cpython/Modules/_sqlite/cursor.c

940 lines
27 KiB
C

/* cursor.c - the cursor type
*
* Copyright (C) 2004-2010 Gerhard Häring <gh@ghaering.de>
*
* This file is part of pysqlite.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "cursor.h"
#include "module.h"
#include "util.h"
PyObject* pysqlite_cursor_iternext(pysqlite_Cursor* self);
static const char errmsg_fetch_across_rollback[] = "Cursor needed to be reset because of commit/rollback and can no longer be fetched from.";
static int pysqlite_cursor_init(pysqlite_Cursor* self, PyObject* args, PyObject* kwargs)
{
pysqlite_Connection* connection;
if (!PyArg_ParseTuple(args, "O!", pysqlite_ConnectionType, &connection))
{
return -1;
}
Py_INCREF(connection);
Py_XSETREF(self->connection, connection);
Py_CLEAR(self->statement);
Py_CLEAR(self->next_row);
Py_CLEAR(self->row_cast_map);
Py_INCREF(Py_None);
Py_XSETREF(self->description, Py_None);
Py_INCREF(Py_None);
Py_XSETREF(self->lastrowid, Py_None);
self->arraysize = 1;
self->closed = 0;
self->reset = 0;
self->rowcount = -1L;
Py_INCREF(Py_None);
Py_XSETREF(self->row_factory, Py_None);
if (!pysqlite_check_thread(self->connection)) {
return -1;
}
if (!pysqlite_connection_register_cursor(connection, (PyObject*)self)) {
return -1;
}
self->initialized = 1;
return 0;
}
static void pysqlite_cursor_dealloc(pysqlite_Cursor* self)
{
PyTypeObject *tp = Py_TYPE(self);
/* Reset the statement if the user has not closed the cursor */
if (self->statement) {
pysqlite_statement_reset(self->statement);
Py_DECREF(self->statement);
}
Py_XDECREF(self->connection);
Py_XDECREF(self->row_cast_map);
Py_XDECREF(self->description);
Py_XDECREF(self->lastrowid);
Py_XDECREF(self->row_factory);
Py_XDECREF(self->next_row);
if (self->in_weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject*)self);
}
tp->tp_free(self);
Py_DECREF(tp);
}
static PyObject *
_pysqlite_get_converter(const char *keystr, Py_ssize_t keylen)
{
PyObject *key;
PyObject *upcase_key;
PyObject *retval;
_Py_IDENTIFIER(upper);
key = PyUnicode_FromStringAndSize(keystr, keylen);
if (!key) {
return NULL;
}
upcase_key = _PyObject_CallMethodIdNoArgs(key, &PyId_upper);
Py_DECREF(key);
if (!upcase_key) {
return NULL;
}
retval = PyDict_GetItemWithError(_pysqlite_converters, upcase_key);
Py_DECREF(upcase_key);
return retval;
}
static int
pysqlite_build_row_cast_map(pysqlite_Cursor* self)
{
int i;
const char* pos;
const char* colname;
const char* decltype;
PyObject* converter;
if (!self->connection->detect_types) {
return 0;
}
Py_XSETREF(self->row_cast_map, PyList_New(0));
if (!self->row_cast_map) {
return -1;
}
for (i = 0; i < sqlite3_column_count(self->statement->st); i++) {
converter = NULL;
if (self->connection->detect_types & PARSE_COLNAMES) {
colname = sqlite3_column_name(self->statement->st, i);
if (colname) {
const char *type_start = NULL;
for (pos = colname; *pos != 0; pos++) {
if (*pos == '[') {
type_start = pos + 1;
}
else if (*pos == ']' && type_start != NULL) {
converter = _pysqlite_get_converter(type_start, pos - type_start);
if (!converter && PyErr_Occurred()) {
Py_CLEAR(self->row_cast_map);
return -1;
}
break;
}
}
}
}
if (!converter && self->connection->detect_types & PARSE_DECLTYPES) {
decltype = sqlite3_column_decltype(self->statement->st, i);
if (decltype) {
for (pos = decltype;;pos++) {
/* Converter names are split at '(' and blanks.
