cpython/Objects/stringlib/string_format.h

1362 lines
41 KiB
C

/*
string_format.h -- implementation of string.format().
It uses the Objects/stringlib conventions, so that it can be
compiled for both unicode and string objects.
*/
/* Defines for Python 2.6 compatibility */
#if PY_VERSION_HEX < 0x03000000
#define PyLong_FromSsize_t _PyLong_FromSsize_t
#endif
/* Defines for more efficiently reallocating the string buffer */
#define INITIAL_SIZE_INCREMENT 100
#define SIZE_MULTIPLIER 2
#define MAX_SIZE_INCREMENT 3200
/************************************************************************/
/*********** Global data structures and forward declarations *********/
/************************************************************************/
/*
A SubString consists of the characters between two string or
unicode pointers.
*/
typedef struct {
STRINGLIB_CHAR *ptr;
STRINGLIB_CHAR *end;
} SubString;
typedef enum {
ANS_INIT,
ANS_AUTO,
ANS_MANUAL
} AutoNumberState; /* Keep track if we're auto-numbering fields */
/* Keeps track of our auto-numbering state, and which number field we're on */
typedef struct {
AutoNumberState an_state;
int an_field_number;
} AutoNumber;
/* forward declaration for recursion */
static PyObject *
build_string(SubString *input, PyObject *args, PyObject *kwargs,
int recursion_depth, AutoNumber *auto_number);
/************************************************************************/
/************************** Utility functions ************************/
/************************************************************************/
static void
AutoNumber_Init(AutoNumber *auto_number)
{
auto_number->an_state = ANS_INIT;
auto_number->an_field_number = 0;
}
/* fill in a SubString from a pointer and length */
Py_LOCAL_INLINE(void)
SubString_init(SubString *str, STRINGLIB_CHAR *p, Py_ssize_t len)
{
str->ptr = p;
if (p == NULL)
str->end = NULL;
else
str->end = str->ptr + len;
}
/* return a new string. if str->ptr is NULL, return None */
Py_LOCAL_INLINE(PyObject *)
SubString_new_object(SubString *str)
{
if (str->ptr == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
return STRINGLIB_NEW(str->ptr, str->end - str->ptr);
}
/* return a new string. if str->ptr is NULL, return None */
Py_LOCAL_INLINE(PyObject *)
SubString_new_object_or_empty(SubString *str)
{
if (str->ptr == NULL) {
return STRINGLIB_NEW(NULL, 0);
}
return STRINGLIB_NEW(str->ptr, str->end - str->ptr);
}
/* Return 1 if an error has been detected switching between automatic
field numbering and manual field specification, else return 0. Set
ValueError on error. */
static int
autonumber_state_error(AutoNumberState state, int field_name_is_empty)
{
if (state == ANS_MANUAL) {
if (field_name_is_empty) {
PyErr_SetString(PyExc_ValueError, "cannot switch from "
"manual field specification to "
"automatic field numbering");
return 1;
}
}
else {
if (!field_name_is_empty) {
PyErr_SetString(PyExc_ValueError, "cannot switch from "
"automatic field numbering to "
"manual field specification");
return 1;
}
}
return 0;
}
/************************************************************************/
/*********** Output string management functions ****************/
/************************************************************************/
typedef struct {
STRINGLIB_CHAR *ptr;
STRINGLIB_CHAR *end;
PyObject *obj;
Py_ssize_t size_increment;
} OutputString;
/* initialize an OutputString object, reserving size characters */
static int
output_initialize(OutputString *output, Py_ssize_t size)
{
output->obj = STRINGLIB_NEW(NULL, size);
if (output->obj == NULL)
return 0;
output->ptr = STRINGLIB_STR(output->obj);
output->end = STRINGLIB_LEN(output->obj) + output->ptr;
output->size_increment = INITIAL_SIZE_INCREMENT;
return 1;
}
/*
output_extend reallocates the output string buffer.
It returns a status: 0 for a failed reallocation,
1 for success.
*/
static int
output_extend(OutputString *output, Py_ssize_t count)
{
STRINGLIB_CHAR *startptr = STRINGLIB_STR(output->obj);
Py_ssize_t curlen = output->ptr - startptr;
Py_ssize_t maxlen = curlen + count + output->size_increment;
if (STRINGLIB_RESIZE(&output->obj, maxlen) < 0)
return 0;
startptr = STRINGLIB_STR(output->obj);
output->ptr = startptr + curlen;
output->end = startptr + maxlen;
if (output->size_increment < MAX_SIZE_INCREMENT)
output->size_increment *= SIZE_MULTIPLIER;
return 1;
}
/*
output_data dumps characters into our output string
buffer.
