5035 lines
136 KiB
C
5035 lines
136 KiB
C
/* C implementation for the date/time type documented at
|
|
* http://www.zope.org/Members/fdrake/DateTimeWiki/FrontPage
|
|
*/
|
|
|
|
#include "Python.h"
|
|
#include "modsupport.h"
|
|
#include "structmember.h"
|
|
|
|
#include <time.h>
|
|
|
|
#include "timefuncs.h"
|
|
|
|
/* Differentiate between building the core module and building extension
|
|
* modules.
|
|
*/
|
|
#ifndef Py_BUILD_CORE
|
|
#define Py_BUILD_CORE
|
|
#endif
|
|
#include "datetime.h"
|
|
#undef Py_BUILD_CORE
|
|
|
|
/* We require that C int be at least 32 bits, and use int virtually
|
|
* everywhere. In just a few cases we use a temp long, where a Python
|
|
* API returns a C long. In such cases, we have to ensure that the
|
|
* final result fits in a C int (this can be an issue on 64-bit boxes).
|
|
*/
|
|
#if SIZEOF_INT < 4
|
|
# error "datetime.c requires that C int have at least 32 bits"
|
|
#endif
|
|
|
|
#define MINYEAR 1
|
|
#define MAXYEAR 9999
|
|
|
|
/* Nine decimal digits is easy to communicate, and leaves enough room
|
|
* so that two delta days can be added w/o fear of overflowing a signed
|
|
* 32-bit int, and with plenty of room left over to absorb any possible
|
|
* carries from adding seconds.
|
|
*/
|
|
#define MAX_DELTA_DAYS 999999999
|
|
|
|
/* Rename the long macros in datetime.h to more reasonable short names. */
|
|
#define GET_YEAR PyDateTime_GET_YEAR
|
|
#define GET_MONTH PyDateTime_GET_MONTH
|
|
#define GET_DAY PyDateTime_GET_DAY
|
|
#define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
|
|
#define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
|
|
#define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
|
|
#define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
|
|
|
|
/* Date accessors for date and datetime. */
|
|
#define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
|
|
((o)->data[1] = ((v) & 0x00ff)))
|
|
#define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
|
|
#define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
|
|
|
|
/* Date/Time accessors for datetime. */
|
|
#define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
|
|
#define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
|
|
#define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
|
|
#define DATE_SET_MICROSECOND(o, v) \
|
|
(((o)->data[7] = ((v) & 0xff0000) >> 16), \
|
|
((o)->data[8] = ((v) & 0x00ff00) >> 8), \
|
|
((o)->data[9] = ((v) & 0x0000ff)))
|
|
|
|
/* Time accessors for time. */
|
|
#define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
|
|
#define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
|
|
#define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
|
|
#define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
|
|
#define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
|
|
#define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
|
|
#define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
|
|
#define TIME_SET_MICROSECOND(o, v) \
|
|
(((o)->data[3] = ((v) & 0xff0000) >> 16), \
|
|
((o)->data[4] = ((v) & 0x00ff00) >> 8), \
|
|
((o)->data[5] = ((v) & 0x0000ff)))
|
|
|
|
/* Delta accessors for timedelta. */
|
|
#define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
|
|
#define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
|
|
#define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
|
|
|
|
#define SET_TD_DAYS(o, v) ((o)->days = (v))
|
|
#define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
|
|
#define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
|
|
|
|
/* p is a pointer to a time or a datetime object; HASTZINFO(p) returns
|
|
* p->hastzinfo.
|
|
*/
|
|
#define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
|
|
|
|
/* M is a char or int claiming to be a valid month. The macro is equivalent
|
|
* to the two-sided Python test
|
|
* 1 <= M <= 12
|
|
*/
|
|
#define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
|
|
|
|
/* Forward declarations. */
|
|
static PyTypeObject PyDateTime_DateType;
|
|
static PyTypeObject PyDateTime_DateTimeType;
|
|
static PyTypeObject PyDateTime_DeltaType;
|
|
static PyTypeObject PyDateTime_TimeType;
|
|
static PyTypeObject PyDateTime_TZInfoType;
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Math utilities.
|
|
*/
|
|
|
|
/* k = i+j overflows iff k differs in sign from both inputs,
|
|
* iff k^i has sign bit set and k^j has sign bit set,
|
|
* iff (k^i)&(k^j) has sign bit set.
|
|
*/
|
|
#define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
|
|
((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
|
|
|
|
/* Compute Python divmod(x, y), returning the quotient and storing the
|
|
* remainder into *r. The quotient is the floor of x/y, and that's
|
|
* the real point of this. C will probably truncate instead (C99
|
|
* requires truncation; C89 left it implementation-defined).
|
|
* Simplification: we *require* that y > 0 here. That's appropriate
|
|
* for all the uses made of it. This simplifies the code and makes
|
|
* the overflow case impossible (divmod(LONG_MIN, -1) is the only
|
|
* overflow case).
|
|
*/
|
|
static int
|
|
divmod(int x, int y, int *r)
|
|
{
|
|
int quo;
|
|
|
|
assert(y > 0);
|
|
quo = x / y;
|
|
*r = x - quo * y;
|
|
if (*r < 0) {
|
|
--quo;
|
|
*r += y;
|
|
}
|
|
assert(0 <= *r && *r < y);
|
|
return quo;
|
|
}
|
|
|
|
/* Round a double to the nearest long. |x| must be small enough to fit
|
|
* in a C long; this is not checked.
|
|
*/
|
|
static long
|
|
round_to_long(double x)
|
|
{
|
|
if (x >= 0.0)
|
|
x = floor(x + 0.5);
|
|
else
|
|
x = ceil(x - 0.5);
|
|
return (long)x;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* General calendrical helper functions
|
|
*/
|
|
|
|
/* For each month ordinal in 1..12, the number of days in that month,
|
|
* and the number of days before that month in the same year. These
|
|
* are correct for non-leap years only.
|
|
*/
|
|
static int _days_in_month[] = {
|
|
0, /* unused; this vector uses 1-based indexing */
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static int _days_before_month[] = {
|
|
0, /* unused; this vector uses 1-based indexing */
|
|
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
|
|
/* year -> 1 if leap year, else 0. */
|
|
static int
|
|
is_leap(int year)
|
|
{
|
|
/* Cast year to unsigned. The result is the same either way, but
|
|
* C can generate faster code for unsigned mod than for signed
|
|
* mod (especially for % 4 -- a good compiler should just grab
|
|
* the last 2 bits when the LHS is unsigned).
|
|
*/
|
|
const unsigned int ayear = (unsigned int)year;
|
|
return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
|
|
}
|
|
|
|
/* year, month -> number of days in that month in that year */
|
|
static int
|
|
days_in_month(int year, int month)
|
|
{
|
|
assert(month >= 1);
|
|
assert(month <= 12);
|
|
if (month == 2 && is_leap(year))
|
|
return 29;
|
|
else
|
|
return _days_in_month[month];
|
|
}
|
|
|
|
/* year, month -> number of days in year preceeding first day of month */
|
|
static int
|
|
days_before_month(int year, int month)
|
|
{
|
|
int days;
|
|
|
|
assert(month >= 1);
|
|
assert(month <= 12);
|
|
days = _days_before_month[month];
|
|
if (month > 2 && is_leap(year))
|
|
++days;
|
|
return days;
|
|
}
|
|
|
|
/* year -> number of days before January 1st of year. Remember that we
|
|
* start with year 1, so days_before_year(1) == 0.
|
|
*/
|
|
static int
|
|
days_before_year(int year)
|
|
{
|
|
int y = year - 1;
|
|
/* This is incorrect if year <= 0; we really want the floor
|
|
* here. But so long as MINYEAR is 1, the smallest year this
|
|
* can see is 0 (this can happen in some normalization endcases),
|
|
* so we'll just special-case that.
|
|
*/
|
|
assert (year >= 0);
|
|
if (y >= 0)
|
|
return y*365 + y/4 - y/100 + y/400;
|
|
else {
|
|
assert(y == -1);
|
|
return -366;
|
|
}
|
|
}
|
|
|
|
/* Number of days in 4, 100, and 400 year cycles. That these have
|
|
* the correct values is asserted in the module init function.
|
|
*/
|
|
#define DI4Y 1461 /* days_before_year(5); days in 4 years */
|
|
#define DI100Y 36524 /* days_before_year(101); days in 100 years */
|
|
#define DI400Y 146097 /* days_before_year(401); days in 400 years */
|
|
|
|
/* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
|
|
static void
|
|
ord_to_ymd(int ordinal, int *year, int *month, int *day)
|
|
{
|
|
int n, n1, n4, n100, n400, leapyear, preceding;
|
|
|
|
/* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
|
|
* leap years repeats exactly every 400 years. The basic strategy is
|
|
* to find the closest 400-year boundary at or before ordinal, then
|
|
* work with the offset from that boundary to ordinal. Life is much
|
|
* clearer if we subtract 1 from ordinal first -- then the values
|
|
* of ordinal at 400-year boundaries are exactly those divisible
|
|
* by DI400Y:
|
|
*
|
|
* D M Y n n-1
|
|
* -- --- ---- ---------- ----------------
|
|
* 31 Dec -400 -DI400Y -DI400Y -1
|
|
* 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
|
|
* ...
|
|
* 30 Dec 000 -1 -2
|
|
* 31 Dec 000 0 -1
|
|
* 1 Jan 001 1 0 400-year boundary
|
|
* 2 Jan 001 2 1
|
|
* 3 Jan 001 3 2
|
|
* ...
|
|
* 31 Dec 400 DI400Y DI400Y -1
|
|
* 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
|
|
*/
|
|
assert(ordinal >= 1);
|
|
--ordinal;
|
|
n400 = ordinal / DI400Y;
|
|
n = ordinal % DI400Y;
|
|
*year = n400 * 400 + 1;
|
|
|
|
/* Now n is the (non-negative) offset, in days, from January 1 of
|
|
* year, to the desired date. Now compute how many 100-year cycles
|
|
* precede n.
|
|
* Note that it's possible for n100 to equal 4! In that case 4 full
|
|
* 100-year cycles precede the desired day, which implies the
|
|
* desired day is December 31 at the end of a 400-year cycle.
|
|
*/
|
|
n100 = n / DI100Y;
|
|
n = n % DI100Y;
|
|
|
|
/* Now compute how many 4-year cycles precede it. */
|
|
n4 = n / DI4Y;
|
|
n = n % DI4Y;
|
|
|
|
/* And now how many single years. Again n1 can be 4, and again
|
|
* meaning that the desired day is December 31 at the end of the
|
|
* 4-year cycle.
|
|
*/
|
|
n1 = n / 365;
|
|
n = n % 365;
|
|
|
|
*year += n100 * 100 + n4 * 4 + n1;
|
|
if (n1 == 4 || n100 == 4) {
|
|
assert(n == 0);
|
|
*year -= 1;
|
|
*month = 12;
|
|
*day = 31;
|
|
return;
|
|
}
|
|
|
|
/* Now the year is correct, and n is the offset from January 1. We
|
|
* find the month via an estimate that's either exact or one too
|
|
* large.
|
|
*/
|
|
leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
|
|
assert(leapyear == is_leap(*year));
|
|
*month = (n + 50) >> 5;
|
|
preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
|
|
if (preceding > n) {
|
|
/* estimate is too large */
|
|
*month -= 1;
|
|
preceding -= days_in_month(*year, *month);
|
|
}
|
|
n -= preceding;
|
|
assert(0 <= n);
|
|
assert(n < days_in_month(*year, *month));
|
|
|
|
*day = n + 1;
|
|
}
|
|
|
|
/* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
|
|
static int
|
|
ymd_to_ord(int year, int month, int day)
|
|
{
|
|
return days_before_year(year) + days_before_month(year, month) + day;
|
|
}
|
|
|
|
/* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
|
|
static int
|
|
weekday(int year, int month, int day)
|
|
{
|
|
return (ymd_to_ord(year, month, day) + 6) % 7;
|
|
}
|
|
|
|
/* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
|
|
* first calendar week containing a Thursday.
|
|
*/
|
|
static int
|
|
iso_week1_monday(int year)
|
|
{
|
|
int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
|
|
/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
|
|
int first_weekday = (first_day + 6) % 7;
|
|
/* ordinal of closest Monday at or before 1/1 */
|
|
int week1_monday = first_day - first_weekday;
|
|
|
|
if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
|
|
week1_monday += 7;
|
|
return week1_monday;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Range checkers.
|
|
*/
|
|
|
|
/* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
|
|
* If not, raise OverflowError and return -1.