* This allows 'INTEGER NOT NULL' to be treated as 'INTEGER' and
* 'NUMBER(10)' to be treated as 'NUMBER', for example.
* In other words, it will work as people expect it to work.*/
if (*pos == ' ' || *pos == '(' || *pos == 0) {
converter = _pysqlite_get_converter(decltype, pos - decltype);
if (!converter && PyErr_Occurred()) {
Py_CLEAR(self->row_cast_map);
return -1;
}
break;
}
}
}
}
if (!converter) {
converter = Py_None;
}
if (PyList_Append(self->row_cast_map, converter) != 0) {
Py_CLEAR(self->row_cast_map);
return -1;
}
}
return 0;
}
static PyObject *
_pysqlite_build_column_name(pysqlite_Cursor *self, const char *colname)
{
const char* pos;
Py_ssize_t len;
if (!colname) {
Py_RETURN_NONE;
}
if (self->connection->detect_types & PARSE_COLNAMES) {
for (pos = colname; *pos; pos++) {
if (*pos == '[') {
if ((pos != colname) && (*(pos-1) == ' ')) {
pos--;
}
break;
}
}
len = pos - colname;
}
else {
len = strlen(colname);
}
return PyUnicode_FromStringAndSize(colname, len);
}
/*
* Returns a row from the currently active SQLite statement
*
* Precondidition:
* - sqlite3_step() has been called before and it returned SQLITE_ROW.
*/
static PyObject *
_pysqlite_fetch_one_row(pysqlite_Cursor* self)
{
int i, numcols;
PyObject* row;
PyObject* item = NULL;
int coltype;
PyObject* converter;
PyObject* converted;
Py_ssize_t nbytes;
const char* val_str;
char buf[200];
const char* colname;
PyObject* error_msg;
if (self->reset) {
PyErr_SetString(pysqlite_InterfaceError, errmsg_fetch_across_rollback);
return NULL;
}
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_data_count(self->statement->st);
Py_END_ALLOW_THREADS
row = PyTuple_New(numcols);
if (!row)
return NULL;
for (i = 0; i < numcols; i++) {
if (self->connection->detect_types
&& self->row_cast_map != NULL
&& i < PyList_GET_SIZE(self->row_cast_map))
{
converter = PyList_GET_ITEM(self->row_cast_map, i);
}
else {
converter = Py_None;
}
if (converter != Py_None) {
nbytes = sqlite3_column_bytes(self->statement->st, i);
val_str = (const char*)sqlite3_column_blob(self->statement->st, i);
if (!val_str) {
Py_INCREF(Py_None);
converted = Py_None;
} else {
item = PyBytes_FromStringAndSize(val_str, nbytes);
if (!item)
goto error;
converted = PyObject_CallOneArg(converter, item);
Py_DECREF(item);
}
} else {
Py_BEGIN_ALLOW_THREADS
coltype = sqlite3_column_type(self->statement->st, i);
Py_END_ALLOW_THREADS
if (coltype == SQLITE_NULL) {
Py_INCREF(Py_None);
converted = Py_None;
} else if (coltype == SQLITE_INTEGER) {
converted = PyLong_FromLongLong(sqlite3_column_int64(self->statement->st, i));
} else if (coltype == SQLITE_FLOAT) {
converted = PyFloat_FromDouble(sqlite3_column_double(self->statement->st, i));
} else if (coltype == SQLITE_TEXT) {
val_str = (const char*)sqlite3_column_text(self->statement->st, i);
nbytes = sqlite3_column_bytes(self->statement->st, i);
if (self->connection->text_factory == (PyObject*)&PyUnicode_Type) {
converted = PyUnicode_FromStringAndSize(val_str, nbytes);
if (!converted && PyErr_ExceptionMatches(PyExc_UnicodeDecodeError)) {
PyErr_Clear();
colname = sqlite3_column_name(self->statement->st, i);
if (!colname) {
colname = "<unknown column name>";
}
PyOS_snprintf(buf, sizeof(buf) - 1, "Could not decode to UTF-8 column '%s' with text '%s'",
colname , val_str);
error_msg = PyUnicode_Decode(buf, strlen(buf), "ascii", "replace");
if (!error_msg) {
PyErr_SetString(pysqlite_OperationalError, "Could not decode to UTF-8");
} else {
PyErr_SetObject(pysqlite_OperationalError, error_msg);
Py_DECREF(error_msg);
}
}
} else if (self->connection->text_factory == (PyObject*)&PyBytes_Type) {
converted = PyBytes_FromStringAndSize(val_str, nbytes);
} else if (self->connection->text_factory == (PyObject*)&PyByteArray_Type) {
converted = PyByteArray_FromStringAndSize(val_str, nbytes);
} else {
converted = PyObject_CallFunction(self->connection->text_factory, "y#", val_str, nbytes);
}
} else {
/* coltype == SQLITE_BLOB */
nbytes = sqlite3_column_bytes(self->statement->st, i);
converted = PyBytes_FromStringAndSize(
sqlite3_column_blob(self->statement->st, i), nbytes);
}
}
if (!converted) {
goto error;
}
PyTuple_SetItem(row, i, converted);
}
if (PyErr_Occurred())
goto error;
return row;
error:
Py_DECREF(row);
return NULL;
}
/*
* Checks if a cursor object is usable.
