
|
code += a;
|
|
if (code<bufp->buffer || bufp->buffer+bufp->used < code) {
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cdummy_failure_jump code)");
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
goto continue_matching;
|
|
}
|
|
case Cfailure_jump:
|
|
{
|
|
a = (unsigned char)*code++;
|
|
a |= (unsigned char)*code++ << 8;
|
|
a = (int)SHORT(a);
|
|
if (code+a<bufp->buffer || bufp->buffer+bufp->used < code+a) {
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Cfailure_jump)");
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
PUSH_FAILURE(state, code + a, text, goto error);
|
|
goto continue_matching;
|
|
}
|
|
case Crepeat1:
|
|
{
|
|
unsigned char *pinst;
|
|
a = (unsigned char)*code++;
|
|
a |= (unsigned char)*code++ << 8;
|
|
a = (int)SHORT(a);
|
|
pinst = code + a;
|
|
if (pinst<bufp->buffer || bufp->buffer+bufp->used<pinst) {
|
|
PyErr_SetString(PyExc_SystemError, "Regex VM jump out of bounds (Crepeat1)");
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
/* pinst is sole instruction in loop, and it matches a
|
|
* single character. Since Crepeat1 was originally a
|
|
* Cupdate_failure_jump, we also know that backtracking
|
|
* is useless: so long as the single-character
|
|
* expression matches, it must be used. Also, in the
|
|
* case of +, we've already matched one character, so +
|
|
* can't fail: nothing here can cause a failure. */
|
|
switch (*pinst++)
|
|
{
|
|
case Cset:
|
|
{
|
|
if (translate)
|
|
{
|
|
while (text < textend)
|
|
{
|
|
ch = translate[(unsigned char)*text];
|
|
if (pinst[ch/8] & (1<<(ch & 7)))
|
|
text++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (text < textend)
|
|
{
|
|
ch = (unsigned char)*text;
|
|
if (pinst[ch/8] & (1<<(ch & 7)))
|
|
text++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Cexact:
|
|
{
|
|
ch = (unsigned char)*pinst;
|
|
if (translate)
|
|
{
|
|
while (text < textend &&
|
|
translate[(unsigned char)*text] == ch)
|
|
text++;
|
|
}
|
|
else
|
|
{
|
|
while (text < textend && (unsigned char)*text == ch)
|
|
text++;
|
|
}
|
|
break;
|
|
}
|
|
case Canychar:
|
|
{
|
|
while (text < textend && (unsigned char)*text != '\n')
|
|
text++;
|
|
break;
|
|
}
|
|
case Csyntaxspec:
|
|
{
|
|
a = (unsigned char)*pinst;
|
|
if (translate)
|
|
{
|
|
while (text < textend &&
|
|
(SYNTAX(translate[*text]) & a) )
|
|
text++;
|
|
}
|
|
else
|
|
{
|
|
while (text < textend && (SYNTAX(*text) & a) )
|
|
text++;
|
|
}
|
|
break;
|
|
}
|
|
case Cnotsyntaxspec:
|
|
{
|
|
a = (unsigned char)*pinst;
|
|
if (translate)
|
|
{
|
|
while (text < textend &&
|
|
!(SYNTAX(translate[*text]) & a) )
|
|
text++;
|
|
}
|
|
else
|
|
{
|
|
while (text < textend && !(SYNTAX(*text) & a) )
|
|
text++;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
FREE_STATE(state);
|
|
PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?");
|
|
return -2;
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
/* due to the funky way + and * are compiled, the top
|
|
* failure- stack entry at this point is actually a
|
|
* success entry -- update it & pop it */
|
|
UPDATE_FAILURE(state, text, goto error);
|
|
goto fail; /* i.e., succeed <wink/sigh> */
|
|
}
|
|
case Cbegbuf:
|
|
{
|
|
if (text == textstart)
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cendbuf:
|
|
{
|
|
if (text == textend)
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cwordbeg:
|
|
{
|
|
if (text == textend)
|
|
goto fail;
|
|
if (!(SYNTAX(*text) & Sword))
|
|
goto fail;
|
|
if (text == textstart)
|
|
goto continue_matching;
|
|
if (!(SYNTAX(text[-1]) & Sword))
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cwordend:
|
|
{
|
|
if (text == textstart)
|
|
goto fail;
|
|
if (!(SYNTAX(text[-1]) & Sword))
|
|
goto fail;
|
|
if (text == textend)
|
|
goto continue_matching;
|
|
if (!(SYNTAX(*text) & Sword))
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cwordbound:
|
|
{
|
|
/* Note: as in gnu regexp, this also matches at the
|
|
* beginning and end of buffer. */