|
|
*/
|
|
static int
|
|
check_delta_day_range(int days)
|
|
{
|
|
if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
|
|
return 0;
|
|
PyErr_Format(PyExc_OverflowError,
|
|
"days=%d; must have magnitude <= %d",
|
|
days, MAX_DELTA_DAYS);
|
|
return -1;
|
|
}
|
|
|
|
/* Check that date arguments are in range. Return 0 if they are. If they
|
|
* aren't, raise ValueError and return -1.
|
|
*/
|
|
static int
|
|
check_date_args(int year, int month, int day)
|
|
{
|
|
|
|
if (year < MINYEAR || year > MAXYEAR) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"year is out of range");
|
|
return -1;
|
|
}
|
|
if (month < 1 || month > 12) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"month must be in 1..12");
|
|
return -1;
|
|
}
|
|
if (day < 1 || day > days_in_month(year, month)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"day is out of range for month");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check that time arguments are in range. Return 0 if they are. If they
|
|
* aren't, raise ValueError and return -1.
|
|
*/
|
|
static int
|
|
check_time_args(int h, int m, int s, int us)
|
|
{
|
|
if (h < 0 || h > 23) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"hour must be in 0..23");
|
|
return -1;
|
|
}
|
|
if (m < 0 || m > 59) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"minute must be in 0..59");
|
|
return -1;
|
|
}
|
|
if (s < 0 || s > 59) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"second must be in 0..59");
|
|
return -1;
|
|
}
|
|
if (us < 0 || us > 999999) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"microsecond must be in 0..999999");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Normalization utilities.
|
|
*/
|
|
|
|
/* One step of a mixed-radix conversion. A "hi" unit is equivalent to
|
|
* factor "lo" units. factor must be > 0. If *lo is less than 0, or
|
|
* at least factor, enough of *lo is converted into "hi" units so that
|
|
* 0 <= *lo < factor. The input values must be such that int overflow
|
|
* is impossible.
|
|
*/
|
|
static void
|
|
normalize_pair(int *hi, int *lo, int factor)
|
|
{
|
|
assert(factor > 0);
|
|
assert(lo != hi);
|
|
if (*lo < 0 || *lo >= factor) {
|
|
const int num_hi = divmod(*lo, factor, lo);
|
|
const int new_hi = *hi + num_hi;
|
|
assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
|
|
*hi = new_hi;
|
|
}
|
|
assert(0 <= *lo && *lo < factor);
|
|
}
|
|
|
|
/* Fiddle days (d), seconds (s), and microseconds (us) so that
|
|
* 0 <= *s < 24*3600
|
|
* 0 <= *us < 1000000
|
|
* The input values must be such that the internals don't overflow.
|
|
* The way this routine is used, we don't get close.
|
|
*/
|
|
static void
|
|
normalize_d_s_us(int *d, int *s, int *us)
|
|
{
|
|
if (*us < 0 || *us >= 1000000) {
|
|
normalize_pair(s, us, 1000000);
|
|
/* |s| can't be bigger than about
|
|
* |original s| + |original us|/1000000 now.
|
|
*/
|
|
|
|
}
|
|
if (*s < 0 || *s >= 24*3600) {
|
|
normalize_pair(d, s, 24*3600);
|
|
/* |d| can't be bigger than about
|
|
* |original d| +
|
|
* (|original s| + |original us|/1000000) / (24*3600) now.
|
|
*/
|
|
}
|
|
assert(0 <= *s && *s < 24*3600);
|
|
assert(0 <= *us && *us < 1000000);
|
|
}
|
|
|
|
/* Fiddle years (y), months (m), and days (d) so that
|
|
* 1 <= *m <= 12
|
|
* 1 <= *d <= days_in_month(*y, *m)
|
|
* The input values must be such that the internals don't overflow.
|
|
* The way this routine is used, we don't get close.
|
|
*/
|
|
static void
|
|
normalize_y_m_d(int *y, int *m, int *d)
|
|
{
|
|
int dim; /* # of days in month */
|
|
|
|
/* This gets muddy: the proper range for day can't be determined
|
|
* without knowing the correct month and year, but if day is, e.g.,
|
|
* plus or minus a million, the current month and year values make
|
|
* no sense (and may also be out of bounds themselves).
|
|
* Saying 12 months == 1 year should be non-controversial.
|
|
*/
|
|
if (*m < 1 || *m > 12) {
|
|
--*m;
|
|
normalize_pair(y, m, 12);
|
|
++*m;
|
|
/* |y| can't be bigger than about
|
|
* |original y| + |original m|/12 now.
|
|
*/
|
|
}
|
|
assert(1 <= *m && *m <= 12);
|
|
|
|
/* Now only day can be out of bounds (year may also be out of bounds
|
|
* for a datetime object, but we don't care about that here).
|
|
* If day is out of bounds, what to do is arguable, but at least the
|
|
* method here is principled and explainable.
|
|
*/
|
|
dim = days_in_month(*y, *m);
|
|
if (*d < 1 || *d > dim) {
|
|
/* Move day-1 days from the first of the month. First try to
|
|
* get off cheap if we're only one day out of range
|
|
* (adjustments for timezone alone can't be worse than that).
|
|
*/
|
|
if (*d == 0) {
|
|
--*m;
|
|
if (*m > 0)
|
|
*d = days_in_month(*y, *m);
|
|
else {
|
|
--*y;
|
|
*m = 12;
|
|
*d = 31;
|
|
}
|
|
}
|
|
else if (*d == dim + 1) {
|
|
/* move forward a day */
|
|
++*m;
|
|
*d = 1;
|
|
if (*m > 12) {
|
|
*m = 1;
|
|
++*y;
|
|
}
|
|
}
|
|
else {
|
|
int ordinal = ymd_to_ord(*y, *m, 1) +
|
|
*d - 1;
|
|
ord_to_ymd(ordinal, y, m, d);
|
|
}
|
|
}
|
|
assert(*m > 0);
|
|
assert(*d > 0);
|
|
}
|
|
|
|
/* Fiddle out-of-bounds months and days so that the result makes some kind
|
|
* of sense. The parameters are both inputs and outputs. Returns < 0 on
|
|
* failure, where failure means the adjusted year is out of bounds.
|
|
*/
|
|
static int
|
|
normalize_date(int *year, int *month, int *day)
|
|
{
|
|
int result;
|
|
|
|
normalize_y_m_d(year, month, day);
|
|
if (MINYEAR <= *year && *year <= MAXYEAR)
|
|
result = 0;
|
|
else {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"date value out of range");
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Force all the datetime fields into range. The parameters are both
|
|
* inputs and outputs. Returns < 0 on error.
|
|
*/
|
|
static int
|
|
normalize_datetime(int *year, int *month, int *day,
|
|
int *hour, int *minute, int *second,
|
|
int *microsecond)
|
|
{
|
|
normalize_pair(second, microsecond, 1000000);
|
|
normalize_pair(minute, second, 60);
|
|
normalize_pair(hour, minute, 60);
|
|
normalize_pair(day, hour, 24);
|
|
return normalize_date(year, month, day);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Basic object allocation: tp_alloc implementations. These allocate
|
|
* Python objects of the right size and type, and do the Python object-
|
|
* initialization bit. If there's not enough memory, they return NULL after
|
|
* setting MemoryError. All data members remain uninitialized trash.
|
|
*
|
|
* We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
|
|
* member is needed. This is ugly, imprecise, and possibly insecure.
|
|
* tp_basicsize for the time and datetime types is set to the size of the
|
|
* struct that has room for the tzinfo member, so subclasses in Python will
|
|
* allocate enough space for a tzinfo member whether or not one is actually
|
|
* needed. That's the "ugly and imprecise" parts. The "possibly insecure"
|
|
* part is that PyType_GenericAlloc() (which subclasses in Python end up
|
|
* using) just happens today to effectively ignore the nitems argument
|
|
* when tp_itemsize is 0, which it is for these type objects. If that
|
|
* changes, perhaps the callers of tp_alloc slots in this file should
|
|
* be changed to force a 0 nitems argument unless the type being allocated
|
|
* is a base type implemented in this file (so that tp_alloc is time_alloc
|
|
* or datetime_alloc below, which know about the nitems abuse).
|
|
*/
|
|
|
|
static PyObject *
|
|
time_alloc(PyTypeObject *type, Py_ssize_t aware)
|
|
{
|
|
PyObject *self;
|
|
|
|
self = (PyObject *)
|
|
PyObject_MALLOC(aware ?
|
|
sizeof(PyDateTime_Time) :
|
|
sizeof(_PyDateTime_BaseTime));
|
|
if (self == NULL)
|
|
return (PyObject *)PyErr_NoMemory();
|
|
PyObject_INIT(self, type);
|
|
return self;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
|
|
{
|
|
PyObject *self;
|
|
|
|
self = (PyObject *)
|
|
PyObject_MALLOC(aware ?
|
|
sizeof(PyDateTime_DateTime) :
|
|
sizeof(_PyDateTime_BaseDateTime));
|
|
if (self == NULL)
|
|
return (PyObject *)PyErr_NoMemory();
|
|
PyObject_INIT(self, type);
|
|
return self;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Helpers for setting object fields. These work on pointers to the
|
|
* appropriate base class.
|
|
*/
|
|
|
|
/* For date and datetime. */
|
|
static void
|
|
set_date_fields(PyDateTime_Date *self, int y, int m, int d)
|
|
{
|
|
self->hashcode = -1;
|
|
SET_YEAR(self, y);
|
|
SET_MONTH(self, m);
|
|
SET_DAY(self, d);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Create various objects, mostly without range checking.
|
|
*/
|
|
|
|
/* Create a date instance with no range checking. */
|
|
static PyObject *
|
|
new_date_ex(int year, int month, int day, PyTypeObject *type)
|
|
{
|
|
PyDateTime_Date *self;
|
|
|
|
self = (PyDateTime_Date *) (type->tp_alloc(type, 0));
|
|
if (self != NULL)
|
|
set_date_fields(self, year, month, day);
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
#define new_date(year, month, day) \
|
|
new_date_ex(year, month, day, &PyDateTime_DateType)
|
|
|
|
/* Create a datetime instance with no range checking. */
|
|
static PyObject *
|
|
new_datetime_ex(int year, int month, int day, int hour, int minute,
|
|
int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
|
|
{
|
|
PyDateTime_DateTime *self;
|
|
char aware = tzinfo != Py_None;
|
|
|
|
self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
|
|
if (self != NULL) {
|
|
self->hastzinfo = aware;
|
|
set_date_fields((PyDateTime_Date *)self, year, month, day);
|
|
DATE_SET_HOUR(self, hour);
|
|
DATE_SET_MINUTE(self, minute);
|
|
DATE_SET_SECOND(self, second);
|
|
DATE_SET_MICROSECOND(self, usecond);
|
|
if (aware) {
|
|
Py_INCREF(tzinfo);
|
|
self->tzinfo = tzinfo;
|
|
}
|
|
}
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
#define new_datetime(y, m, d, hh, mm, ss, us, tzinfo) \
|
|
new_datetime_ex(y, m, d, hh, mm, ss, us, tzinfo, \
|
|
&PyDateTime_DateTimeType)
|
|
|
|
/* Create a time instance with no range checking. */
|
|
static PyObject *
|
|
new_time_ex(int hour, int minute, int second, int usecond,
|
|
PyObject *tzinfo, PyTypeObject *type)
|
|
{
|
|
PyDateTime_Time *self;
|
|
char aware = tzinfo != Py_None;
|
|
|
|
self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
|
|
if (self != NULL) {
|
|
self->hastzinfo = aware;
|
|
self->hashcode = -1;
|
|
TIME_SET_HOUR(self, hour);
|
|
TIME_SET_MINUTE(self, minute);
|
|
TIME_SET_SECOND(self, second);
|
|
TIME_SET_MICROSECOND(self, usecond);
|
|
if (aware) {
|
|
Py_INCREF(tzinfo);
|
|
self->tzinfo = tzinfo;
|
|
}
|
|
}
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
#define new_time(hh, mm, ss, us, tzinfo) \
|
|
new_time_ex(hh, mm, ss, us, tzinfo, &PyDateTime_TimeType)
|
|
|
|
/* Create a timedelta instance. Normalize the members iff normalize is
|
|
* true. Passing false is a speed optimization, if you know for sure
|
|
* that seconds and microseconds are already in their proper ranges. In any
|
|
* case, raises OverflowError and returns NULL if the normalized days is out
|
|
* of range).