*
* 0 => error; 1 => ok
*/
static int check_cursor(pysqlite_Cursor* cur)
{
if (!cur->initialized) {
PyErr_SetString(pysqlite_ProgrammingError, "Base Cursor.__init__ not called.");
return 0;
}
if (cur->closed) {
PyErr_SetString(pysqlite_ProgrammingError, "Cannot operate on a closed cursor.");
return 0;
}
if (cur->locked) {
PyErr_SetString(pysqlite_ProgrammingError, "Recursive use of cursors not allowed.");
return 0;
}
return pysqlite_check_thread(cur->connection) && pysqlite_check_connection(cur->connection);
}
static PyObject *
_pysqlite_query_execute(pysqlite_Cursor* self, int multiple, PyObject* args)
{
PyObject* operation;
PyObject* parameters_list = NULL;
PyObject* parameters_iter = NULL;
PyObject* parameters = NULL;
int i;
int rc;
PyObject* func_args;
PyObject* result;
int numcols;
PyObject* descriptor;
PyObject* column_name;
PyObject* second_argument = NULL;
sqlite_int64 lastrowid;
if (!check_cursor(self)) {
goto error;
}
self->locked = 1;
self->reset = 0;
Py_CLEAR(self->next_row);
if (multiple) {
/* executemany() */
if (!PyArg_ParseTuple(args, "UO", &operation, &second_argument)) {
goto error;
}
if (PyIter_Check(second_argument)) {
/* iterator */
Py_INCREF(second_argument);
parameters_iter = second_argument;
} else {
/* sequence */
parameters_iter = PyObject_GetIter(second_argument);
if (!parameters_iter) {
goto error;
}
}
} else {
/* execute() */
if (!PyArg_ParseTuple(args, "U|O", &operation, &second_argument)) {
goto error;
}
parameters_list = PyList_New(0);
if (!parameters_list) {
goto error;
}
if (second_argument == NULL) {
second_argument = PyTuple_New(0);
if (!second_argument) {
goto error;
}
} else {
Py_INCREF(second_argument);
}
if (PyList_Append(parameters_list, second_argument) != 0) {
Py_DECREF(second_argument);
goto error;
}
Py_DECREF(second_argument);
parameters_iter = PyObject_GetIter(parameters_list);
if (!parameters_iter) {
goto error;
}
}
if (self->statement != NULL) {
/* There is an active statement */
pysqlite_statement_reset(self->statement);
}
/* reset description and rowcount */
Py_INCREF(Py_None);
Py_SETREF(self->description, Py_None);
self->rowcount = 0L;
func_args = PyTuple_New(1);
if (!func_args) {
goto error;
}
Py_INCREF(operation);
if (PyTuple_SetItem(func_args, 0, operation) != 0) {
goto error;
}
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
}
Py_XSETREF(self->statement,
(pysqlite_Statement *)pysqlite_cache_get(self->connection->statement_cache, func_args));
Py_DECREF(func_args);
if (!self->statement) {
goto error;
}
if (self->statement->in_use) {
Py_SETREF(self->statement,
PyObject_New(pysqlite_Statement, pysqlite_StatementType));
if (!self->statement) {
goto error;
}
rc = pysqlite_statement_create(self->statement, self->connection, operation);
if (rc != SQLITE_OK) {
Py_CLEAR(self->statement);
goto error;
}
}
pysqlite_statement_reset(self->statement);
pysqlite_statement_mark_dirty(self->statement);
/* We start a transaction implicitly before a DML statement.
