cpython/Parser/spark.py

840 lines
26 KiB
Python

# Copyright (c) 1998-2002 John Aycock
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
__version__ = 'SPARK-0.7 (pre-alpha-5)'
import re
import string
def _namelist(instance):
namelist, namedict, classlist = [], {}, [instance.__class__]
for c in classlist:
for b in c.__bases__:
classlist.append(b)
for name in c.__dict__.keys():
if not namedict.has_key(name):
namelist.append(name)
namedict[name] = 1
return namelist
class GenericScanner:
def __init__(self, flags=0):
pattern = self.reflect()
self.re = re.compile(pattern, re.VERBOSE|flags)
self.index2func = {}
for name, number in self.re.groupindex.items():
self.index2func[number-1] = getattr(self, 't_' + name)
def makeRE(self, name):
doc = getattr(self, name).__doc__
rv = '(?P<%s>%s)' % (name[2:], doc)
return rv
def reflect(self):
rv = []
for name in _namelist(self):
if name[:2] == 't_' and name != 't_default':
rv.append(self.makeRE(name))
rv.append(self.makeRE('t_default'))
return string.join(rv, '|')
def error(self, s, pos):
print "Lexical error at position %s" % pos
raise SystemExit
def tokenize(self, s):
pos = 0
n = len(s)
while pos < n:
m = self.re.match(s, pos)
if m is None:
self.error(s, pos)
groups = m.groups()
for i in range(len(groups)):
if groups[i] and self.index2func.has_key(i):
self.index2func[i](groups[i])
pos = m.end()
def t_default(self, s):
r'( . | \n )+'
print "Specification error: unmatched input"
raise SystemExit
#
# Extracted from GenericParser and made global so that [un]picking works.
#
class _State:
def __init__(self, stateno, items):
self.T, self.complete, self.items = [], [], items
self.stateno = stateno
class GenericParser:
#
# An Earley parser, as per J. Earley, "An Efficient Context-Free
# Parsing Algorithm", CACM 13(2), pp. 94-102. Also J. C. Earley,
# "An Efficient Context-Free Parsing Algorithm", Ph.D. thesis,
# Carnegie-Mellon University, August 1968. New formulation of
# the parser according to J. Aycock, "Practical Earley Parsing
# and the SPARK Toolkit", Ph.D. thesis, University of Victoria,
# 2001, and J. Aycock and R. N. Horspool, "Practical Earley
# Parsing", unpublished paper, 2001.
#
def __init__(self, start):
self.rules = {}
self.rule2func = {}
self.rule2name = {}
self.collectRules()
self.augment(start)
self.ruleschanged = 1
_NULLABLE = '\e_'
_START = 'START'
_BOF = '|-'
#
# When pickling, take the time to generate the full state machine;
# some information is then extraneous, too. Unfortunately we
# can't save the rule2func map.
#
def __getstate__(self):
if self.ruleschanged:
#
# XXX - duplicated from parse()
#
self.computeNull()
self.newrules = {}
self.new2old = {}
self.makeNewRules()
self.ruleschanged = 0
self.edges, self.cores = {}, {}
self.states = { 0: self.makeState0() }
self.makeState(0, self._BOF)
#
# XXX - should find a better way to do this..
#
changes = 1
while changes:
changes = 0
for k, v in self.edges.items():
if v is None:
state, sym = k
if self.states.has_key(state):
self.goto(state, sym)
changes = 1
rv = self.__dict__.copy()
for s in self.states.values():
del s.items
del rv['rule2func']
del rv['nullable']
del rv['cores']
return rv
def __setstate__(self, D):
self.rules = {}
self.rule2func = {}
self.rule2name = {}
self.collectRules()
start = D['rules'][self._START][0][1][1] # Blech.