In some cases, it has to reallocate the string.
It returns a status: 0 for a failed reallocation,
1 for success.
*/
static int
output_data(OutputString *output, const STRINGLIB_CHAR *s, Py_ssize_t count)
{
if ((count > output->end - output->ptr) && !output_extend(output, count))
return 0;
memcpy(output->ptr, s, count * sizeof(STRINGLIB_CHAR));
output->ptr += count;
return 1;
}
/************************************************************************/
/*********** Format string parsing -- integers and identifiers *********/
/************************************************************************/
static Py_ssize_t
get_integer(const SubString *str)
{
Py_ssize_t accumulator = 0;
Py_ssize_t digitval;
STRINGLIB_CHAR *p;
/* empty string is an error */
if (str->ptr >= str->end)
return -1;
for (p = str->ptr; p < str->end; p++) {
digitval = STRINGLIB_TODECIMAL(*p);
if (digitval < 0)
return -1;
/*
Detect possible overflow before it happens:
accumulator * 10 + digitval > PY_SSIZE_T_MAX if and only if
accumulator > (PY_SSIZE_T_MAX - digitval) / 10.
*/
if (accumulator > (PY_SSIZE_T_MAX - digitval) / 10) {
PyErr_Format(PyExc_ValueError,
"Too many decimal digits in format string");
return -1;
}
accumulator = accumulator * 10 + digitval;
}
return accumulator;
}
/************************************************************************/
/******** Functions to get field objects and specification strings ******/
/************************************************************************/
/* do the equivalent of obj.name */
static PyObject *
getattr(PyObject *obj, SubString *name)
{
PyObject *newobj;
PyObject *str = SubString_new_object(name);
if (str == NULL)
return NULL;
newobj = PyObject_GetAttr(obj, str);
Py_DECREF(str);
return newobj;
}
/* do the equivalent of obj[idx], where obj is a sequence */
static PyObject *
getitem_sequence(PyObject *obj, Py_ssize_t idx)
{
return PySequence_GetItem(obj, idx);
}
/* do the equivalent of obj[idx], where obj is not a sequence */
static PyObject *
getitem_idx(PyObject *obj, Py_ssize_t idx)
{
PyObject *newobj;
PyObject *idx_obj = PyLong_FromSsize_t(idx);
if (idx_obj == NULL)
return NULL;
newobj = PyObject_GetItem(obj, idx_obj);
Py_DECREF(idx_obj);
return newobj;
}
/* do the equivalent of obj[name] */
static PyObject *
getitem_str(PyObject *obj, SubString *name)
{
PyObject *newobj;
PyObject *str = SubString_new_object(name);
if (str == NULL)
return NULL;
newobj = PyObject_GetItem(obj, str);
Py_DECREF(str);
return newobj;
}
typedef struct {
/* the entire string we're parsing. we assume that someone else
is managing its lifetime, and that it will exist for the
lifetime of the iterator. can be empty */
SubString str;
/* pointer to where we are inside field_name */
STRINGLIB_CHAR *ptr;
} FieldNameIterator;
static int
FieldNameIterator_init(FieldNameIterator *self, STRINGLIB_CHAR *ptr,
Py_ssize_t len)
{
SubString_init(&self->str, ptr, len);
self->ptr = self->str.ptr;
return 1;
}
static int
_FieldNameIterator_attr(FieldNameIterator *self, SubString *name)
{
STRINGLIB_CHAR c;
name->ptr = self->ptr;
/* return everything until '.' or '[' */
while (self->ptr < self->str.end) {
switch (c = *self->ptr++) {
case '[':
case '.':
/* backup so that we this character will be seen next time */
self->ptr--;
break;
default:
continue;
}
break;
}
/* end of string is okay */
name->end = self->ptr;
return 1;
}
static int
_FieldNameIterator_item(FieldNameIterator *self, SubString *name)
{
int bracket_seen = 0;
STRINGLIB_CHAR c;
name->ptr = self->ptr;
/* return everything until ']' */
while (self->ptr < self->str.end) {
switch (c = *self->ptr++) {
case ']':