|
|
*/
|
|
static PyObject *
|
|
new_delta_ex(int days, int seconds, int microseconds, int normalize,
|
|
PyTypeObject *type)
|
|
{
|
|
PyDateTime_Delta *self;
|
|
|
|
if (normalize)
|
|
normalize_d_s_us(&days, &seconds, µseconds);
|
|
assert(0 <= seconds && seconds < 24*3600);
|
|
assert(0 <= microseconds && microseconds < 1000000);
|
|
|
|
if (check_delta_day_range(days) < 0)
|
|
return NULL;
|
|
|
|
self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
|
|
if (self != NULL) {
|
|
self->hashcode = -1;
|
|
SET_TD_DAYS(self, days);
|
|
SET_TD_SECONDS(self, seconds);
|
|
SET_TD_MICROSECONDS(self, microseconds);
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
#define new_delta(d, s, us, normalize) \
|
|
new_delta_ex(d, s, us, normalize, &PyDateTime_DeltaType)
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* tzinfo helpers.
|
|
*/
|
|
|
|
/* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
|
|
* raise TypeError and return -1.
|
|
*/
|
|
static int
|
|
check_tzinfo_subclass(PyObject *p)
|
|
{
|
|
if (p == Py_None || PyTZInfo_Check(p))
|
|
return 0;
|
|
PyErr_Format(PyExc_TypeError,
|
|
"tzinfo argument must be None or of a tzinfo subclass, "
|
|
"not type '%s'",
|
|
Py_TYPE(p)->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
/* Return tzinfo.methname(tzinfoarg), without any checking of results.
|
|
* If tzinfo is None, returns None.
|
|
*/
|
|
static PyObject *
|
|
call_tzinfo_method(PyObject *tzinfo, char *methname, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *result;
|
|
|
|
assert(tzinfo && methname && tzinfoarg);
|
|
assert(check_tzinfo_subclass(tzinfo) >= 0);
|
|
if (tzinfo == Py_None) {
|
|
result = Py_None;
|
|
Py_INCREF(result);
|
|
}
|
|
else
|
|
result = PyObject_CallMethod(tzinfo, methname, "O", tzinfoarg);
|
|
return result;
|
|
}
|
|
|
|
/* If self has a tzinfo member, return a BORROWED reference to it. Else
|
|
* return NULL, which is NOT AN ERROR. There are no error returns here,
|
|
* and the caller must not decref the result.
|
|
*/
|
|
static PyObject *
|
|
get_tzinfo_member(PyObject *self)
|
|
{
|
|
PyObject *tzinfo = NULL;
|
|
|
|
if (PyDateTime_Check(self) && HASTZINFO(self))
|
|
tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
|
|
else if (PyTime_Check(self) && HASTZINFO(self))
|
|
tzinfo = ((PyDateTime_Time *)self)->tzinfo;
|
|
|
|
return tzinfo;
|
|
}
|
|
|
|
/* Call getattr(tzinfo, name)(tzinfoarg), and extract an int from the
|
|
* result. tzinfo must be an instance of the tzinfo class. If the method
|
|
* returns None, this returns 0 and sets *none to 1. If the method doesn't
|
|
* return None or timedelta, TypeError is raised and this returns -1. If it
|
|
* returnsa timedelta and the value is out of range or isn't a whole number
|
|
* of minutes, ValueError is raised and this returns -1.
|
|
* Else *none is set to 0 and the integer method result is returned.
|
|
*/
|
|
static int
|
|
call_utc_tzinfo_method(PyObject *tzinfo, char *name, PyObject *tzinfoarg,
|
|
int *none)
|
|
{
|
|
PyObject *u;
|
|
int result = -1;
|
|
|
|
assert(tzinfo != NULL);
|
|
assert(PyTZInfo_Check(tzinfo));
|
|
assert(tzinfoarg != NULL);
|
|
|
|
*none = 0;
|
|
u = call_tzinfo_method(tzinfo, name, tzinfoarg);
|
|
if (u == NULL)
|
|
return -1;
|
|
|
|
else if (u == Py_None) {
|
|
result = 0;
|
|
*none = 1;
|
|
}
|
|
else if (PyDelta_Check(u)) {
|
|
const int days = GET_TD_DAYS(u);
|
|
if (days < -1 || days > 0)
|
|
result = 24*60; /* trigger ValueError below */
|
|
else {
|
|
/* next line can't overflow because we know days
|
|
* is -1 or 0 now
|
|
*/
|
|
int ss = days * 24 * 3600 + GET_TD_SECONDS(u);
|
|
result = divmod(ss, 60, &ss);
|
|
if (ss || GET_TD_MICROSECONDS(u)) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"tzinfo.%s() must return a "
|
|
"whole number of minutes",
|
|
name);
|
|
result = -1;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"tzinfo.%s() must return None or "
|
|
"timedelta, not '%s'",
|
|
name, Py_TYPE(u)->tp_name);
|
|
}
|
|
|
|
Py_DECREF(u);
|
|
if (result < -1439 || result > 1439) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"tzinfo.%s() returned %d; must be in "
|
|
"-1439 .. 1439",
|
|
name, result);
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
|
|
* result. tzinfo must be an instance of the tzinfo class. If utcoffset()
|
|
* returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
|
|
* doesn't return None or timedelta, TypeError is raised and this returns -1.
|
|
* If utcoffset() returns an invalid timedelta (out of range, or not a whole
|
|
* # of minutes), ValueError is raised and this returns -1. Else *none is
|
|
* set to 0 and the offset is returned (as int # of minutes east of UTC).
|
|
*/
|
|
static int
|
|
call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
|
|
{
|
|
return call_utc_tzinfo_method(tzinfo, "utcoffset", tzinfoarg, none);
|
|
}
|
|
|
|
/* Call tzinfo.name(tzinfoarg), and return the offset as a timedelta or None.
|
|
*/
|
|
static PyObject *
|
|
offset_as_timedelta(PyObject *tzinfo, char *name, PyObject *tzinfoarg) {
|
|
PyObject *result;
|
|
|
|
assert(tzinfo && name && tzinfoarg);
|
|
if (tzinfo == Py_None) {
|
|
result = Py_None;
|
|
Py_INCREF(result);
|
|
}
|
|
else {
|
|
int none;
|
|
int offset = call_utc_tzinfo_method(tzinfo, name, tzinfoarg,
|
|
&none);
|
|
if (offset < 0 && PyErr_Occurred())
|
|
return NULL;
|
|
if (none) {
|
|
result = Py_None;
|
|
Py_INCREF(result);
|
|
}
|
|
else
|
|
result = new_delta(0, offset * 60, 0, 1);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Call tzinfo.dst(tzinfoarg), and extract an integer from the
|
|
* result. tzinfo must be an instance of the tzinfo class. If dst()
|
|
* returns None, call_dst returns 0 and sets *none to 1. If dst()
|
|
& doesn't return None or timedelta, TypeError is raised and this
|
|
* returns -1. If dst() returns an invalid timedelta for a UTC offset,
|
|
* ValueError is raised and this returns -1. Else *none is set to 0 and
|
|
* the offset is returned (as an int # of minutes east of UTC).
|
|
*/
|
|
static int
|
|
call_dst(PyObject *tzinfo, PyObject *tzinfoarg, int *none)
|
|
{
|
|
return call_utc_tzinfo_method(tzinfo, "dst", tzinfoarg, none);
|
|
}
|
|
|
|
/* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
|
|
* an instance of the tzinfo class or None. If tzinfo isn't None, and
|
|
* tzname() doesn't return None or a string, TypeError is raised and this
|
|
* returns NULL. If the result is a string, we ensure it is a Unicode
|
|
* string.
|
|
*/
|
|
static PyObject *
|
|
call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *result;
|
|
|
|
assert(tzinfo != NULL);
|
|
assert(check_tzinfo_subclass(tzinfo) >= 0);
|
|
assert(tzinfoarg != NULL);
|
|
|
|
if (tzinfo == Py_None) {
|
|
result = Py_None;
|
|
Py_INCREF(result);
|
|
}
|
|
else
|
|
result = PyObject_CallMethod(tzinfo, "tzname", "O", tzinfoarg);
|
|
|
|
if (result != NULL && result != Py_None) {
|
|
if (!PyUnicode_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
|
|
"return None or a string, not '%s'",
|
|
Py_TYPE(result)->tp_name);
|
|
Py_DECREF(result);
|
|
result = NULL;
|
|
}
|
|
else if (!PyUnicode_Check(result)) {
|
|
PyObject *temp = PyUnicode_FromObject(result);
|
|
Py_DECREF(result);
|
|
result = temp;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
typedef enum {
|
|
/* an exception has been set; the caller should pass it on */
|
|
OFFSET_ERROR,
|
|
|
|
/* type isn't date, datetime, or time subclass */
|
|
OFFSET_UNKNOWN,
|
|
|
|
/* date,
|
|
* datetime with !hastzinfo
|
|
* datetime with None tzinfo,
|
|
* datetime where utcoffset() returns None
|
|
* time with !hastzinfo
|
|
* time with None tzinfo,
|
|
* time where utcoffset() returns None
|
|
*/
|
|
OFFSET_NAIVE,
|
|
|
|
/* time or datetime where utcoffset() doesn't return None */
|
|
OFFSET_AWARE
|
|
} naivety;
|
|
|
|
/* Classify an object as to whether it's naive or offset-aware. See
|
|
* the "naivety" typedef for details. If the type is aware, *offset is set
|
|
* to minutes east of UTC (as returned by the tzinfo.utcoffset() method).
|
|
* If the type is offset-naive (or unknown, or error), *offset is set to 0.
|
|
* tzinfoarg is the argument to pass to the tzinfo.utcoffset() method.
|
|
*/
|
|
static naivety
|
|
classify_utcoffset(PyObject *op, PyObject *tzinfoarg, int *offset)
|
|
{
|
|
int none;
|
|
PyObject *tzinfo;
|
|
|
|
assert(tzinfoarg != NULL);
|
|
*offset = 0;
|
|
tzinfo = get_tzinfo_member(op); /* NULL means no tzinfo, not error */
|
|
if (tzinfo == Py_None)
|
|
return OFFSET_NAIVE;
|
|
if (tzinfo == NULL) {
|
|
/* note that a datetime passes the PyDate_Check test */
|
|
return (PyTime_Check(op) || PyDate_Check(op)) ?
|
|
OFFSET_NAIVE : OFFSET_UNKNOWN;
|
|
}
|
|
*offset = call_utcoffset(tzinfo, tzinfoarg, &none);
|
|
if (*offset == -1 && PyErr_Occurred())
|
|
return OFFSET_ERROR;
|
|
return none ? OFFSET_NAIVE : OFFSET_AWARE;
|
|
}
|
|
|
|
/* Classify two objects as to whether they're naive or offset-aware.
|
|
* This isn't quite the same as calling classify_utcoffset() twice: for
|
|
* binary operations (comparison and subtraction), we generally want to
|
|
* ignore the tzinfo members if they're identical. This is by design,
|
|
* so that results match "naive" expectations when mixing objects from a
|
|
* single timezone. So in that case, this sets both offsets to 0 and
|
|
* both naiveties to OFFSET_NAIVE.
|
|
* The function returns 0 if everything's OK, and -1 on error.
|
|
*/
|
|
static int
|
|
classify_two_utcoffsets(PyObject *o1, int *offset1, naivety *n1,
|
|
PyObject *tzinfoarg1,
|
|
PyObject *o2, int *offset2, naivety *n2,
|
|
PyObject *tzinfoarg2)
|
|
{
|
|
if (get_tzinfo_member(o1) == get_tzinfo_member(o2)) {
|
|
*offset1 = *offset2 = 0;
|
|
*n1 = *n2 = OFFSET_NAIVE;
|
|
}
|
|
else {
|
|
*n1 = classify_utcoffset(o1, tzinfoarg1, offset1);
|
|
if (*n1 == OFFSET_ERROR)
|
|
return -1;
|
|
*n2 = classify_utcoffset(o2, tzinfoarg2, offset2);
|
|
if (*n2 == OFFSET_ERROR)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
|
|
* stuff
|
|
* ", tzinfo=" + repr(tzinfo)
|
|
* before the closing ")".