self.augment(start)
D['rule2func'] = self.rule2func
D['makeSet'] = self.makeSet_fast
self.__dict__ = D
#
# A hook for GenericASTBuilder and GenericASTMatcher. Mess
# thee not with this; nor shall thee toucheth the _preprocess
# argument to addRule.
#
def preprocess(self, rule, func): return rule, func
def addRule(self, doc, func, _preprocess=1):
fn = func
rules = string.split(doc)
index = []
for i in range(len(rules)):
if rules[i] == '::=':
index.append(i-1)
index.append(len(rules))
for i in range(len(index)-1):
lhs = rules[index[i]]
rhs = rules[index[i]+2:index[i+1]]
rule = (lhs, tuple(rhs))
if _preprocess:
rule, fn = self.preprocess(rule, func)
if self.rules.has_key(lhs):
self.rules[lhs].append(rule)
else:
self.rules[lhs] = [ rule ]
self.rule2func[rule] = fn
self.rule2name[rule] = func.__name__[2:]
self.ruleschanged = 1
def collectRules(self):
for name in _namelist(self):
if name[:2] == 'p_':
func = getattr(self, name)
doc = func.__doc__
self.addRule(doc, func)
def augment(self, start):
rule = '%s ::= %s %s' % (self._START, self._BOF, start)
self.addRule(rule, lambda args: args[1], 0)
def computeNull(self):
self.nullable = {}
tbd = []
for rulelist in self.rules.values():
lhs = rulelist[0][0]
self.nullable[lhs] = 0
for rule in rulelist:
rhs = rule[1]
if len(rhs) == 0:
self.nullable[lhs] = 1
continue
#
# We only need to consider rules which
# consist entirely of nonterminal symbols.
# This should be a savings on typical
# grammars.
#
for sym in rhs:
if not self.rules.has_key(sym):
break
else:
tbd.append(rule)
changes = 1
while changes:
changes = 0
for lhs, rhs in tbd:
if self.nullable[lhs]:
continue
for sym in rhs:
if not self.nullable[sym]:
break
else:
self.nullable[lhs] = 1
changes = 1
def makeState0(self):
s0 = _State(0, [])
for rule in self.newrules[self._START]:
s0.items.append((rule, 0))
return s0
def finalState(self, tokens):
#
# Yuck.
#
if len(self.newrules[self._START]) == 2 and len(tokens) == 0:
return 1
start = self.rules[self._START][0][1][1]
return self.goto(1, start)
def makeNewRules(self):
worklist = []
for rulelist in self.rules.values():
for rule in rulelist:
worklist.append((rule, 0, 1, rule))
for rule, i, candidate, oldrule in worklist:
lhs, rhs = rule
n = len(rhs)
while i < n:
sym = rhs[i]
if not self.rules.has_key(sym) or \
not self.nullable[sym]:
candidate = 0
i = i + 1
continue
newrhs = list(rhs)
newrhs[i] = self._NULLABLE+sym
newrule = (lhs, tuple(newrhs))
worklist.append((newrule, i+1,
candidate, oldrule))
candidate = 0
i = i + 1
else:
if candidate:
lhs = self._NULLABLE+lhs
rule = (lhs, rhs)
if self.newrules.has_key(lhs):
self.newrules[lhs].append(rule)
else:
self.newrules[lhs] = [ rule ]
self.new2old[rule] = oldrule
def typestring(self, token):
return None
def error(self, token):
print "Syntax error at or near `%s' token" % token
raise SystemExit
def parse(self, tokens):
sets = [ [(1,0), (2,0)] ]
self.links = {}
if self.ruleschanged:
self.computeNull()
self.newrules = {}
self.new2old = {}
self.makeNewRules()
self.ruleschanged = 0
self.edges, self.cores = {}, {}
self.states = { 0: self.makeState0() }
self.makeState(0, self._BOF)
for i in xrange(len(tokens)):
sets.append([])
if sets[i] == []:
break
self.makeSet(tokens[i], sets, i)
else:
sets.append([])
self.makeSet(None, sets, len(tokens))
#_dump(tokens, sets, self.states)
finalitem = (self.finalState(tokens), 0)
if finalitem not in sets[-2]:
if len(tokens) > 0:
self.error(tokens[i-1])
else:
self.error(None)
return self.buildTree(self._START, finalitem,
tokens, len(sets)-2)
def isnullable(self, sym):