bracket_seen = 1;
break;
default:
continue;
}
break;
}
/* make sure we ended with a ']' */
if (!bracket_seen) {
PyErr_SetString(PyExc_ValueError, "Missing ']' in format string");
return 0;
}
/* end of string is okay */
/* don't include the ']' */
name->end = self->ptr-1;
return 1;
}
/* returns 0 on error, 1 on non-error termination, and 2 if it returns a value */
static int
FieldNameIterator_next(FieldNameIterator *self, int *is_attribute,
Py_ssize_t *name_idx, SubString *name)
{
/* check at end of input */
if (self->ptr >= self->str.end)
return 1;
switch (*self->ptr++) {
case '.':
*is_attribute = 1;
if (_FieldNameIterator_attr(self, name) == 0)
return 0;
*name_idx = -1;
break;
case '[':
*is_attribute = 0;
if (_FieldNameIterator_item(self, name) == 0)
return 0;
*name_idx = get_integer(name);
if (*name_idx == -1 && PyErr_Occurred())
return 0;
break;
default:
/* Invalid character follows ']' */
PyErr_SetString(PyExc_ValueError, "Only '.' or '[' may "
"follow ']' in format field specifier");
return 0;
}
/* empty string is an error */
if (name->ptr == name->end) {
PyErr_SetString(PyExc_ValueError, "Empty attribute in format string");
return 0;
}
return 2;
}
/* input: field_name
output: 'first' points to the part before the first '[' or '.'
'first_idx' is -1 if 'first' is not an integer, otherwise
it's the value of first converted to an integer
'rest' is an iterator to return the rest
*/
static int
field_name_split(STRINGLIB_CHAR *ptr, Py_ssize_t len, SubString *first,
Py_ssize_t *first_idx, FieldNameIterator *rest,
AutoNumber *auto_number)
{
STRINGLIB_CHAR c;
STRINGLIB_CHAR *p = ptr;
STRINGLIB_CHAR *end = ptr + len;
int field_name_is_empty;
int using_numeric_index;
/* find the part up until the first '.' or '[' */
while (p < end) {
switch (c = *p++) {
case '[':
case '.':
/* backup so that we this character is available to the
"rest" iterator */
p--;
break;
default:
continue;
}
break;
}
/* set up the return values */
SubString_init(first, ptr, p - ptr);
FieldNameIterator_init(rest, p, end - p);
/* see if "first" is an integer, in which case it's used as an index */
*first_idx = get_integer(first);
if (*first_idx == -1 && PyErr_Occurred())
return 0;
field_name_is_empty = first->ptr >= first->end;
/* If the field name is omitted or if we have a numeric index
specified, then we're doing numeric indexing into args. */
using_numeric_index = field_name_is_empty || *first_idx != -1;
/* We always get here exactly one time for each field we're
processing. And we get here in field order (counting by left
braces). So this is the perfect place to handle automatic field
numbering if the field name is omitted. */
/* Check if we need to do the auto-numbering. It's not needed if
we're called from string.Format routines, because it's handled
in that class by itself. */
if (auto_number) {
/* Initialize our auto numbering state if this is the first
time we're either auto-numbering or manually numbering. */
if (auto_number->an_state == ANS_INIT && using_numeric_index)
auto_number->an_state = field_name_is_empty ?
ANS_AUTO : ANS_MANUAL;
/* Make sure our state is consistent with what we're doing
this time through. Only check if we're using a numeric
index. */
if (using_numeric_index)
if (autonumber_state_error(auto_number->an_state,
field_name_is_empty))
return 0;
/* Zero length field means we want to do auto-numbering of the
fields. */
if (field_name_is_empty)
*first_idx = (auto_number->an_field_number)++;
}
return 1;
}
/*
get_field_object returns the object inside {}, before the
format_spec. It handles getindex and getattr lookups and consumes
the entire input string.