SELECT is the only exception. See #9924. */
if (self->connection->begin_statement && self->statement->is_dml) {
if (sqlite3_get_autocommit(self->connection->db)) {
result = _pysqlite_connection_begin(self->connection);
if (!result) {
goto error;
}
Py_DECREF(result);
}
}
while (1) {
parameters = PyIter_Next(parameters_iter);
if (!parameters) {
break;
}
pysqlite_statement_mark_dirty(self->statement);
pysqlite_statement_bind_parameters(self->statement, parameters);
if (PyErr_Occurred()) {
goto error;
}
rc = pysqlite_step(self->statement->st, self->connection);
if (rc != SQLITE_DONE && rc != SQLITE_ROW) {
if (PyErr_Occurred()) {
/* there was an error that occurred in a user-defined callback */
if (_pysqlite_enable_callback_tracebacks) {
PyErr_Print();
} else {
PyErr_Clear();
}
}
(void)pysqlite_statement_reset(self->statement);
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
if (pysqlite_build_row_cast_map(self) != 0) {
_PyErr_FormatFromCause(pysqlite_OperationalError, "Error while building row_cast_map");
goto error;
}
assert(rc == SQLITE_ROW || rc == SQLITE_DONE);
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_column_count(self->statement->st);
Py_END_ALLOW_THREADS
if (self->description == Py_None && numcols > 0) {
Py_SETREF(self->description, PyTuple_New(numcols));
if (!self->description) {
goto error;
}
for (i = 0; i < numcols; i++) {
descriptor = PyTuple_New(7);
if (!descriptor) {
goto error;
}
column_name = _pysqlite_build_column_name(self,
sqlite3_column_name(self->statement->st, i));
if (!column_name) {
Py_DECREF(descriptor);
goto error;
}
PyTuple_SetItem(descriptor, 0, column_name);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 1, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 2, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 3, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 4, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 5, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 6, Py_None);
PyTuple_SetItem(self->description, i, descriptor);
}
}
if (self->statement->is_dml) {
self->rowcount += (long)sqlite3_changes(self->connection->db);
} else {
self->rowcount= -1L;
}
if (!multiple) {
Py_DECREF(self->lastrowid);
Py_BEGIN_ALLOW_THREADS
lastrowid = sqlite3_last_insert_rowid(self->connection->db);
Py_END_ALLOW_THREADS
self->lastrowid = PyLong_FromLongLong(lastrowid);
}
if (rc == SQLITE_ROW) {
if (multiple) {
PyErr_SetString(pysqlite_ProgrammingError, "executemany() can only execute DML statements.");
goto error;
}
self->next_row = _pysqlite_fetch_one_row(self);
if (self->next_row == NULL)
goto error;
} else if (rc == SQLITE_DONE && !multiple) {
pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
if (multiple) {
pysqlite_statement_reset(self->statement);
}
Py_XDECREF(parameters);
}
error:
Py_XDECREF(parameters);
Py_XDECREF(parameters_iter);
Py_XDECREF(parameters_list);
self->locked = 0;
if (PyErr_Occurred()) {
self->rowcount = -1L;
return NULL;
} else {
Py_INCREF(self);
return (PyObject*)self;
}
}
PyObject* pysqlite_cursor_execute(pysqlite_Cursor* self, PyObject* args)
{
return _pysqlite_query_execute(self, 0, args);
}
PyObject* pysqlite_cursor_executemany(pysqlite_Cursor* self, PyObject* args)
{
return _pysqlite_query_execute(self, 1, args);
}
static PyObject *
pysqlite_cursor_executescript(pysqlite_Cursor* self, PyObject* args)
{
PyObject* script_obj;