|
|
*/
|
|
static PyObject *
|
|
append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
|
|
{
|
|
PyObject *temp;
|
|
|
|
assert(PyUnicode_Check(repr));
|
|
assert(tzinfo);
|
|
if (tzinfo == Py_None)
|
|
return repr;
|
|
/* Get rid of the trailing ')'. */
|
|
assert(PyUnicode_AS_UNICODE(repr)[PyUnicode_GET_SIZE(repr)-1] == ')');
|
|
temp = PyUnicode_FromUnicode(PyUnicode_AS_UNICODE(repr),
|
|
PyUnicode_GET_SIZE(repr) - 1);
|
|
Py_DECREF(repr);
|
|
if (temp == NULL)
|
|
return NULL;
|
|
repr = PyUnicode_FromFormat("%U, tzinfo=%R)", temp, tzinfo);
|
|
Py_DECREF(temp);
|
|
return repr;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* String format helpers.
|
|
*/
|
|
|
|
static PyObject *
|
|
format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
|
|
{
|
|
static const char *DayNames[] = {
|
|
"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
|
|
};
|
|
static const char *MonthNames[] = {
|
|
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
|
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
|
|
};
|
|
|
|
int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
|
|
|
|
return PyUnicode_FromFormat("%s %s %2d %02d:%02d:%02d %04d",
|
|
DayNames[wday], MonthNames[GET_MONTH(date)-1],
|
|
GET_DAY(date), hours, minutes, seconds,
|
|
GET_YEAR(date));
|
|
}
|
|
|
|
/* Add an hours & minutes UTC offset string to buf. buf has no more than
|
|
* buflen bytes remaining. The UTC offset is gotten by calling
|
|
* tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
|
|
* *buf, and that's all. Else the returned value is checked for sanity (an
|
|
* integer in range), and if that's OK it's converted to an hours & minutes
|
|
* string of the form
|
|
* sign HH sep MM
|
|
* Returns 0 if everything is OK. If the return value from utcoffset() is
|
|
* bogus, an appropriate exception is set and -1 is returned.
|
|
*/
|
|
static int
|
|
format_utcoffset(char *buf, size_t buflen, const char *sep,
|
|
PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
int offset;
|
|
int hours;
|
|
int minutes;
|
|
char sign;
|
|
int none;
|
|
|
|
assert(buflen >= 1);
|
|
|
|
offset = call_utcoffset(tzinfo, tzinfoarg, &none);
|
|
if (offset == -1 && PyErr_Occurred())
|
|
return -1;
|
|
if (none) {
|
|
*buf = '\0';
|
|
return 0;
|
|
}
|
|
sign = '+';
|
|
if (offset < 0) {
|
|
sign = '-';
|
|
offset = - offset;
|
|
}
|
|
hours = divmod(offset, 60, &minutes);
|
|
PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
make_Zreplacement(PyObject *object, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *temp;
|
|
PyObject *tzinfo = get_tzinfo_member(object);
|
|
PyObject *Zreplacement = PyUnicode_FromStringAndSize(NULL, 0);
|
|
if (Zreplacement == NULL)
|
|
return NULL;
|
|
if (tzinfo == Py_None || tzinfo == NULL)
|
|
return Zreplacement;
|
|
|
|
assert(tzinfoarg != NULL);
|
|
temp = call_tzname(tzinfo, tzinfoarg);
|
|
if (temp == NULL)
|
|
goto Error;
|
|
if (temp == Py_None) {
|
|
Py_DECREF(temp);
|
|
return Zreplacement;
|
|
}
|
|
|
|
assert(PyUnicode_Check(temp));
|
|
/* Since the tzname is getting stuffed into the
|
|
* format, we have to double any % signs so that
|
|
* strftime doesn't treat them as format codes.
|
|
*/
|
|
Py_DECREF(Zreplacement);
|
|
Zreplacement = PyObject_CallMethod(temp, "replace", "ss", "%", "%%");
|
|
Py_DECREF(temp);
|
|
if (Zreplacement == NULL)
|
|
return NULL;
|
|
if (!PyUnicode_Check(Zreplacement)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"tzname.replace() did not return a string");
|
|
goto Error;
|
|
}
|
|
return Zreplacement;
|
|
|
|
Error:
|
|
Py_DECREF(Zreplacement);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
make_freplacement(PyObject *object)
|
|
{
|
|
char freplacement[64];
|
|
if (PyTime_Check(object))
|
|
sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
|
|
else if (PyDateTime_Check(object))
|
|
sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
|
|
else
|
|
sprintf(freplacement, "%06d", 0);
|
|
|
|
return PyBytes_FromStringAndSize(freplacement, strlen(freplacement));
|
|
}
|
|
|
|
/* I sure don't want to reproduce the strftime code from the time module,
|
|
* so this imports the module and calls it. All the hair is due to
|
|
* giving special meanings to the %z, %Z and %f format codes via a
|
|
* preprocessing step on the format string.
|
|
* tzinfoarg is the argument to pass to the object's tzinfo method, if
|
|
* needed.
|
|
*/
|
|
static PyObject *
|
|
wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
|
|
PyObject *tzinfoarg)
|
|
{
|
|
PyObject *result = NULL; /* guilty until proved innocent */
|
|
|
|
PyObject *zreplacement = NULL; /* py string, replacement for %z */
|
|
PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
|
|
PyObject *freplacement = NULL; /* py string, replacement for %f */
|
|
|
|
const char *pin; /* pointer to next char in input format */
|
|
Py_ssize_t flen; /* length of input format */
|
|
char ch; /* next char in input format */
|
|
|
|
PyObject *newfmt = NULL; /* py string, the output format */
|
|
char *pnew; /* pointer to available byte in output format */
|
|
size_t totalnew; /* number bytes total in output format buffer,
|
|
exclusive of trailing \0 */
|
|
size_t usednew; /* number bytes used so far in output format buffer */
|
|
|
|
const char *ptoappend; /* ptr to string to append to output buffer */
|
|
Py_ssize_t ntoappend; /* # of bytes to append to output buffer */
|
|
|
|
assert(object && format && timetuple);
|
|
assert(PyUnicode_Check(format));
|
|
/* Convert the input format to a C string and size */
|
|
pin = _PyUnicode_AsStringAndSize(format, &flen);
|
|
if (!pin)
|
|
return NULL;
|
|
|
|
/* Give up if the year is before 1900.
|
|
* Python strftime() plays games with the year, and different
|
|
* games depending on whether envar PYTHON2K is set. This makes
|
|
* years before 1900 a nightmare, even if the platform strftime
|
|
* supports them (and not all do).
|
|
* We could get a lot farther here by avoiding Python's strftime
|
|
* wrapper and calling the C strftime() directly, but that isn't
|
|
* an option in the Python implementation of this module.
|
|
*/
|
|
{
|
|
long year;
|
|
PyObject *pyyear = PySequence_GetItem(timetuple, 0);
|
|
if (pyyear == NULL) return NULL;
|
|
assert(PyLong_Check(pyyear));
|
|
year = PyLong_AsLong(pyyear);
|
|
Py_DECREF(pyyear);
|
|
if (year < 1900) {
|
|
PyErr_Format(PyExc_ValueError, "year=%ld is before "
|
|
"1900; the datetime strftime() "
|
|
"methods require year >= 1900",
|
|
year);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* Scan the input format, looking for %z/%Z/%f escapes, building
|
|
* a new format. Since computing the replacements for those codes
|
|
* is expensive, don't unless they're actually used.
|
|
*/
|
|
if (flen > INT_MAX - 1) {
|
|
PyErr_NoMemory();
|
|
goto Done;
|
|
}
|
|
|
|
totalnew = flen + 1; /* realistic if no %z/%Z */
|
|
newfmt = PyBytes_FromStringAndSize(NULL, totalnew);
|
|
if (newfmt == NULL) goto Done;
|
|
pnew = PyBytes_AsString(newfmt);
|
|
usednew = 0;
|
|
|
|
while ((ch = *pin++) != '\0') {
|
|
if (ch != '%') {
|
|
ptoappend = pin - 1;
|
|
ntoappend = 1;
|
|
}
|
|
else if ((ch = *pin++) == '\0') {
|
|
/* There's a lone trailing %; doesn't make sense. */
|
|
PyErr_SetString(PyExc_ValueError, "strftime format "
|
|
"ends with raw %");
|
|
goto Done;
|
|
}
|
|
/* A % has been seen and ch is the character after it. */
|
|
else if (ch == 'z') {
|
|
if (zreplacement == NULL) {
|
|
/* format utcoffset */
|
|
char buf[100];
|
|
PyObject *tzinfo = get_tzinfo_member(object);
|
|
zreplacement = PyBytes_FromStringAndSize("", 0);
|
|
if (zreplacement == NULL) goto Done;
|
|
if (tzinfo != Py_None && tzinfo != NULL) {
|
|
assert(tzinfoarg != NULL);
|
|
if (format_utcoffset(buf,
|
|
sizeof(buf),
|
|
"",
|
|
tzinfo,
|
|
tzinfoarg) < 0)
|
|
goto Done;
|
|
Py_DECREF(zreplacement);
|
|
zreplacement =
|
|
PyBytes_FromStringAndSize(buf,
|
|
strlen(buf));
|
|
if (zreplacement == NULL)
|
|
goto Done;
|
|
}
|
|
}
|
|
assert(zreplacement != NULL);
|
|
ptoappend = PyBytes_AS_STRING(zreplacement);
|
|
ntoappend = PyBytes_GET_SIZE(zreplacement);
|
|
}
|
|
else if (ch == 'Z') {
|
|
/* format tzname */
|
|
if (Zreplacement == NULL) {
|
|
Zreplacement = make_Zreplacement(object,
|
|
tzinfoarg);
|
|
if (Zreplacement == NULL)
|
|
goto Done;
|
|
}
|
|
assert(Zreplacement != NULL);
|
|
assert(PyUnicode_Check(Zreplacement));
|
|
ptoappend = _PyUnicode_AsStringAndSize(Zreplacement,
|
|
&ntoappend);
|
|
ntoappend = Py_SIZE(Zreplacement);
|
|
}
|
|
else if (ch == 'f') {
|
|
/* format microseconds */
|
|
if (freplacement == NULL) {
|
|
freplacement = make_freplacement(object);
|
|
if (freplacement == NULL)
|
|
goto Done;
|
|
}
|
|
assert(freplacement != NULL);
|
|
assert(PyBytes_Check(freplacement));
|
|
ptoappend = PyBytes_AS_STRING(freplacement);
|
|
ntoappend = PyBytes_GET_SIZE(freplacement);
|
|
}
|
|
else {
|
|
/* percent followed by neither z nor Z */
|
|
ptoappend = pin - 2;
|
|
ntoappend = 2;
|
|
}
|
|
|
|
/* Append the ntoappend chars starting at ptoappend to
|
|
* the new format.
|
|
*/
|
|
if (ntoappend == 0)
|
|
continue;
|
|
assert(ptoappend != NULL);
|
|
assert(ntoappend > 0);
|
|
while (usednew + ntoappend > totalnew) {
|
|
size_t bigger = totalnew << 1;
|
|
if ((bigger >> 1) != totalnew) { /* overflow */
|
|
PyErr_NoMemory();
|
|
goto Done;
|
|
}
|
|
if (_PyBytes_Resize(&newfmt, bigger) < 0)
|
|
goto Done;
|
|
totalnew = bigger;
|
|
pnew = PyBytes_AsString(newfmt) + usednew;
|
|
}
|
|
memcpy(pnew, ptoappend, ntoappend);
|
|
pnew += ntoappend;
|
|
usednew += ntoappend;
|
|
assert(usednew <= totalnew);
|
|
} /* end while() */
|
|
|
|
if (_PyBytes_Resize(&newfmt, usednew) < 0)
|
|
goto Done;
|
|
{
|
|
PyObject *format;
|
|
PyObject *time = PyImport_ImportModuleNoBlock("time");
|
|
if (time == NULL)
|
|
goto Done;
|
|
format = PyUnicode_FromString(PyBytes_AS_STRING(newfmt));
|
|
if (format != NULL) {
|
|
result = PyObject_CallMethod(time, "strftime", "OO",
|
|
format, timetuple);
|
|
Py_DECREF(format);
|
|
}
|
|
Py_DECREF(time);
|
|
}
|
|
Done:
|
|
Py_XDECREF(freplacement);
|
|
Py_XDECREF(zreplacement);
|
|
Py_XDECREF(Zreplacement);
|
|
Py_XDECREF(newfmt);
|
|
return result;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Wrap functions from the time module. These aren't directly available
|
|
* from C. Perhaps they should be.
|
|
*/
|
|
|
|
/* Call time.time() and return its result (a Python float). */
|
|
static PyObject *
|
|
time_time(void)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *time = PyImport_ImportModuleNoBlock("time");
|
|
|
|
if (time != NULL) {
|
|
result = PyObject_CallMethod(time, "time", "()");
|
|
Py_DECREF(time);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Build a time.struct_time. The weekday and day number are automatically
|
|
* computed from the y,m,d args.