*/
static PyObject *
get_field_object(SubString *input, PyObject *args, PyObject *kwargs,
AutoNumber *auto_number)
{
PyObject *obj = NULL;
int ok;
int is_attribute;
SubString name;
SubString first;
Py_ssize_t index;
FieldNameIterator rest;
if (!field_name_split(input->ptr, input->end - input->ptr, &first,
&index, &rest, auto_number)) {
goto error;
}
if (index == -1) {
/* look up in kwargs */
PyObject *key = SubString_new_object(&first);
if (key == NULL)
goto error;
if ((kwargs == NULL) || (obj = PyDict_GetItem(kwargs, key)) == NULL) {
PyErr_SetObject(PyExc_KeyError, key);
Py_DECREF(key);
goto error;
}
Py_DECREF(key);
Py_INCREF(obj);
}
else {
/* look up in args */
obj = PySequence_GetItem(args, index);
if (obj == NULL)
goto error;
}
/* iterate over the rest of the field_name */
while ((ok = FieldNameIterator_next(&rest, &is_attribute, &index,
&name)) == 2) {
PyObject *tmp;
if (is_attribute)
/* getattr lookup "." */
tmp = getattr(obj, &name);
else
/* getitem lookup "[]" */
if (index == -1)
tmp = getitem_str(obj, &name);
else
if (PySequence_Check(obj))
tmp = getitem_sequence(obj, index);
else
/* not a sequence */
tmp = getitem_idx(obj, index);
if (tmp == NULL)
goto error;
/* assign to obj */
Py_DECREF(obj);
obj = tmp;
}
/* end of iterator, this is the non-error case */
if (ok == 1)
return obj;
error:
Py_XDECREF(obj);
return NULL;
}
/************************************************************************/
/***************** Field rendering functions **************************/
/************************************************************************/
/*
render_field() is the main function in this section. It takes the
field object and field specification string generated by
get_field_and_spec, and renders the field into the output string.
render_field calls fieldobj.__format__(format_spec) method, and
appends to the output.
*/
static int
render_field(PyObject *fieldobj, SubString *format_spec, OutputString *output)
{
int ok = 0;
PyObject *result = NULL;
PyObject *format_spec_object = NULL;
PyObject *(*formatter)(PyObject *, STRINGLIB_CHAR *, Py_ssize_t) = NULL;
STRINGLIB_CHAR* format_spec_start = format_spec->ptr ?
format_spec->ptr : NULL;
Py_ssize_t format_spec_len = format_spec->ptr ?
format_spec->end - format_spec->ptr : 0;
/* If we know the type exactly, skip the lookup of __format__ and just
call the formatter directly. */
#if STRINGLIB_IS_UNICODE
if (PyUnicode_CheckExact(fieldobj))
formatter = _PyUnicode_FormatAdvanced;
/* Unfortunately, there's a problem with checking for int, long,
and float here. If we're being included as unicode, their
formatters expect string format_spec args. For now, just skip
this optimization for unicode. This could be fixed, but it's a
hassle. */
#else
if (PyString_CheckExact(fieldobj))
formatter = _PyBytes_FormatAdvanced;
else if (PyInt_CheckExact(fieldobj))
formatter =_PyInt_FormatAdvanced;
else if (PyLong_CheckExact(fieldobj))
formatter =_PyLong_FormatAdvanced;
else if (PyFloat_CheckExact(fieldobj))
formatter = _PyFloat_FormatAdvanced;
#endif
if (formatter) {
/* we know exactly which formatter will be called when __format__ is
looked up, so call it directly, instead. */
result = formatter(fieldobj, format_spec_start, format_spec_len);
}
else {
/* We need to create an object out of the pointers we have, because
__format__ takes a string/unicode object for format_spec. */
format_spec_object = STRINGLIB_NEW(format_spec_start,
format_spec_len);
if (format_spec_object == NULL)
goto done;
result = PyObject_Format(fieldobj, format_spec_object);
}
if (result == NULL)
goto done;
#if PY_VERSION_HEX >= 0x03000000
assert(PyUnicode_Check(result));
#else
assert(PyString_Check(result) || PyUnicode_Check(result));
/* Convert result to our type. We could be str, and result could
be unicode */
{
PyObject *tmp = STRINGLIB_TOSTR(result);
if (tmp == NULL)
goto done;
Py_DECREF(result);
result = tmp;
}
#endif
ok = output_data(output,
STRINGLIB_STR(result), STRINGLIB_LEN(result));
done:
Py_XDECREF(format_spec_object);
Py_XDECREF(result);
return ok;
}
static int
parse_field(SubString *str, SubString *field_name, SubString *format_spec,
STRINGLIB_CHAR *conversion)
{
/* Note this function works if the field name is zero length,
which is good. Zero length field names are handled later, in
field_name_split. */