const char* script_cstr;
sqlite3_stmt* statement;
int rc;
PyObject* result;
if (!PyArg_ParseTuple(args, "O", &script_obj)) {
return NULL;
}
if (!check_cursor(self)) {
return NULL;
}
self->reset = 0;
if (PyUnicode_Check(script_obj)) {
script_cstr = PyUnicode_AsUTF8(script_obj);
if (!script_cstr) {
return NULL;
}
} else {
PyErr_SetString(PyExc_ValueError, "script argument must be unicode.");
return NULL;
}
/* commit first */
result = pysqlite_connection_commit(self->connection, NULL);
if (!result) {
goto error;
}
Py_DECREF(result);
while (1) {
Py_BEGIN_ALLOW_THREADS
rc = sqlite3_prepare_v2(self->connection->db,
script_cstr,
-1,
&statement,
&script_cstr);
Py_END_ALLOW_THREADS
if (rc != SQLITE_OK) {
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
/* execute statement, and ignore results of SELECT statements */
rc = SQLITE_ROW;
while (rc == SQLITE_ROW) {
rc = pysqlite_step(statement, self->connection);
if (PyErr_Occurred()) {
(void)sqlite3_finalize(statement);
goto error;
}
}
if (rc != SQLITE_DONE) {
(void)sqlite3_finalize(statement);
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
rc = sqlite3_finalize(statement);
if (rc != SQLITE_OK) {
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
if (*script_cstr == (char)0) {
break;
}
}
error:
if (PyErr_Occurred()) {
return NULL;
} else {
Py_INCREF(self);
return (PyObject*)self;
}
}
PyObject* pysqlite_cursor_iternext(pysqlite_Cursor *self)
{
PyObject* next_row_tuple;
PyObject* next_row;
int rc;
if (!check_cursor(self)) {
return NULL;
}
if (self->reset) {
PyErr_SetString(pysqlite_InterfaceError, errmsg_fetch_across_rollback);
return NULL;
}
if (!self->next_row) {
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
return NULL;
}
next_row_tuple = self->next_row;
assert(next_row_tuple != NULL);
self->next_row = NULL;
if (self->row_factory != Py_None) {
next_row = PyObject_CallFunction(self->row_factory, "OO", self, next_row_tuple);
if (next_row == NULL) {
self->next_row = next_row_tuple;
return NULL;
}
Py_DECREF(next_row_tuple);
} else {
next_row = next_row_tuple;
}
if (self->statement) {
rc = pysqlite_step(self->statement->st, self->connection);
if (PyErr_Occurred()) {
(void)pysqlite_statement_reset(self->statement);
Py_DECREF(next_row);
return NULL;
}
if (rc != SQLITE_DONE && rc != SQLITE_ROW) {
(void)pysqlite_statement_reset(self->statement);
Py_DECREF(next_row);
_pysqlite_seterror(self->connection->db, NULL);
return NULL;
}
if (rc == SQLITE_ROW) {
self->next_row = _pysqlite_fetch_one_row(self);
if (self->next_row == NULL) {
(void)pysqlite_statement_reset(self->statement);
return NULL;
}
}
}
return next_row;
}
PyObject* pysqlite_cursor_fetchone(pysqlite_Cursor* self, PyObject* args)
{
PyObject* row;
row = pysqlite_cursor_iternext(self);
if (!row && !PyErr_Occurred()) {
Py_RETURN_NONE;
}
return row;
}
PyObject* pysqlite_cursor_fetchmany(pysqlite_Cursor* self, PyObject* args, PyObject* kwargs)
{
static char *kwlist[] = {"size", NULL};
PyObject* row;
PyObject* list;
int maxrows = self->arraysize;
int counter = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|i:fetchmany", kwlist, &maxrows)) {
return NULL;
}
list = PyList_New(0);
if (!list) {
return NULL;
}
while ((row = pysqlite_cursor_iternext(self))) {
PyList_Append(list, row);
Py_XDECREF(row);
if (++counter == maxrows) {
break;
}
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