|
|
*/
|
|
static PyObject *
|
|
build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
|
|
{
|
|
PyObject *time;
|
|
PyObject *result = NULL;
|
|
|
|
time = PyImport_ImportModuleNoBlock("time");
|
|
if (time != NULL) {
|
|
result = PyObject_CallMethod(time, "struct_time",
|
|
"((iiiiiiiii))",
|
|
y, m, d,
|
|
hh, mm, ss,
|
|
weekday(y, m, d),
|
|
days_before_month(y, m) + d,
|
|
dstflag);
|
|
Py_DECREF(time);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Miscellaneous helpers.
|
|
*/
|
|
|
|
/* For various reasons, we need to use tp_richcompare instead of tp_reserved.
|
|
* The comparisons here all most naturally compute a cmp()-like result.
|
|
* This little helper turns that into a bool result for rich comparisons.
|
|
*/
|
|
static PyObject *
|
|
diff_to_bool(int diff, int op)
|
|
{
|
|
PyObject *result;
|
|
int istrue;
|
|
|
|
switch (op) {
|
|
case Py_EQ: istrue = diff == 0; break;
|
|
case Py_NE: istrue = diff != 0; break;
|
|
case Py_LE: istrue = diff <= 0; break;
|
|
case Py_GE: istrue = diff >= 0; break;
|
|
case Py_LT: istrue = diff < 0; break;
|
|
case Py_GT: istrue = diff > 0; break;
|
|
default:
|
|
assert(! "op unknown");
|
|
istrue = 0; /* To shut up compiler */
|
|
}
|
|
result = istrue ? Py_True : Py_False;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
/* Raises a "can't compare" TypeError and returns NULL. */
|
|
static PyObject *
|
|
cmperror(PyObject *a, PyObject *b)
|
|
{
|
|
PyErr_Format(PyExc_TypeError,
|
|
"can't compare %s to %s",
|
|
Py_TYPE(a)->tp_name, Py_TYPE(b)->tp_name);
|
|
return NULL;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Cached Python objects; these are set by the module init function.
|
|
*/
|
|
|
|
/* Conversion factors. */
|
|
static PyObject *us_per_us = NULL; /* 1 */
|
|
static PyObject *us_per_ms = NULL; /* 1000 */
|
|
static PyObject *us_per_second = NULL; /* 1000000 */
|
|
static PyObject *us_per_minute = NULL; /* 1e6 * 60 as Python int */
|
|
static PyObject *us_per_hour = NULL; /* 1e6 * 3600 as Python long */
|
|
static PyObject *us_per_day = NULL; /* 1e6 * 3600 * 24 as Python long */
|
|
static PyObject *us_per_week = NULL; /* 1e6*3600*24*7 as Python long */
|
|
static PyObject *seconds_per_day = NULL; /* 3600*24 as Python int */
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Class implementations.
|
|
*/
|
|
|
|
/*
|
|
* PyDateTime_Delta implementation.
|
|
*/
|
|
|
|
/* Convert a timedelta to a number of us,
|
|
* (24*3600*self.days + self.seconds)*1000000 + self.microseconds
|
|
* as a Python int or long.
|
|
* Doing mixed-radix arithmetic by hand instead is excruciating in C,
|
|
* due to ubiquitous overflow possibilities.
|
|
*/
|
|
static PyObject *
|
|
delta_to_microseconds(PyDateTime_Delta *self)
|
|
{
|
|
PyObject *x1 = NULL;
|
|
PyObject *x2 = NULL;
|
|
PyObject *x3 = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
x1 = PyLong_FromLong(GET_TD_DAYS(self));
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
x2 = PyNumber_Multiply(x1, seconds_per_day); /* days in seconds */
|
|
if (x2 == NULL)
|
|
goto Done;
|
|
Py_DECREF(x1);
|
|
x1 = NULL;
|
|
|
|
/* x2 has days in seconds */
|
|
x1 = PyLong_FromLong(GET_TD_SECONDS(self)); /* seconds */
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
|
|
if (x3 == NULL)
|
|
goto Done;
|
|
Py_DECREF(x1);
|
|
Py_DECREF(x2);
|
|
x1 = x2 = NULL;
|
|
|
|
/* x3 has days+seconds in seconds */
|
|
x1 = PyNumber_Multiply(x3, us_per_second); /* us */
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
Py_DECREF(x3);
|
|
x3 = NULL;
|
|
|
|
/* x1 has days+seconds in us */
|
|
x2 = PyLong_FromLong(GET_TD_MICROSECONDS(self));
|
|
if (x2 == NULL)
|
|
goto Done;
|
|
result = PyNumber_Add(x1, x2);
|
|
|
|
Done:
|
|
Py_XDECREF(x1);
|
|
Py_XDECREF(x2);
|
|
Py_XDECREF(x3);
|
|
return result;
|
|
}
|
|
|
|
/* Convert a number of us (as a Python int or long) to a timedelta.
|
|
*/
|
|
static PyObject *
|
|
microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
|
|
{
|
|
int us;
|
|
int s;
|
|
int d;
|
|
long temp;
|
|
|
|
PyObject *tuple = NULL;
|
|
PyObject *num = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
tuple = PyNumber_Divmod(pyus, us_per_second);
|
|
if (tuple == NULL)
|
|
goto Done;
|
|
|
|
num = PyTuple_GetItem(tuple, 1); /* us */
|
|
if (num == NULL)
|
|
goto Done;
|
|
temp = PyLong_AsLong(num);
|
|
num = NULL;
|
|
if (temp == -1 && PyErr_Occurred())
|
|
goto Done;
|
|
assert(0 <= temp && temp < 1000000);
|
|
us = (int)temp;
|
|
if (us < 0) {
|
|
/* The divisor was positive, so this must be an error. */
|
|
assert(PyErr_Occurred());
|
|
goto Done;
|
|
}
|
|
|
|
num = PyTuple_GetItem(tuple, 0); /* leftover seconds */
|
|
if (num == NULL)
|
|
goto Done;
|
|
Py_INCREF(num);
|
|
Py_DECREF(tuple);
|
|
|
|
tuple = PyNumber_Divmod(num, seconds_per_day);
|
|
if (tuple == NULL)
|
|
goto Done;
|
|
Py_DECREF(num);
|
|
|
|
num = PyTuple_GetItem(tuple, 1); /* seconds */
|
|
if (num == NULL)
|
|
goto Done;
|
|
temp = PyLong_AsLong(num);
|
|
num = NULL;
|
|
if (temp == -1 && PyErr_Occurred())
|
|
goto Done;
|
|
assert(0 <= temp && temp < 24*3600);
|
|
s = (int)temp;
|
|
|
|
if (s < 0) {
|
|
/* The divisor was positive, so this must be an error. */
|
|
assert(PyErr_Occurred());
|
|
goto Done;
|
|
}
|
|
|
|
num = PyTuple_GetItem(tuple, 0); /* leftover days */
|
|
if (num == NULL)
|
|
goto Done;
|
|
Py_INCREF(num);
|
|
temp = PyLong_AsLong(num);
|
|
if (temp == -1 && PyErr_Occurred())
|
|
goto Done;
|
|
d = (int)temp;
|
|
if ((long)d != temp) {
|
|
PyErr_SetString(PyExc_OverflowError, "normalized days too "
|
|
"large to fit in a C int");
|
|
goto Done;
|
|
}
|
|
result = new_delta_ex(d, s, us, 0, type);
|
|
|
|
Done:
|
|
Py_XDECREF(tuple);
|
|
Py_XDECREF(num);
|
|
return result;
|
|
}
|
|
|
|
#define microseconds_to_delta(pymicros) \
|
|
microseconds_to_delta_ex(pymicros, &PyDateTime_DeltaType)
|
|
|
|
static PyObject *
|
|
multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
|
|
{
|
|
PyObject *pyus_in;
|
|
PyObject *pyus_out;
|
|
PyObject *result;
|
|
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
|
|
pyus_out = PyNumber_Multiply(pyus_in, intobj);
|
|
Py_DECREF(pyus_in);
|
|
if (pyus_out == NULL)
|
|
return NULL;
|
|
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
|
|
{
|
|
PyObject *pyus_in;
|
|
PyObject *pyus_out;
|
|
PyObject *result;
|
|
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
|
|
pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
|
|
Py_DECREF(pyus_in);
|
|
if (pyus_out == NULL)
|
|
return NULL;
|
|
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_add(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left) && PyDelta_Check(right)) {
|
|
/* delta + delta */
|
|
/* The C-level additions can't overflow because of the
|
|
* invariant bounds.
|
|
*/
|
|
int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
|
|
int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
|
|
int microseconds = GET_TD_MICROSECONDS(left) +
|
|
GET_TD_MICROSECONDS(right);
|
|
result = new_delta(days, seconds, microseconds, 1);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_negative(PyDateTime_Delta *self)
|
|
{
|
|
return new_delta(-GET_TD_DAYS(self),
|
|
-GET_TD_SECONDS(self),
|
|
-GET_TD_MICROSECONDS(self),
|
|
1);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_positive(PyDateTime_Delta *self)
|
|
{
|
|
/* Could optimize this (by returning self) if this isn't a
|
|
* subclass -- but who uses unary + ? Approximately nobody.
|
|
*/
|
|
return new_delta(GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self),
|
|
GET_TD_MICROSECONDS(self),
|
|
0);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_abs(PyDateTime_Delta *self)
|
|
{
|
|
PyObject *result;
|
|
|
|
assert(GET_TD_MICROSECONDS(self) >= 0);
|
|
assert(GET_TD_SECONDS(self) >= 0);
|
|
|
|
if (GET_TD_DAYS(self) < 0)
|
|
result = delta_negative(self);
|
|
else
|
|
result = delta_positive(self);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left) && PyDelta_Check(right)) {
|
|
/* delta - delta */
|
|
PyObject *minus_right = PyNumber_Negative(right);
|
|
if (minus_right) {
|
|
result = delta_add(left, minus_right);
|
|
Py_DECREF(minus_right);
|
|
}
|
|
else
|
|
result = NULL;
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
if (PyDelta_Check(other)) {
|
|
int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
|
|
if (diff == 0) {
|
|
diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
|
|
if (diff == 0)
|
|
diff = GET_TD_MICROSECONDS(self) -
|
|
GET_TD_MICROSECONDS(other);
|
|
}
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
else {
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
}
|
|
|
|
static PyObject *delta_getstate(PyDateTime_Delta *self);
|
|
|
|
static long
|
|
delta_hash(PyDateTime_Delta *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
PyObject *temp = delta_getstate(self);
|
|
if (temp != NULL) {
|
|
self->hashcode = PyObject_Hash(temp);
|
|
Py_DECREF(temp);
|
|
}
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_multiply(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left)) {
|
|
/* delta * ??? */
|
|
if (PyLong_Check(right))
|
|
result = multiply_int_timedelta(right,
|
|
(PyDateTime_Delta *) left);
|
|
}
|
|
else if (PyLong_Check(left))
|
|
result = multiply_int_timedelta(left,
|
|
(PyDateTime_Delta *) right);
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_divide(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left)) {
|
|
/* delta * ??? */
|
|
if (PyLong_Check(right))
|
|
result = divide_timedelta_int(
|
|
(PyDateTime_Delta *)left,
|
|
right);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
/* Fold in the value of the tag ("seconds", "weeks", etc) component of a
|
|
* timedelta constructor. sofar is the # of microseconds accounted for
|
|
* so far, and there are factor microseconds per current unit, the number
|
|
* of which is given by num. num * factor is added to sofar in a
|
|
* numerically careful way, and that's the result. Any fractional
|
|
* microseconds left over (this can happen if num is a float type) are
|
|
* added into *leftover.
|
|
* Note that there are many ways this can give an error (NULL) return.
|
|
*/
|
|
static PyObject *
|
|
accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
|
|
double *leftover)
|
|
{
|
|
PyObject *prod;
|
|
PyObject *sum;
|
|
|
|
assert(num != NULL);
|
|
|
|
if (PyLong_Check(num)) {
|
|
prod = PyNumber_Multiply(num, factor);
|
|
if (prod == NULL)
|
|
return NULL;
|
|
sum = PyNumber_Add(sofar, prod);
|
|
Py_DECREF(prod);
|
|
return sum;
|
|
}
|
|
|
|
if (PyFloat_Check(num)) {
|
|
double dnum;
|
|
double fracpart;
|
|
double intpart;
|
|
PyObject *x;
|
|
PyObject *y;
|
|
|
|
/* The Plan: decompose num into an integer part and a
|
|
* fractional part, num = intpart + fracpart.