STRINGLIB_CHAR c = 0;
/* initialize these, as they may be empty */
*conversion = '\0';
SubString_init(format_spec, NULL, 0);
/* Search for the field name. it's terminated by the end of
the string, or a ':' or '!' */
field_name->ptr = str->ptr;
while (str->ptr < str->end) {
switch (c = *(str->ptr++)) {
case ':':
case '!':
break;
default:
continue;
}
break;
}
if (c == '!' || c == ':') {
/* we have a format specifier and/or a conversion */
/* don't include the last character */
field_name->end = str->ptr-1;
/* the format specifier is the rest of the string */
format_spec->ptr = str->ptr;
format_spec->end = str->end;
/* see if there's a conversion specifier */
if (c == '!') {
/* there must be another character present */
if (format_spec->ptr >= format_spec->end) {
PyErr_SetString(PyExc_ValueError,
"end of format while looking for conversion "
"specifier");
return 0;
}
*conversion = *(format_spec->ptr++);
/* if there is another character, it must be a colon */
if (format_spec->ptr < format_spec->end) {
c = *(format_spec->ptr++);
if (c != ':') {
PyErr_SetString(PyExc_ValueError,
"expected ':' after format specifier");
return 0;
}
}
}
}
else
/* end of string, there's no format_spec or conversion */
field_name->end = str->ptr;
return 1;
}
/************************************************************************/
/******* Output string allocation and escape-to-markup processing ******/
/************************************************************************/
/* MarkupIterator breaks the string into pieces of either literal
text, or things inside {} that need to be marked up. it is
designed to make it easy to wrap a Python iterator around it, for
use with the Formatter class */
typedef struct {
SubString str;
} MarkupIterator;
static int
MarkupIterator_init(MarkupIterator *self, STRINGLIB_CHAR *ptr, Py_ssize_t len)
{
SubString_init(&self->str, ptr, len);
return 1;
}
/* returns 0 on error, 1 on non-error termination, and 2 if it got a
string (or something to be expanded) */
static int
MarkupIterator_next(MarkupIterator *self, SubString *literal,
int *field_present, SubString *field_name,
SubString *format_spec, STRINGLIB_CHAR *conversion,
int *format_spec_needs_expanding)
{
int at_end;
STRINGLIB_CHAR c = 0;
STRINGLIB_CHAR *start;
int count;
Py_ssize_t len;
int markup_follows = 0;
/* initialize all of the output variables */
SubString_init(literal, NULL, 0);
SubString_init(field_name, NULL, 0);
SubString_init(format_spec, NULL, 0);
*conversion = '\0';
*format_spec_needs_expanding = 0;
*field_present = 0;
/* No more input, end of iterator. This is the normal exit
path. */
if (self->str.ptr >= self->str.end)
return 1;
start = self->str.ptr;
/* First read any literal text. Read until the end of string, an
escaped '{' or '}', or an unescaped '{'. In order to never
allocate memory and so I can just pass pointers around, if
there's an escaped '{' or '}' then we'll return the literal
including the brace, but no format object. The next time
through, we'll return the rest of the literal, skipping past
the second consecutive brace. */
while (self->str.ptr < self->str.end) {
switch (c = *(self->str.ptr++)) {
case '{':
case '}':
markup_follows = 1;
break;
default:
continue;
}
break;
}
at_end = self->str.ptr >= self->str.end;
len = self->str.ptr - start;
if ((c == '}') && (at_end || (c != *self->str.ptr))) {
PyErr_SetString(PyExc_ValueError, "Single '}' encountered "
"in format string");
return 0;
}
if (at_end && c == '{') {
PyErr_SetString(PyExc_ValueError, "Single '{' encountered "
"in format string");
return 0;
}
if (!at_end) {
if (c == *self->str.ptr) {
/* escaped } or {, skip it in the input. there is no
markup object following us, just this literal text */
self->str.ptr++;
markup_follows = 0;
}
else
len--;
}
/* record the literal text */
literal->ptr = start;
literal->end = start + len;
if (!markup_follows)
return 2;
/* this is markup, find the end of the string by counting nested
braces. note that this prohibits escaped braces, so that
format_specs cannot have braces in them. */
*field_present = 1;
count = 1;
start = self->str.ptr;
/* we know we can't have a zero length string, so don't worry
about that case */
while (self->str.ptr < self->str.end) {
switch (c = *(self->str.ptr++)) {
case '{':
/* the format spec needs to be recursively expanded.