#
# For symbols in G_e only. If we weren't supporting 1.5,
# could just use sym.startswith().
#
return self._NULLABLE == sym[0:len(self._NULLABLE)]
def skip(self, (lhs, rhs), pos=0):
n = len(rhs)
while pos < n:
if not self.isnullable(rhs[pos]):
break
pos = pos + 1
return pos
def makeState(self, state, sym):
assert sym is not None
#
# Compute \epsilon-kernel state's core and see if
# it exists already.
#
kitems = []
for rule, pos in self.states[state].items:
lhs, rhs = rule
if rhs[pos:pos+1] == (sym,):
kitems.append((rule, self.skip(rule, pos+1)))
core = kitems
core.sort()
tcore = tuple(core)
if self.cores.has_key(tcore):
return self.cores[tcore]
#
# Nope, doesn't exist. Compute it and the associated
# \epsilon-nonkernel state together; we'll need it right away.
#
k = self.cores[tcore] = len(self.states)
K, NK = _State(k, kitems), _State(k+1, [])
self.states[k] = K
predicted = {}
edges = self.edges
rules = self.newrules
for X in K, NK:
worklist = X.items
for item in worklist:
rule, pos = item
lhs, rhs = rule
if pos == len(rhs):
X.complete.append(rule)
continue
nextSym = rhs[pos]
key = (X.stateno, nextSym)
if not rules.has_key(nextSym):
if not edges.has_key(key):
edges[key] = None
X.T.append(nextSym)
else:
edges[key] = None
if not predicted.has_key(nextSym):
predicted[nextSym] = 1
for prule in rules[nextSym]:
ppos = self.skip(prule)
new = (prule, ppos)
NK.items.append(new)
#
# Problem: we know K needs generating, but we
# don't yet know about NK. Can't commit anything
# regarding NK to self.edges until we're sure. Should
# we delay committing on both K and NK to avoid this
# hacky code? This creates other problems..
#
if X is K:
edges = {}
if NK.items == []:
return k
#
# Check for \epsilon-nonkernel's core. Unfortunately we
# need to know the entire set of predicted nonterminals
# to do this without accidentally duplicating states.
#
core = predicted.keys()
core.sort()
tcore = tuple(core)
if self.cores.has_key(tcore):
self.edges[(k, None)] = self.cores[tcore]
return k
nk = self.cores[tcore] = self.edges[(k, None)] = NK.stateno
self.edges.update(edges)
self.states[nk] = NK
return k
def goto(self, state, sym):
key = (state, sym)
if not self.edges.has_key(key):
#
# No transitions from state on sym.
#
return None
rv = self.edges[key]
if rv is None:
#
# Target state isn't generated yet. Remedy this.
#
rv = self.makeState(state, sym)
self.edges[key] = rv
return rv
def gotoT(self, state, t):
return [self.goto(state, t)]
def gotoST(self, state, st):
rv = []
for t in self.states[state].T:
if st == t:
rv.append(self.goto(state, t))
return rv
def add(self, set, item, i=None, predecessor=None, causal=None):
if predecessor is None:
if item not in set:
set.append(item)
else:
key = (item, i)
if item not in set:
self.links[key] = []
set.append(item)
self.links[key].append((predecessor, causal))
def makeSet(self, token, sets, i):
cur, next = sets[i], sets[i+1]
ttype = token is not None and self.typestring(token) or None
if ttype is not None:
fn, arg = self.gotoT, ttype
else:
fn, arg = self.gotoST, token
for item in cur:
ptr = (item, i)
state, parent = item
add = fn(state, arg)
for k in add:
if k is not None:
self.add(next, (k, parent), i+1, ptr)
nk = self.goto(k, None)
if nk is not None:
self.add(next, (nk, i+1))
if parent == i:
continue
for rule in self.states[state].complete:
lhs, rhs = rule
for pitem in sets[parent]:
pstate, pparent = pitem
k = self.goto(pstate, lhs)
if k is not None:
why = (item, i, rule)
pptr = (pitem, parent)
self.add(cur, (k, pparent),
i, pptr, why)
nk = self.goto(k, None)
if nk is not None:
self.add(cur, (nk, i))
def makeSet_fast(self, token, sets, i):