|
|
* Then num * factor ==
|
|
* intpart * factor + fracpart * factor
|
|
* and the LHS can be computed exactly in long arithmetic.
|
|
* The RHS is again broken into an int part and frac part.
|
|
* and the frac part is added into *leftover.
|
|
*/
|
|
dnum = PyFloat_AsDouble(num);
|
|
if (dnum == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
fracpart = modf(dnum, &intpart);
|
|
x = PyLong_FromDouble(intpart);
|
|
if (x == NULL)
|
|
return NULL;
|
|
|
|
prod = PyNumber_Multiply(x, factor);
|
|
Py_DECREF(x);
|
|
if (prod == NULL)
|
|
return NULL;
|
|
|
|
sum = PyNumber_Add(sofar, prod);
|
|
Py_DECREF(prod);
|
|
if (sum == NULL)
|
|
return NULL;
|
|
|
|
if (fracpart == 0.0)
|
|
return sum;
|
|
/* So far we've lost no information. Dealing with the
|
|
* fractional part requires float arithmetic, and may
|
|
* lose a little info.
|
|
*/
|
|
assert(PyLong_Check(factor));
|
|
dnum = PyLong_AsDouble(factor);
|
|
|
|
dnum *= fracpart;
|
|
fracpart = modf(dnum, &intpart);
|
|
x = PyLong_FromDouble(intpart);
|
|
if (x == NULL) {
|
|
Py_DECREF(sum);
|
|
return NULL;
|
|
}
|
|
|
|
y = PyNumber_Add(sum, x);
|
|
Py_DECREF(sum);
|
|
Py_DECREF(x);
|
|
*leftover += fracpart;
|
|
return y;
|
|
}
|
|
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unsupported type for timedelta %s component: %s",
|
|
tag, Py_TYPE(num)->tp_name);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
|
|
/* Argument objects. */
|
|
PyObject *day = NULL;
|
|
PyObject *second = NULL;
|
|
PyObject *us = NULL;
|
|
PyObject *ms = NULL;
|
|
PyObject *minute = NULL;
|
|
PyObject *hour = NULL;
|
|
PyObject *week = NULL;
|
|
|
|
PyObject *x = NULL; /* running sum of microseconds */
|
|
PyObject *y = NULL; /* temp sum of microseconds */
|
|
double leftover_us = 0.0;
|
|
|
|
static char *keywords[] = {
|
|
"days", "seconds", "microseconds", "milliseconds",
|
|
"minutes", "hours", "weeks", NULL
|
|
};
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
|
|
keywords,
|
|
&day, &second, &us,
|
|
&ms, &minute, &hour, &week) == 0)
|
|
goto Done;
|
|
|
|
x = PyLong_FromLong(0);
|
|
if (x == NULL)
|
|
goto Done;
|
|
|
|
#define CLEANUP \
|
|
Py_DECREF(x); \
|
|
x = y; \
|
|
if (x == NULL) \
|
|
goto Done
|
|
|
|
if (us) {
|
|
y = accum("microseconds", x, us, us_per_us, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (ms) {
|
|
y = accum("milliseconds", x, ms, us_per_ms, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (second) {
|
|
y = accum("seconds", x, second, us_per_second, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (minute) {
|
|
y = accum("minutes", x, minute, us_per_minute, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (hour) {
|
|
y = accum("hours", x, hour, us_per_hour, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (day) {
|
|
y = accum("days", x, day, us_per_day, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (week) {
|
|
y = accum("weeks", x, week, us_per_week, &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (leftover_us) {
|
|
/* Round to nearest whole # of us, and add into x. */
|
|
PyObject *temp = PyLong_FromLong(round_to_long(leftover_us));
|
|
if (temp == NULL) {
|
|
Py_DECREF(x);
|
|
goto Done;
|
|
}
|
|
y = PyNumber_Add(x, temp);
|
|
Py_DECREF(temp);
|
|
CLEANUP;
|
|
}
|
|
|
|
self = microseconds_to_delta_ex(x, type);
|
|
Py_DECREF(x);
|
|
Done:
|
|
return self;
|
|
|
|
#undef CLEANUP
|
|
}
|
|
|
|
static int
|
|
delta_bool(PyDateTime_Delta *self)
|
|
{
|
|
return (GET_TD_DAYS(self) != 0
|
|
|| GET_TD_SECONDS(self) != 0
|
|
|| GET_TD_MICROSECONDS(self) != 0);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_repr(PyDateTime_Delta *self)
|
|
{
|
|
if (GET_TD_MICROSECONDS(self) != 0)
|
|
return PyUnicode_FromFormat("%s(%d, %d, %d)",
|
|
Py_TYPE(self)->tp_name,
|
|
GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self),
|
|
GET_TD_MICROSECONDS(self));
|
|
if (GET_TD_SECONDS(self) != 0)
|
|
return PyUnicode_FromFormat("%s(%d, %d)",
|
|
Py_TYPE(self)->tp_name,
|
|
GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self));
|
|
|
|
return PyUnicode_FromFormat("%s(%d)",
|
|
Py_TYPE(self)->tp_name,
|
|
GET_TD_DAYS(self));
|
|
}
|
|
|
|
static PyObject *
|
|
delta_str(PyDateTime_Delta *self)
|
|
{
|
|
int us = GET_TD_MICROSECONDS(self);
|
|
int seconds = GET_TD_SECONDS(self);
|
|
int minutes = divmod(seconds, 60, &seconds);
|
|
int hours = divmod(minutes, 60, &minutes);
|
|
int days = GET_TD_DAYS(self);
|
|
|
|
if (days) {
|
|
if (us)
|
|
return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d.%06d",
|
|
days, (days == 1 || days == -1) ? "" : "s",
|
|
hours, minutes, seconds, us);
|
|
else
|
|
return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d",
|
|
days, (days == 1 || days == -1) ? "" : "s",
|
|
hours, minutes, seconds);
|
|
} else {
|
|
if (us)
|
|
return PyUnicode_FromFormat("%d:%02d:%02d.%06d",
|
|
hours, minutes, seconds, us);
|
|
else
|
|
return PyUnicode_FromFormat("%d:%02d:%02d",
|
|
hours, minutes, seconds);
|
|
}
|
|
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* __getstate__ isn't exposed */
|
|
static PyObject *
|
|
delta_getstate(PyDateTime_Delta *self)
|
|
{
|
|
return Py_BuildValue("iii", GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self),
|
|
GET_TD_MICROSECONDS(self));
|
|
}
|
|
|
|
static PyObject *
|
|
delta_reduce(PyDateTime_Delta* self)
|
|
{
|
|
return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
|
|
}
|
|
|
|
#define OFFSET(field) offsetof(PyDateTime_Delta, field)
|
|
|
|
static PyMemberDef delta_members[] = {
|
|
|
|
{"days", T_INT, OFFSET(days), READONLY,
|
|
PyDoc_STR("Number of days.")},
|
|
|
|
{"seconds", T_INT, OFFSET(seconds), READONLY,
|
|
PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
|
|
|
|
{"microseconds", T_INT, OFFSET(microseconds), READONLY,
|
|
PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
|
|
{NULL}
|
|
};
|
|
|
|
static PyMethodDef delta_methods[] = {
|
|
{"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL},
|
|
};
|
|
|
|
static char delta_doc[] =
|
|
PyDoc_STR("Difference between two datetime values.");
|
|
|
|
static PyNumberMethods delta_as_number = {
|
|
delta_add, /* nb_add */
|
|
delta_subtract, /* nb_subtract */
|
|
delta_multiply, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
(unaryfunc)delta_negative, /* nb_negative */
|
|
(unaryfunc)delta_positive, /* nb_positive */
|
|
(unaryfunc)delta_abs, /* nb_absolute */
|
|
(inquiry)delta_bool, /* nb_bool */
|
|
0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
0, /*nb_rshift*/
|
|
0, /*nb_and*/
|
|
0, /*nb_xor*/
|
|
0, /*nb_or*/
|
|
0, /*nb_int*/
|
|
0, /*nb_reserved*/
|
|
0, /*nb_float*/
|
|
0, /*nb_inplace_add*/
|
|
0, /*nb_inplace_subtract*/
|
|
0, /*nb_inplace_multiply*/
|
|
0, /*nb_inplace_remainder*/
|
|
0, /*nb_inplace_power*/
|
|
0, /*nb_inplace_lshift*/
|
|
0, /*nb_inplace_rshift*/
|
|
0, /*nb_inplace_and*/
|
|
0, /*nb_inplace_xor*/
|
|
0, /*nb_inplace_or*/
|
|
delta_divide, /* nb_floor_divide */
|
|
0, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DeltaType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.timedelta", /* tp_name */
|
|
sizeof(PyDateTime_Delta), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)delta_repr, /* tp_repr */
|
|
&delta_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)delta_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)delta_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
delta_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
delta_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
delta_methods, /* tp_methods */
|
|
delta_members, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
delta_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_Date implementation.
|
|
*/
|
|
|
|
/* Accessor properties. */
|
|
|
|
static PyObject *
|
|
date_year(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_YEAR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_month(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_MONTH(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_day(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_DAY(self));
|
|
}
|
|
|
|
static PyGetSetDef date_getset[] = {
|
|
{"year", (getter)date_year},
|
|
{"month", (getter)date_month},
|
|
{"day", (getter)date_day},
|
|
{NULL}
|
|
};
|
|
|
|
/* Constructors. */
|
|
|
|
static char *date_kws[] = {"year", "month", "day", NULL};
|
|
|
|
static PyObject *
|
|
date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
PyObject *state;
|
|
int year;
|
|
int month;
|
|
int day;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) == 1 &&
|
|
PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
|
|
PyBytes_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
|
|
MONTH_IS_SANE(PyBytes_AS_STRING(state)[2]))
|
|
{
|
|
PyDateTime_Date *me;
|
|
|
|
me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
|
|
if (me != NULL) {
|
|
char *pdata = PyBytes_AS_STRING(state);
|
|
memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
|
|
me->hashcode = -1;
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
|
|
&year, &month, &day)) {
|
|
if (check_date_args(year, month, day) < 0)
|
|
return NULL;
|
|
self = new_date_ex(year, month, day, type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return new date from localtime(t). */
|
|
static PyObject *
|
|
date_local_from_time_t(PyObject *cls, double ts)
|
|
{
|
|
struct tm *tm;
|
|
time_t t;
|
|
PyObject *result = NULL;
|
|
|
|
t = _PyTime_DoubleToTimet(ts);
|
|
if (t == (time_t)-1 && PyErr_Occurred())
|
|
return NULL;
|
|
tm = localtime(&t);
|
|
if (tm)
|
|
result = PyObject_CallFunction(cls, "iii",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday);
|
|
else
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"timestamp out of range for "
|
|
"platform localtime() function");
|
|
return result;
|
|
}
|
|
|
|
/* Return new date from current time.
|
|
* We say this is equivalent to fromtimestamp(time.time()), and the
|
|
* only way to be sure of that is to *call* time.time(). That's not
|
|
* generally the same as calling C's time.
|
|
*/
|
|
static PyObject *
|
|
date_today(PyObject *cls, PyObject *dummy)
|
|
{
|
|
PyObject *time;
|
|
PyObject *result;
|
|
|
|
time = time_time();
|
|
if (time == NULL)
|
|
return NULL;
|
|
|
|
/* Note well: today() is a class method, so this may not call
|
|
* date.fromtimestamp. For example, it may call
|
|
* datetime.fromtimestamp. That's why we need all the accuracy
|
|
* time.time() delivers; if someone were gonzo about optimization,
|
|
* date.today() could get away with plain C time().
|
|
*/
|
|
result = PyObject_CallMethod(cls, "fromtimestamp", "O", time);
|
|
Py_DECREF(time);
|
|
return result;
|
|
}
|
|
|
|
/* Return new date from given timestamp (Python timestamp -- a double). */
|
|
static PyObject *
|
|
date_fromtimestamp(PyObject *cls, PyObject *args)
|
|
{
|
|
double timestamp;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_ParseTuple(args, "d:fromtimestamp", ×tamp))
|
|
result = date_local_from_time_t(cls, timestamp);
|
|
return result;
|
|
}
|
|
|
|
/* Return new date from proleptic Gregorian ordinal. Raises ValueError if
|
|
* the ordinal is out of range.