this is an optimization, and not strictly needed */
*format_spec_needs_expanding = 1;
count++;
break;
case '}':
count--;
if (count <= 0) {
/* we're done. parse and get out */
SubString s;
SubString_init(&s, start, self->str.ptr - 1 - start);
if (parse_field(&s, field_name, format_spec, conversion) == 0)
return 0;
/* success */
return 2;
}
break;
}
}
/* end of string while searching for matching '}' */
PyErr_SetString(PyExc_ValueError, "unmatched '{' in format");
return 0;
}
/* do the !r or !s conversion on obj */
static PyObject *
do_conversion(PyObject *obj, STRINGLIB_CHAR conversion)
{
/* XXX in pre-3.0, do we need to convert this to unicode, since it
might have returned a string? */
switch (conversion) {
case 'r':
return PyObject_Repr(obj);
case 's':
return STRINGLIB_TOSTR(obj);
default:
if (conversion > 32 && conversion < 127) {
/* It's the ASCII subrange; casting to char is safe
(assuming the execution character set is an ASCII
superset). */
PyErr_Format(PyExc_ValueError,
"Unknown conversion specifier %c",
(char)conversion);
} else
PyErr_Format(PyExc_ValueError,
"Unknown conversion specifier \\x%x",
(unsigned int)conversion);
return NULL;
}
}
/* given:
{field_name!conversion:format_spec}
compute the result and write it to output.
format_spec_needs_expanding is an optimization. if it's false,
just output the string directly, otherwise recursively expand the
format_spec string.
field_name is allowed to be zero length, in which case we
are doing auto field numbering.
*/
static int
output_markup(SubString *field_name, SubString *format_spec,
int format_spec_needs_expanding, STRINGLIB_CHAR conversion,
OutputString *output, PyObject *args, PyObject *kwargs,
int recursion_depth, AutoNumber *auto_number)
{
PyObject *tmp = NULL;
PyObject *fieldobj = NULL;
SubString expanded_format_spec;
SubString *actual_format_spec;
int result = 0;
/* convert field_name to an object */
fieldobj = get_field_object(field_name, args, kwargs, auto_number);
if (fieldobj == NULL)
goto done;
if (conversion != '\0') {
tmp = do_conversion(fieldobj, conversion);
if (tmp == NULL)
goto done;
/* do the assignment, transferring ownership: fieldobj = tmp */
Py_DECREF(fieldobj);
fieldobj = tmp;
tmp = NULL;
}
/* if needed, recurively compute the format_spec */
if (format_spec_needs_expanding) {
tmp = build_string(format_spec, args, kwargs, recursion_depth-1,
auto_number);
if (tmp == NULL)
goto done;
/* note that in the case we're expanding the format string,
tmp must be kept around until after the call to
render_field. */
SubString_init(&expanded_format_spec,
STRINGLIB_STR(tmp), STRINGLIB_LEN(tmp));
actual_format_spec = &expanded_format_spec;
}
else
actual_format_spec = format_spec;
if (render_field(fieldobj, actual_format_spec, output) == 0)
goto done;
result = 1;
done:
Py_XDECREF(fieldobj);
Py_XDECREF(tmp);
return result;
}
/*
do_markup is the top-level loop for the format() method. It
searches through the format string for escapes to markup codes, and
calls other functions to move non-markup text to the output,
and to perform the markup to the output.
*/
static int
do_markup(SubString *input, PyObject *args, PyObject *kwargs,
OutputString *output, int recursion_depth, AutoNumber *auto_number)
{
MarkupIterator iter;
int format_spec_needs_expanding;
int result;
int field_present;
SubString literal;
SubString field_name;
SubString format_spec;
STRINGLIB_CHAR conversion;
MarkupIterator_init(&iter, input->ptr, input->end - input->ptr);
while ((result = MarkupIterator_next(&iter, &literal, &field_present,
&field_name, &format_spec,
&conversion,
&format_spec_needs_expanding)) == 2) {
if (!output_data(output, literal.ptr, literal.end - literal.ptr))
return 0;
if (field_present)
if (!output_markup(&field_name, &format_spec,
format_spec_needs_expanding, conversion, output,
args, kwargs, recursion_depth, auto_number))
return 0;
}
return result;
}
/*
build_string allocates the output string and then
calls do_markup to do the heavy lifting.