#
# Call *only* when the entire state machine has been built!
# It relies on self.edges being filled in completely, and
# then duplicates and inlines code to boost speed at the
# cost of extreme ugliness.
#
cur, next = sets[i], sets[i+1]
ttype = token is not None and self.typestring(token) or None
for item in cur:
ptr = (item, i)
state, parent = item
if ttype is not None:
k = self.edges.get((state, ttype), None)
if k is not None:
#self.add(next, (k, parent), i+1, ptr)
#INLINED --v
new = (k, parent)
key = (new, i+1)
if new not in next:
self.links[key] = []
next.append(new)
self.links[key].append((ptr, None))
#INLINED --^
#nk = self.goto(k, None)
nk = self.edges.get((k, None), None)
if nk is not None:
#self.add(next, (nk, i+1))
#INLINED --v
new = (nk, i+1)
if new not in next:
next.append(new)
#INLINED --^
else:
add = self.gotoST(state, token)
for k in add:
if k is not None:
self.add(next, (k, parent), i+1, ptr)
#nk = self.goto(k, None)
nk = self.edges.get((k, None), None)
if nk is not None:
self.add(next, (nk, i+1))
if parent == i:
continue
for rule in self.states[state].complete:
lhs, rhs = rule
for pitem in sets[parent]:
pstate, pparent = pitem
#k = self.goto(pstate, lhs)
k = self.edges.get((pstate, lhs), None)
if k is not None:
why = (item, i, rule)
pptr = (pitem, parent)
#self.add(cur, (k, pparent),
# i, pptr, why)
#INLINED --v
new = (k, pparent)
key = (new, i)
if new not in cur:
self.links[key] = []
cur.append(new)
self.links[key].append((pptr, why))
#INLINED --^
#nk = self.goto(k, None)
nk = self.edges.get((k, None), None)
if nk is not None:
#self.add(cur, (nk, i))
#INLINED --v
new = (nk, i)
if new not in cur:
cur.append(new)
#INLINED --^
def predecessor(self, key, causal):
for p, c in self.links[key]:
if c == causal:
return p
assert 0
def causal(self, key):
links = self.links[key]
if len(links) == 1:
return links[0][1]
choices = []
rule2cause = {}
for p, c in links:
rule = c[2]
choices.append(rule)
rule2cause[rule] = c
return rule2cause[self.ambiguity(choices)]
def deriveEpsilon(self, nt):
if len(self.newrules[nt]) > 1:
rule = self.ambiguity(self.newrules[nt])
else:
rule = self.newrules[nt][0]
#print rule
rhs = rule[1]
attr = [None] * len(rhs)
for i in range(len(rhs)-1, -1, -1):
attr[i] = self.deriveEpsilon(rhs[i])
return self.rule2func[self.new2old[rule]](attr)
def buildTree(self, nt, item, tokens, k):
state, parent = item
choices = []
for rule in self.states[state].complete:
if rule[0] == nt:
choices.append(rule)
rule = choices[0]
if len(choices) > 1:
rule = self.ambiguity(choices)
#print rule
rhs = rule[1]
attr = [None] * len(rhs)
for i in range(len(rhs)-1, -1, -1):
sym = rhs[i]
if not self.newrules.has_key(sym):
if sym != self._BOF:
attr[i] = tokens[k-1]
key = (item, k)
item, k = self.predecessor(key, None)
#elif self.isnullable(sym):
elif self._NULLABLE == sym[0:len(self._NULLABLE)]:
attr[i] = self.deriveEpsilon(sym)
else:
key = (item, k)
why = self.causal(key)
attr[i] = self.buildTree(sym, why[0],
tokens, why[1])
item, k = self.predecessor(key, why)
return self.rule2func[self.new2old[rule]](attr)
def ambiguity(self, rules):
#
# XXX - problem here and in collectRules() if the same rule
# appears in >1 method. Also undefined results if rules
# causing the ambiguity appear in the same method.
#
sortlist = []
name2index = {}
for i in range(len(rules)):
lhs, rhs = rule = rules[i]
name = self.rule2name[self.new2old[rule]]
sortlist.append((len(rhs), name))
name2index[name] = i
sortlist.sort()
list = map(lambda (a,b): b, sortlist)
return rules[name2index[self.resolve(list)]]
def resolve(self, list):