|
|
|
|
if (text == textstart || text == textend)
|
|
goto continue_matching;
|
|
if ((SYNTAX(text[-1]) & Sword) ^ (SYNTAX(*text) & Sword))
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Cnotwordbound:
|
|
{
|
|
/* Note: as in gnu regexp, this never matches at the
|
|
* beginning and end of buffer. */
|
|
if (text == textstart || text == textend)
|
|
goto fail;
|
|
if (!((SYNTAX(text[-1]) & Sword) ^ (SYNTAX(*text) & Sword)))
|
|
goto continue_matching;
|
|
goto fail;
|
|
}
|
|
case Csyntaxspec:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (!(SYNTAX(ch) & (unsigned char)*code++))
|
|
goto fail;
|
|
goto continue_matching;
|
|
}
|
|
case Cnotsyntaxspec:
|
|
{
|
|
NEXTCHAR(ch);
|
|
if (SYNTAX(ch) & (unsigned char)*code++)
|
|
goto fail;
|
|
goto continue_matching;
|
|
}
|
|
default:
|
|
{
|
|
FREE_STATE(state);
|
|
PyErr_SetString(PyExc_SystemError, "Unknown regex opcode: memory corrupted?");
|
|
return -2;
|
|
/*NOTREACHED*/
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#if 0 /* This line is never reached --Guido */
|
|
abort();
|
|
#endif
|
|
/*
|
|
*NOTREACHED
|
|
*/
|
|
|
|
/* Using "break;" in the above switch statement is equivalent to "goto fail;" */
|
|
fail:
|
|
POP_FAILURE(state, code, text, goto done_matching, goto error);
|
|
goto continue_matching;
|
|
|
|
done_matching:
|
|
/* if(translated != NULL) */
|
|
/* free(translated); */
|
|
FREE_STATE(state);
|
|
return -1;
|
|
|
|
error:
|
|
/* if (translated != NULL) */
|
|
/* free(translated); */
|
|
FREE_STATE(state);
|
|
return -2;
|
|
}
|
|
|
|
|
|
#undef PREFETCH
|
|
#undef NEXTCHAR
|
|
|
|
int re_search(bufp,
|
|
string,
|
|
size,
|
|
pos,
|
|
range,
|
|
regs)
|
|
regexp_t bufp;
|
|
unsigned char *string;
|
|
int size;
|
|
int pos;
|
|
int range;
|
|
regexp_registers_t regs;
|
|
{
|
|
unsigned char *fastmap;
|
|
unsigned char *translate;
|
|
unsigned char *text;
|
|
unsigned char *partstart;
|
|
unsigned char *partend;
|
|
int dir;
|
|
int ret;
|
|
unsigned char anchor;
|
|
|
|
assert(size >= 0 && pos >= 0);
|
|
assert(pos + range >= 0 && pos + range <= size); /* Bugfix by ylo */
|
|
|
|
fastmap = bufp->fastmap;
|
|
translate = bufp->translate;
|
|
if (fastmap && !bufp->fastmap_accurate) {
|
|
re_compile_fastmap(bufp);
|
|
if (PyErr_Occurred()) return -2;
|
|
}
|
|
|
|
anchor = bufp->anchor;
|
|
if (bufp->can_be_null == 1) /* can_be_null == 2: can match null at eob */
|
|
fastmap = NULL;
|
|
|
|
if (range < 0)
|
|
{
|
|
dir = -1;
|
|
range = -range;
|
|
}
|
|
else
|
|
dir = 1;
|
|
|
|
if (anchor == 2) {
|
|
if (pos != 0)
|
|
return -1;
|
|
else
|
|
range = 0;
|
|
}
|
|
|
|
for (; range >= 0; range--, pos += dir)
|
|
{
|
|
if (fastmap)
|
|
{
|
|
if (dir == 1)
|
|
{ /* searching forwards */
|
|
|
|
text = string + pos;
|
|
partend = string + size;
|
|
partstart = text;
|
|
if (translate)
|
|
while (text != partend &&
|
|
!fastmap[(unsigned char) translate[(unsigned char)*text]])
|
|
text++;
|
|
else
|
|
while (text != partend && !fastmap[(unsigned char)*text])
|
|
text++;
|
|
pos += text - partstart;
|
|
range -= text - partstart;
|
|
if (pos == size && bufp->can_be_null == 0)
|
|
return -1;
|
|
}
|
|
else
|
|
{ /* searching backwards */
|
|
text = string + pos;
|
|
partstart = string + pos - range;
|
|
partend = text;
|
|
if (translate)
|
|
while (text != partstart &&
|
|
!fastmap[(unsigned char)
|
|
translate[(unsigned char)*text]])
|
|
text--;
|
|
else
|
|
while (text != partstart &&
|
|
!fastmap[(unsigned char)*text])
|
|
text--;
|
|
pos -= partend - text;
|
|
range -= partend - text;
|
|
}
|
|
}
|
|
if (anchor == 1)
|
|
{ /* anchored to begline */
|
|
if (pos > 0 && (string[pos - 1] != '\n'))
|
|
continue;
|
|
}
|
|
assert(pos >= 0 && pos <= size);
|
|
ret = re_match(bufp, string, size, pos, regs);
|
|
if (ret >= 0)
|
|
return pos;
|
|
if (ret == -2)
|
|
return -2;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
** Local Variables:
|
|
** mode: c
|
|
** c-file-style: "python"
|
|
** End:
|
|
*/
|