*/
static PyObject *
build_string(SubString *input, PyObject *args, PyObject *kwargs,
int recursion_depth, AutoNumber *auto_number)
{
OutputString output;
PyObject *result = NULL;
Py_ssize_t count;
output.obj = NULL; /* needed so cleanup code always works */
/* check the recursion level */
if (recursion_depth <= 0) {
PyErr_SetString(PyExc_ValueError,
"Max string recursion exceeded");
goto done;
}
/* initial size is the length of the format string, plus the size
increment. seems like a reasonable default */
if (!output_initialize(&output,
input->end - input->ptr +
INITIAL_SIZE_INCREMENT))
goto done;
if (!do_markup(input, args, kwargs, &output, recursion_depth,
auto_number)) {
goto done;
}
count = output.ptr - STRINGLIB_STR(output.obj);
if (STRINGLIB_RESIZE(&output.obj, count) < 0) {
goto done;
}
/* transfer ownership to result */
result = output.obj;
output.obj = NULL;
done:
Py_XDECREF(output.obj);
return result;
}
/************************************************************************/
/*********** main routine ***********************************************/
/************************************************************************/
/* this is the main entry point */
static PyObject *
do_string_format(PyObject *self, PyObject *args, PyObject *kwargs)
{
SubString input;
/* PEP 3101 says only 2 levels, so that
"{0:{1}}".format('abc', 's') # works
"{0:{1:{2}}}".format('abc', 's', '') # fails
*/
int recursion_depth = 2;
AutoNumber auto_number;
AutoNumber_Init(&auto_number);
SubString_init(&input, STRINGLIB_STR(self), STRINGLIB_LEN(self));
return build_string(&input, args, kwargs, recursion_depth, &auto_number);
}
/************************************************************************/
/*********** formatteriterator ******************************************/
/************************************************************************/
/* This is used to implement string.Formatter.vparse(). It exists so
Formatter can share code with the built in unicode.format() method.
It's really just a wrapper around MarkupIterator that is callable
from Python. */
typedef struct {
PyObject_HEAD
STRINGLIB_OBJECT *str;
MarkupIterator it_markup;
} formatteriterobject;
static void
formatteriter_dealloc(formatteriterobject *it)
{
Py_XDECREF(it->str);
PyObject_FREE(it);
}
/* returns a tuple:
(literal, field_name, format_spec, conversion)
literal is any literal text to output. might be zero length
field_name is the string before the ':'. might be None
format_spec is the string after the ':'. mibht be None
conversion is either None, or the string after the '!'
*/
static PyObject *
formatteriter_next(formatteriterobject *it)
{
SubString literal;
SubString field_name;
SubString format_spec;
STRINGLIB_CHAR conversion;
int format_spec_needs_expanding;
int field_present;
int result = MarkupIterator_next(&it->it_markup, &literal, &field_present,
&field_name, &format_spec, &conversion,
&format_spec_needs_expanding);
/* all of the SubString objects point into it->str, so no
memory management needs to be done on them */
assert(0 <= result && result <= 2);
if (result == 0 || result == 1)
/* if 0, error has already been set, if 1, iterator is empty */
return NULL;
else {
PyObject *literal_str = NULL;
PyObject *field_name_str = NULL;
PyObject *format_spec_str = NULL;
PyObject *conversion_str = NULL;
PyObject *tuple = NULL;
literal_str = SubString_new_object(&literal);
if (literal_str == NULL)
goto done;
field_name_str = SubString_new_object(&field_name);
if (field_name_str == NULL)
goto done;
/* if field_name is non-zero length, return a string for
format_spec (even if zero length), else return None */
format_spec_str = (field_present ?