|
|
*/
|
|
static PyObject *
|
|
date_fromordinal(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *result = NULL;
|
|
int ordinal;
|
|
|
|
if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
|
|
int year;
|
|
int month;
|
|
int day;
|
|
|
|
if (ordinal < 1)
|
|
PyErr_SetString(PyExc_ValueError, "ordinal must be "
|
|
">= 1");
|
|
else {
|
|
ord_to_ymd(ordinal, &year, &month, &day);
|
|
result = PyObject_CallFunction(cls, "iii",
|
|
year, month, day);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Date arithmetic.
|
|
*/
|
|
|
|
/* date + timedelta -> date. If arg negate is true, subtract the timedelta
|
|
* instead.
|
|
*/
|
|
static PyObject *
|
|
add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
|
|
{
|
|
PyObject *result = NULL;
|
|
int year = GET_YEAR(date);
|
|
int month = GET_MONTH(date);
|
|
int deltadays = GET_TD_DAYS(delta);
|
|
/* C-level overflow is impossible because |deltadays| < 1e9. */
|
|
int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
|
|
|
|
if (normalize_date(&year, &month, &day) >= 0)
|
|
result = new_date(year, month, day);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
date_add(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
if (PyDate_Check(left)) {
|
|
/* date + ??? */
|
|
if (PyDelta_Check(right))
|
|
/* date + delta */
|
|
return add_date_timedelta((PyDateTime_Date *) left,
|
|
(PyDateTime_Delta *) right,
|
|
0);
|
|
}
|
|
else {
|
|
/* ??? + date
|
|
* 'right' must be one of us, or we wouldn't have been called
|
|
*/
|
|
if (PyDelta_Check(left))
|
|
/* delta + date */
|
|
return add_date_timedelta((PyDateTime_Date *) right,
|
|
(PyDateTime_Delta *) left,
|
|
0);
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
static PyObject *
|
|
date_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left) || PyDateTime_Check(right)) {
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
if (PyDate_Check(left)) {
|
|
if (PyDate_Check(right)) {
|
|
/* date - date */
|
|
int left_ord = ymd_to_ord(GET_YEAR(left),
|
|
GET_MONTH(left),
|
|
GET_DAY(left));
|
|
int right_ord = ymd_to_ord(GET_YEAR(right),
|
|
GET_MONTH(right),
|
|
GET_DAY(right));
|
|
return new_delta(left_ord - right_ord, 0, 0, 0);
|
|
}
|
|
if (PyDelta_Check(right)) {
|
|
/* date - delta */
|
|
return add_date_timedelta((PyDateTime_Date *) left,
|
|
(PyDateTime_Delta *) right,
|
|
1);
|
|
}
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
|
|
/* Various ways to turn a date into a string. */
|
|
|
|
static PyObject *
|
|
date_repr(PyDateTime_Date *self)
|
|
{
|
|
return PyUnicode_FromFormat("%s(%d, %d, %d)",
|
|
Py_TYPE(self)->tp_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_isoformat(PyDateTime_Date *self)
|
|
{
|
|
return PyUnicode_FromFormat("%04d-%02d-%02d",
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
}
|
|
|
|
/* str() calls the appropriate isoformat() method. */
|
|
static PyObject *
|
|
date_str(PyDateTime_Date *self)
|
|
{
|
|
return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
date_ctime(PyDateTime_Date *self)
|
|
{
|
|
return format_ctime(self, 0, 0, 0);
|
|
}
|
|
|
|
static PyObject *
|
|
date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
|
|
{
|
|
/* This method can be inherited, and needs to call the
|
|
* timetuple() method appropriate to self's class.
|
|
*/
|
|
PyObject *result;
|
|
PyObject *tuple;
|
|
PyObject *format;
|
|
static char *keywords[] = {"format", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
|
|
&format))
|
|
return NULL;
|
|
|
|
tuple = PyObject_CallMethod((PyObject *)self, "timetuple", "()");
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
result = wrap_strftime((PyObject *)self, format, tuple,
|
|
(PyObject *)self);
|
|
Py_DECREF(tuple);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
date_format(PyDateTime_Date *self, PyObject *args)
|
|
{
|
|
PyObject *format;
|
|
|
|
if (!PyArg_ParseTuple(args, "U:__format__", &format))
|
|
return NULL;
|
|
|
|
/* if the format is zero length, return str(self) */
|
|
if (PyUnicode_GetSize(format) == 0)
|
|
return PyObject_Str((PyObject *)self);
|
|
|
|
return PyObject_CallMethod((PyObject *)self, "strftime", "O", format);
|
|
}
|
|
|
|
/* ISO methods. */
|
|
|
|
static PyObject *
|
|
date_isoweekday(PyDateTime_Date *self)
|
|
{
|
|
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
|
|
return PyLong_FromLong(dow + 1);
|
|
}
|
|
|
|
static PyObject *
|
|
date_isocalendar(PyDateTime_Date *self)
|
|
{
|
|
int year = GET_YEAR(self);
|
|
int week1_monday = iso_week1_monday(year);
|
|
int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
|
|
int week;
|
|
int day;
|
|
|
|
week = divmod(today - week1_monday, 7, &day);
|
|
if (week < 0) {
|
|
--year;
|
|
week1_monday = iso_week1_monday(year);
|
|
week = divmod(today - week1_monday, 7, &day);
|
|
}
|
|
else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
|
|
++year;
|
|
week = 0;
|
|
}
|
|
return Py_BuildValue("iii", year, week + 1, day + 1);
|
|
}
|
|
|
|
/* Miscellaneous methods. */
|
|
|
|
static PyObject *
|
|
date_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
if (PyDate_Check(other)) {
|
|
int diff = memcmp(((PyDateTime_Date *)self)->data,
|
|
((PyDateTime_Date *)other)->data,
|
|
_PyDateTime_DATE_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
else {
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
date_timetuple(PyDateTime_Date *self)
|
|
{
|
|
return build_struct_time(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
0, 0, 0, -1);
|
|
}
|
|
|
|
static PyObject *
|
|
date_replace(PyDateTime_Date *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *clone;
|
|
PyObject *tuple;
|
|
int year = GET_YEAR(self);
|
|
int month = GET_MONTH(self);
|
|
int day = GET_DAY(self);
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "|iii:replace", date_kws,
|
|
&year, &month, &day))
|
|
return NULL;
|
|
tuple = Py_BuildValue("iii", year, month, day);
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
clone = date_new(Py_TYPE(self), tuple, NULL);
|
|
Py_DECREF(tuple);
|
|
return clone;
|
|
}
|
|
|
|
/*
|
|
Borrowed from stringobject.c, originally it was string_hash()
|
|
*/
|
|
static long
|
|
generic_hash(unsigned char *data, int len)
|
|
{
|
|
register unsigned char *p;
|
|
register long x;
|
|
|
|
p = (unsigned char *) data;
|
|
x = *p << 7;
|
|
while (--len >= 0)
|
|
x = (1000003*x) ^ *p++;
|
|
x ^= len;
|
|
if (x == -1)
|
|
x = -2;
|
|
|
|
return x;
|
|
}
|
|
|
|
|
|
static PyObject *date_getstate(PyDateTime_Date *self);
|
|
|
|
static long
|
|
date_hash(PyDateTime_Date *self)
|
|
{
|
|
if (self->hashcode == -1)
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_DATE_DATASIZE);
|
|
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
date_toordinal(PyDateTime_Date *self)
|
|
{
|
|
return PyLong_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
|
|
GET_DAY(self)));
|
|
}
|
|
|
|
static PyObject *
|
|
date_weekday(PyDateTime_Date *self)
|
|
{
|
|
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
|
|
return PyLong_FromLong(dow);
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* __getstate__ isn't exposed */
|
|
static PyObject *
|
|
date_getstate(PyDateTime_Date *self)
|
|
{
|
|
PyObject* field;
|
|
field = PyBytes_FromStringAndSize((char*)self->data,
|
|
_PyDateTime_DATE_DATASIZE);
|
|
return Py_BuildValue("(N)", field);
|
|
}
|
|
|
|
static PyObject *
|
|
date_reduce(PyDateTime_Date *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
|
|
}
|
|
|
|
static PyMethodDef date_methods[] = {
|
|
|
|
/* Class methods: */
|
|
|
|
{"fromtimestamp", (PyCFunction)date_fromtimestamp, METH_VARARGS |
|
|
METH_CLASS,
|
|
PyDoc_STR("timestamp -> local date from a POSIX timestamp (like "
|
|
"time.time()).")},
|
|
|
|
{"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
|
|
METH_CLASS,
|
|
PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
|
|
"ordinal.")},
|
|
|
|
{"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
|
|
PyDoc_STR("Current date or datetime: same as "
|
|
"self.__class__.fromtimestamp(time.time()).")},
|
|
|
|
/* Instance methods: */
|
|
|
|
{"ctime", (PyCFunction)date_ctime, METH_NOARGS,
|
|
PyDoc_STR("Return ctime() style string.")},
|
|
|
|
{"strftime", (PyCFunction)date_strftime, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("format -> strftime() style string.")},
|
|
|
|
{"__format__", (PyCFunction)date_format, METH_VARARGS,
|
|
PyDoc_STR("Formats self with strftime.")},
|
|
|
|
{"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
|
|
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
|
|
|
|
{"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
|
|
PyDoc_STR("Return a 3-tuple containing ISO year, week number, and "
|
|
"weekday.")},
|
|
|
|
{"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
|
|
PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
|
|
|
|
{"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
|
|
PyDoc_STR("Return the day of the week represented by the date.\n"
|
|
"Monday == 1 ... Sunday == 7")},
|
|
|
|
{"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
|
|
PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
|
|
"1 is day 1.")},
|
|
|
|
{"weekday", (PyCFunction)date_weekday, METH_NOARGS,
|
|
PyDoc_STR("Return the day of the week represented by the date.\n"
|
|
"Monday == 0 ... Sunday == 6")},
|
|
|
|
{"replace", (PyCFunction)date_replace, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("Return date with new specified fields.")},
|
|
|
|
{"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static char date_doc[] =
|
|
PyDoc_STR("date(year, month, day) --> date object");
|
|
|
|
static PyNumberMethods date_as_number = {
|
|
date_add, /* nb_add */
|
|
date_subtract, /* nb_subtract */
|
|
0, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
0, /* nb_negative */
|
|
0, /* nb_positive */
|
|
0, /* nb_absolute */
|
|
0, /* nb_bool */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DateType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.date", /* tp_name */
|
|
sizeof(PyDateTime_Date), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)date_repr, /* tp_repr */
|
|
&date_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)date_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)date_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
date_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
date_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
date_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
date_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
date_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_TZInfo implementation.
|
|
*/
|
|
|
|
/* This is a pure abstract base class, so doesn't do anything beyond
|
|
* raising NotImplemented exceptions. Real tzinfo classes need
|
|
* to derive from this. This is mostly for clarity, and for efficiency in
|
|
* datetime and time constructors (their tzinfo arguments need to
|
|
* be subclasses of this tzinfo class, which is easy and quick to check).
|
|
*
|
|
* Note: For reasons having to do with pickling of subclasses, we have
|
|
* to allow tzinfo objects to be instantiated. This wasn't an issue
|
|
* in the Python implementation (__init__() could raise NotImplementedError
|
|
* there without ill effect), but doing so in the C implementation hit a
|
|
* brick wall.