#
# Resolve ambiguity in favor of the shortest RHS.
# Since we walk the tree from the top down, this
# should effectively resolve in favor of a "shift".
#
return list[0]
#
# GenericASTBuilder automagically constructs a concrete/abstract syntax tree
# for a given input. The extra argument is a class (not an instance!)
# which supports the "__setslice__" and "__len__" methods.
#
# XXX - silently overrides any user code in methods.
#
class GenericASTBuilder(GenericParser):
def __init__(self, AST, start):
GenericParser.__init__(self, start)
self.AST = AST
def preprocess(self, rule, func):
rebind = lambda lhs, self=self: \
lambda args, lhs=lhs, self=self: \
self.buildASTNode(args, lhs)
lhs, rhs = rule
return rule, rebind(lhs)
def buildASTNode(self, args, lhs):
children = []
for arg in args:
if isinstance(arg, self.AST):
children.append(arg)
else:
children.append(self.terminal(arg))
return self.nonterminal(lhs, children)
def terminal(self, token): return token
def nonterminal(self, type, args):
rv = self.AST(type)
rv[:len(args)] = args
return rv
#
# GenericASTTraversal is a Visitor pattern according to Design Patterns. For
# each node it attempts to invoke the method n_<node type>, falling
# back onto the default() method if the n_* can't be found. The preorder
# traversal also looks for an exit hook named n_<node type>_exit (no default
# routine is called if it's not found). To prematurely halt traversal
# of a subtree, call the prune() method -- this only makes sense for a
# preorder traversal. Node type is determined via the typestring() method.
#
class GenericASTTraversalPruningException:
pass
class GenericASTTraversal:
def __init__(self, ast):
self.ast = ast
def typestring(self, node):
return node.type
def prune(self):
raise GenericASTTraversalPruningException
def preorder(self, node=None):
if node is None:
node = self.ast
try:
name = 'n_' + self.typestring(node)
if hasattr(self, name):
func = getattr(self, name)
func(node)
else:
self.default(node)
except GenericASTTraversalPruningException:
return
for kid in node:
self.preorder(kid)
name = name + '_exit'
if hasattr(self, name):
func = getattr(self, name)
func(node)
def postorder(self, node=None):
if node is None:
node = self.ast
for kid in node:
self.postorder(kid)
name = 'n_' + self.typestring(node)
if hasattr(self, name):
func = getattr(self, name)
func(node)
else:
self.default(node)
def default(self, node):
pass
#
# GenericASTMatcher. AST nodes must have "__getitem__" and "__cmp__"
# implemented.
#
# XXX - makes assumptions about how GenericParser walks the parse tree.
#
class GenericASTMatcher(GenericParser):
def __init__(self, start, ast):
GenericParser.__init__(self, start)
self.ast = ast
def preprocess(self, rule, func):
rebind = lambda func, self=self: \
lambda args, func=func, self=self: \
self.foundMatch(args, func)
lhs, rhs = rule
rhslist = list(rhs)
rhslist.reverse()
return (lhs, tuple(rhslist)), rebind(func)
def foundMatch(self, args, func):
func(args[-1])
return args[-1]
def match_r(self, node):
self.input.insert(0, node)
children = 0
for child in node:
if children == 0:
self.input.insert(0, '(')
children = children + 1
self.match_r(child)
if children > 0:
self.input.insert(0, ')')
def match(self, ast=None):
if ast is None:
ast = self.ast
self.input = []
self.match_r(ast)
self.parse(self.input)
def resolve(self, list):
#
# Resolve ambiguity in favor of the longest RHS.
#
return list[-1]
def _dump(tokens, sets, states):
for i in range(len(sets)):
print 'set', i
for item in sets[i]:
print '\t', item
for (lhs, rhs), pos in states[item[0]].items:
print '\t\t', lhs, '::=',
print string.join(rhs[:pos]),
print '.',
print string.join(rhs[pos:])
if i < len(tokens):
print
print 'token', str(tokens[i])
print