PyObject* pysqlite_cursor_fetchall(pysqlite_Cursor* self, PyObject* args)
{
PyObject* row;
PyObject* list;
list = PyList_New(0);
if (!list) {
return NULL;
}
while ((row = pysqlite_cursor_iternext(self))) {
PyList_Append(list, row);
Py_XDECREF(row);
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
PyObject* pysqlite_noop(pysqlite_Connection* self, PyObject* args)
{
/* don't care, return None */
Py_RETURN_NONE;
}
PyObject* pysqlite_cursor_close(pysqlite_Cursor* self, PyObject* args)
{
if (!self->connection) {
PyErr_SetString(pysqlite_ProgrammingError,
"Base Cursor.__init__ not called.");
return NULL;
}
if (!pysqlite_check_thread(self->connection) || !pysqlite_check_connection(self->connection)) {
return NULL;
}
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
self->closed = 1;
Py_RETURN_NONE;
}
static PyMethodDef cursor_methods[] = {
{"execute", (PyCFunction)pysqlite_cursor_execute, METH_VARARGS,
PyDoc_STR("Executes a SQL statement.")},
{"executemany", (PyCFunction)pysqlite_cursor_executemany, METH_VARARGS,
PyDoc_STR("Repeatedly executes a SQL statement.")},
{"executescript", (PyCFunction)pysqlite_cursor_executescript, METH_VARARGS,
PyDoc_STR("Executes a multiple SQL statements at once. Non-standard.")},
{"fetchone", (PyCFunction)pysqlite_cursor_fetchone, METH_NOARGS,
PyDoc_STR("Fetches one row from the resultset.")},
{"fetchmany", (PyCFunction)(void(*)(void))pysqlite_cursor_fetchmany, METH_VARARGS|METH_KEYWORDS,
PyDoc_STR("Fetches several rows from the resultset.")},
{"fetchall", (PyCFunction)pysqlite_cursor_fetchall, METH_NOARGS,
PyDoc_STR("Fetches all rows from the resultset.")},
{"close", (PyCFunction)pysqlite_cursor_close, METH_NOARGS,
PyDoc_STR("Closes the cursor.")},
{"setinputsizes", (PyCFunction)pysqlite_noop, METH_VARARGS,
PyDoc_STR("Required by DB-API. Does nothing in pysqlite.")},
{"setoutputsize", (PyCFunction)pysqlite_noop, METH_VARARGS,
PyDoc_STR("Required by DB-API. Does nothing in pysqlite.")},
{NULL, NULL}
};
static struct PyMemberDef cursor_members[] =
{
{"connection", T_OBJECT, offsetof(pysqlite_Cursor, connection), READONLY},
{"description", T_OBJECT, offsetof(pysqlite_Cursor, description), READONLY},
{"arraysize", T_INT, offsetof(pysqlite_Cursor, arraysize), 0},
{"lastrowid", T_OBJECT, offsetof(pysqlite_Cursor, lastrowid), READONLY},
{"rowcount", T_LONG, offsetof(pysqlite_Cursor, rowcount), READONLY},
{"row_factory", T_OBJECT, offsetof(pysqlite_Cursor, row_factory), 0},
{"__weaklistoffset__", T_PYSSIZET, offsetof(pysqlite_Cursor, in_weakreflist), READONLY},
{NULL}
};
static const char cursor_doc[] =
PyDoc_STR("SQLite database cursor class.");
static PyType_Slot cursor_slots[] = {
{Py_tp_dealloc, pysqlite_cursor_dealloc},
{Py_tp_doc, (void *)cursor_doc},
{Py_tp_iter, PyObject_SelfIter},
{Py_tp_iternext, pysqlite_cursor_iternext},
{Py_tp_methods, cursor_methods},
{Py_tp_members, cursor_members},
{Py_tp_new, PyType_GenericNew},
{Py_tp_init, pysqlite_cursor_init},
{0, NULL},
};
static PyType_Spec cursor_spec = {
.name = MODULE_NAME ".Cursor",
.basicsize = sizeof(pysqlite_Cursor),
.flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.slots = cursor_slots,
};
PyTypeObject *pysqlite_CursorType = NULL;
extern int pysqlite_cursor_setup_types(PyObject *module)
{
pysqlite_CursorType = (PyTypeObject *)PyType_FromModuleAndSpec(module, &cursor_spec, NULL);
if (pysqlite_CursorType == NULL) {
return -1;
}
return 0;
}