SubString_new_object_or_empty :
SubString_new_object)(&format_spec);
if (format_spec_str == NULL)
goto done;
/* if the conversion is not specified, return a None,
otherwise create a one length string with the conversion
character */
if (conversion == '\0') {
conversion_str = Py_None;
Py_INCREF(conversion_str);
}
else
conversion_str = STRINGLIB_NEW(&conversion, 1);
if (conversion_str == NULL)
goto done;
tuple = PyTuple_Pack(4, literal_str, field_name_str, format_spec_str,
conversion_str);
done:
Py_XDECREF(literal_str);
Py_XDECREF(field_name_str);
Py_XDECREF(format_spec_str);
Py_XDECREF(conversion_str);
return tuple;
}
}
static PyMethodDef formatteriter_methods[] = {
{NULL, NULL} /* sentinel */
};
static PyTypeObject PyFormatterIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"formatteriterator", /* tp_name */
sizeof(formatteriterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)formatteriter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)formatteriter_next, /* tp_iternext */
formatteriter_methods, /* tp_methods */
0,
};
/* unicode_formatter_parser is used to implement
string.Formatter.vformat. it parses a string and returns tuples
describing the parsed elements. It's a wrapper around
stringlib/string_format.h's MarkupIterator */
static PyObject *
formatter_parser(STRINGLIB_OBJECT *self)
{
formatteriterobject *it;
it = PyObject_New(formatteriterobject, &PyFormatterIter_Type);
if (it == NULL)
return NULL;
/* take ownership, give the object to the iterator */
Py_INCREF(self);
it->str = self;
/* initialize the contained MarkupIterator */
MarkupIterator_init(&it->it_markup,
STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return (PyObject *)it;
}
/************************************************************************/
/*********** fieldnameiterator ******************************************/
/************************************************************************/
/* This is used to implement string.Formatter.vparse(). It parses the
field name into attribute and item values. It's a Python-callable
wrapper around FieldNameIterator */
typedef struct {
PyObject_HEAD
STRINGLIB_OBJECT *str;
FieldNameIterator it_field;
} fieldnameiterobject;
static void
fieldnameiter_dealloc(fieldnameiterobject *it)
{
Py_XDECREF(it->str);
PyObject_FREE(it);
}
/* returns a tuple:
(is_attr, value)
is_attr is true if we used attribute syntax (e.g., '.foo')
false if we used index syntax (e.g., '[foo]')
value is an integer or string
*/
static PyObject *
fieldnameiter_next(fieldnameiterobject *it)
{
int result;
int is_attr;
Py_ssize_t idx;
SubString name;
result = FieldNameIterator_next(&it->it_field, &is_attr,
&idx, &name);
if (result == 0 || result == 1)
/* if 0, error has already been set, if 1, iterator is empty */
return NULL;
else {
PyObject* result = NULL;
PyObject* is_attr_obj = NULL;
PyObject* obj = NULL;
is_attr_obj = PyBool_FromLong(is_attr);
if (is_attr_obj == NULL)
goto done;
/* either an integer or a string */
if (idx != -1)
obj = PyLong_FromSsize_t(idx);
else
obj = SubString_new_object(&name);
if (obj == NULL)
goto done;
/* return a tuple of values */
result = PyTuple_Pack(2, is_attr_obj, obj);
done:
Py_XDECREF(is_attr_obj);
Py_XDECREF(obj);
return result;
}
}
static PyMethodDef fieldnameiter_methods[] = {
{NULL, NULL} /* sentinel */
};
static PyTypeObject PyFieldNameIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"fieldnameiterator", /* tp_name */
sizeof(fieldnameiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)fieldnameiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)fieldnameiter_next, /* tp_iternext */
fieldnameiter_methods, /* tp_methods */
0};
/* unicode_formatter_field_name_split is used to implement
string.Formatter.vformat. it takes an PEP 3101 "field name", and
returns a tuple of (first, rest): "first", the part before the
first '.' or '['; and "rest", an iterator for the rest of the field
name. it's a wrapper around stringlib/string_format.h's
field_name_split. The iterator it returns is a
FieldNameIterator */
static PyObject *
formatter_field_name_split(STRINGLIB_OBJECT *self)
{
SubString first;
Py_ssize_t first_idx;
fieldnameiterobject *it;
PyObject *first_obj = NULL;
PyObject *result = NULL;
it = PyObject_New(fieldnameiterobject, &PyFieldNameIter_Type);
if (it == NULL)
return NULL;
/* take ownership, give the object to the iterator. this is
just to keep the field_name alive */
Py_INCREF(self);
it->str = self;
/* Pass in auto_number = NULL. We'll return an empty string for
first_obj in that case. */
if (!field_name_split(STRINGLIB_STR(self),
STRINGLIB_LEN(self),
&first, &first_idx, &it->it_field, NULL))
goto done;
/* first becomes an integer, if possible; else a string */
if (first_idx != -1)
first_obj = PyLong_FromSsize_t(first_idx);
else
/* convert "first" into a string object */
first_obj = SubString_new_object(&first);
if (first_obj == NULL)
goto done;
/* return a tuple of values */
result = PyTuple_Pack(2, first_obj, it);
done:
Py_XDECREF(it);
Py_XDECREF(first_obj);
return result;
}