|
|
*/
|
|
|
|
static PyObject *
|
|
tzinfo_nogo(const char* methodname)
|
|
{
|
|
PyErr_Format(PyExc_NotImplementedError,
|
|
"a tzinfo subclass must implement %s()",
|
|
methodname);
|
|
return NULL;
|
|
}
|
|
|
|
/* Methods. A subclass must implement these. */
|
|
|
|
static PyObject *
|
|
tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("tzname");
|
|
}
|
|
|
|
static PyObject *
|
|
tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("utcoffset");
|
|
}
|
|
|
|
static PyObject *
|
|
tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("dst");
|
|
}
|
|
|
|
static PyObject *
|
|
tzinfo_fromutc(PyDateTime_TZInfo *self, PyDateTime_DateTime *dt)
|
|
{
|
|
int y, m, d, hh, mm, ss, us;
|
|
|
|
PyObject *result;
|
|
int off, dst;
|
|
int none;
|
|
int delta;
|
|
|
|
if (! PyDateTime_Check(dt)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"fromutc: argument must be a datetime");
|
|
return NULL;
|
|
}
|
|
if (! HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
|
|
"is not self");
|
|
return NULL;
|
|
}
|
|
|
|
off = call_utcoffset(dt->tzinfo, (PyObject *)dt, &none);
|
|
if (off == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (none) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
|
|
"utcoffset() result required");
|
|
return NULL;
|
|
}
|
|
|
|
dst = call_dst(dt->tzinfo, (PyObject *)dt, &none);
|
|
if (dst == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (none) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
|
|
"dst() result required");
|
|
return NULL;
|
|
}
|
|
|
|
y = GET_YEAR(dt);
|
|
m = GET_MONTH(dt);
|
|
d = GET_DAY(dt);
|
|
hh = DATE_GET_HOUR(dt);
|
|
mm = DATE_GET_MINUTE(dt);
|
|
ss = DATE_GET_SECOND(dt);
|
|
us = DATE_GET_MICROSECOND(dt);
|
|
|
|
delta = off - dst;
|
|
mm += delta;
|
|
if ((mm < 0 || mm >= 60) &&
|
|
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
|
return NULL;
|
|
result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
|
|
if (result == NULL)
|
|
return result;
|
|
|
|
dst = call_dst(dt->tzinfo, result, &none);
|
|
if (dst == -1 && PyErr_Occurred())
|
|
goto Fail;
|
|
if (none)
|
|
goto Inconsistent;
|
|
if (dst == 0)
|
|
return result;
|
|
|
|
mm += dst;
|
|
if ((mm < 0 || mm >= 60) &&
|
|
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
|
goto Fail;
|
|
Py_DECREF(result);
|
|
result = new_datetime(y, m, d, hh, mm, ss, us, dt->tzinfo);
|
|
return result;
|
|
|
|
Inconsistent:
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave"
|
|
"inconsistent results; cannot convert");
|
|
|
|
/* fall thru to failure */
|
|
Fail:
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Pickle support. This is solely so that tzinfo subclasses can use
|
|
* pickling -- tzinfo itself is supposed to be uninstantiable.
|
|
*/
|
|
|
|
static PyObject *
|
|
tzinfo_reduce(PyObject *self)
|
|
{
|
|
PyObject *args, *state, *tmp;
|
|
PyObject *getinitargs, *getstate;
|
|
|
|
tmp = PyTuple_New(0);
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
|
|
getinitargs = PyObject_GetAttrString(self, "__getinitargs__");
|
|
if (getinitargs != NULL) {
|
|
args = PyObject_CallObject(getinitargs, tmp);
|
|
Py_DECREF(getinitargs);
|
|
if (args == NULL) {
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Clear();
|
|
args = tmp;
|
|
Py_INCREF(args);
|
|
}
|
|
|
|
getstate = PyObject_GetAttrString(self, "__getstate__");
|
|
if (getstate != NULL) {
|
|
state = PyObject_CallObject(getstate, tmp);
|
|
Py_DECREF(getstate);
|
|
if (state == NULL) {
|
|
Py_DECREF(args);
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
PyObject **dictptr;
|
|
PyErr_Clear();
|
|
state = Py_None;
|
|
dictptr = _PyObject_GetDictPtr(self);
|
|
if (dictptr && *dictptr && PyDict_Size(*dictptr))
|
|
state = *dictptr;
|
|
Py_INCREF(state);
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
|
|
if (state == Py_None) {
|
|
Py_DECREF(state);
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), args);
|
|
}
|
|
else
|
|
return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
|
|
}
|
|
|
|
static PyMethodDef tzinfo_methods[] = {
|
|
|
|
{"tzname", (PyCFunction)tzinfo_tzname, METH_O,
|
|
PyDoc_STR("datetime -> string name of time zone.")},
|
|
|
|
{"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
|
|
PyDoc_STR("datetime -> minutes east of UTC (negative for "
|
|
"west of UTC).")},
|
|
|
|
{"dst", (PyCFunction)tzinfo_dst, METH_O,
|
|
PyDoc_STR("datetime -> DST offset in minutes east of UTC.")},
|
|
|
|
{"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
|
|
PyDoc_STR("datetime in UTC -> datetime in local time.")},
|
|
|
|
{"__reduce__", (PyCFunction)tzinfo_reduce, METH_NOARGS,
|
|
PyDoc_STR("-> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static char tzinfo_doc[] =
|
|
PyDoc_STR("Abstract base class for time zone info objects.");
|
|
|
|
static PyTypeObject PyDateTime_TZInfoType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.tzinfo", /* tp_name */
|
|
sizeof(PyDateTime_TZInfo), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
tzinfo_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
tzinfo_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
PyType_GenericNew, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_Time implementation.
|
|
*/
|
|
|
|
/* Accessor properties.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_hour(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_HOUR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_minute(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_MINUTE(self));
|
|
}
|
|
|
|
/* The name time_second conflicted with some platform header file. */
|
|
static PyObject *
|
|
py_time_second(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_SECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_microsecond(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_MICROSECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_tzinfo(PyDateTime_Time *self, void *unused)
|
|
{
|
|
PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyGetSetDef time_getset[] = {
|
|
{"hour", (getter)time_hour},
|
|
{"minute", (getter)time_minute},
|
|
{"second", (getter)py_time_second},
|
|
{"microsecond", (getter)time_microsecond},
|
|
{"tzinfo", (getter)time_tzinfo},
|
|
{NULL}
|
|
};
|
|
|
|
/*
|
|
* Constructors.
|
|
*/
|
|
|
|
static char *time_kws[] = {"hour", "minute", "second", "microsecond",
|
|
"tzinfo", NULL};
|
|
|
|
static PyObject *
|
|
time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
PyObject *state;
|
|
int hour = 0;
|
|
int minute = 0;
|
|
int second = 0;
|
|
int usecond = 0;
|
|
PyObject *tzinfo = Py_None;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) >= 1 &&
|
|
PyTuple_GET_SIZE(args) <= 2 &&
|
|
PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
|
|
PyBytes_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
|
|
((unsigned char) (PyBytes_AS_STRING(state)[0])) < 24)
|
|
{
|
|
PyDateTime_Time *me;
|
|
char aware;
|
|
|
|
if (PyTuple_GET_SIZE(args) == 2) {
|
|
tzinfo = PyTuple_GET_ITEM(args, 1);
|
|
if (check_tzinfo_subclass(tzinfo) < 0) {
|
|
PyErr_SetString(PyExc_TypeError, "bad "
|
|
"tzinfo state arg");
|
|
return NULL;
|
|
}
|
|
}
|
|
aware = (char)(tzinfo != Py_None);
|
|
me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
|
|
if (me != NULL) {
|
|
char *pdata = PyBytes_AS_STRING(state);
|
|
|
|
memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
|
|
me->hashcode = -1;
|
|
me->hastzinfo = aware;
|
|
if (aware) {
|
|
Py_INCREF(tzinfo);
|
|
me->tzinfo = tzinfo;
|
|
}
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO", time_kws,
|
|
&hour, &minute, &second, &usecond,
|
|
&tzinfo)) {
|
|
if (check_time_args(hour, minute, second, usecond) < 0)
|
|
return NULL;
|
|
if (check_tzinfo_subclass(tzinfo) < 0)
|
|
return NULL;
|
|
self = new_time_ex(hour, minute, second, usecond, tzinfo,
|
|
type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/*
|
|
* Destructor.
|
|
*/
|
|
|
|
static void
|
|
time_dealloc(PyDateTime_Time *self)
|
|
{
|
|
if (HASTZINFO(self)) {
|
|
Py_XDECREF(self->tzinfo);
|
|
}
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
}
|
|
|
|
/*
|
|
* Indirect access to tzinfo methods.
|
|
*/
|
|
|
|
/* These are all METH_NOARGS, so don't need to check the arglist. */
|
|
static PyObject *
|
|
time_utcoffset(PyDateTime_Time *self, PyObject *unused) {
|
|
return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
"utcoffset", Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
time_dst(PyDateTime_Time *self, PyObject *unused) {
|
|
return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
"dst", Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
time_tzname(PyDateTime_Time *self, PyObject *unused) {
|
|
return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
Py_None);
|
|
}
|
|
|
|
/*
|
|
* Various ways to turn a time into a string.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_repr(PyDateTime_Time *self)
|
|
{
|
|
const char *type_name = Py_TYPE(self)->tp_name;
|
|
int h = TIME_GET_HOUR(self);
|
|
int m = TIME_GET_MINUTE(self);
|
|
int s = TIME_GET_SECOND(self);
|
|
int us = TIME_GET_MICROSECOND(self);
|
|
PyObject *result = NULL;
|
|
|
|
if (us)
|
|
result = PyUnicode_FromFormat("%s(%d, %d, %d, %d)",
|
|
type_name, h, m, s, us);
|
|
else if (s)
|
|
result = PyUnicode_FromFormat("%s(%d, %d, %d)",
|
|
type_name, h, m, s);
|
|
else
|
|
result = PyUnicode_FromFormat("%s(%d, %d)", type_name, h, m);
|
|
if (result != NULL && HASTZINFO(self))
|
|
result = append_keyword_tzinfo(result, self->tzinfo);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_str(PyDateTime_Time *self)
|
|
{
|
|
return PyObject_CallMethod((PyObject *)self, "isoformat", "()");
|
|
}
|
|
|
|
static PyObject *
|
|
time_isoformat(PyDateTime_Time *self, PyObject *unused)
|
|
{
|
|
char buf[100];
|
|
PyObject *result;
|
|
int us = TIME_GET_MICROSECOND(self);;
|
|
|
|
if (us)
|
|
result = PyUnicode_FromFormat("%02d:%02d:%02d.%06d",
|
|
TIME_GET_HOUR(self),
|
|
TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self),
|
|
us);
|
|
else
|
|
result = PyUnicode_FromFormat("%02d:%02d:%02d",
|
|
TIME_GET_HOUR(self),
|
|
TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self));
|
|
|
|
if (result == NULL || ! HASTZINFO(self) || self->tzinfo == Py_None)
|
|
return result;
|
|
|
|
/* We need to append the UTC offset. */
|
|
if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
|
|
Py_None) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buf));
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *result;
|
|
PyObject *tuple;
|
|
PyObject *format;
|
|
static char *keywords[] = {"format", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
|
|
&format))
|
|
return NULL;
|
|
|
|
/* Python's strftime does insane things with the year part of the
|
|
* timetuple. The year is forced to (the otherwise nonsensical)
|
|
* 1900 to worm around that.
|
|
*/
|
|
tuple = Py_BuildValue("iiiiiiiii",
|
|
1900, 1, 1, /* year, month, day */
|
|
TIME_GET_HOUR(self),
|
|
TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self),
|
|
0, 1, -1); /* weekday, daynum, dst */
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
assert(PyTuple_Size(tuple) == 9);
|
|
result = wrap_strftime((PyObject *)self, format, tuple,
|
|
Py_None);
|
|
Py_DECREF(tuple);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous methods.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
int diff;
|
|
naivety n1, n2;
|
|
int offset1, offset2;
|
|
|
|
if (! PyTime_Check(other)) {
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
if (classify_two_utcoffsets(self, &offset1, &n1, Py_None,
|
|
other, &offset2, &n2, Py_None) < 0)
|
|
return NULL;
|
|
assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
|
|
/* If they're both naive, or both aware and have the same offsets,
|
|
* we get off cheap. Note that if they're both naive, offset1 ==
|
|
* offset2 == 0 at this point.
|
|
*/
|
|
if (n1 == n2 && offset1 == offset2) {
|
|
diff = memcmp(((PyDateTime_Time *)self)->data,
|
|
((PyDateTime_Time *)other)->data,
|
|
_PyDateTime_TIME_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
|
|
if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
|
|
assert(offset1 != offset2); /* else last "if" handled it */
|
|
/* Convert everything except microseconds to seconds. These
|
|
* can't overflow (no more than the # of seconds in 2 days).
|
|
*/
|
|
offset1 = TIME_GET_HOUR(self) * 3600 +
|
|
(TIME_GET_MINUTE(self) - offset1) * 60 +
|
|
TIME_GET_SECOND(self);
|
|
offset2 = TIME_GET_HOUR(other) * 3600 +
|
|
(TIME_GET_MINUTE(other) - offset2) * 60 +
|
|
TIME_GET_SECOND(other);
|
|
diff = offset1 - offset2;
|
|
if (diff == 0)
|
|
diff = TIME_GET_MICROSECOND(self) -
|
|
TIME_GET_MICROSECOND(other);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
|
|
assert(n1 != n2);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't compare offset-naive and "
|
|
"offset-aware times");
|
|
return NULL;
|
|
}
|
|
|
|
static long
|
|
time_hash(PyDateTime_Time *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
naivety n;
|
|
int offset;
|
|
PyObject *temp;
|
|
|
|
n = classify_utcoffset((PyObject *)self, Py_None, &offset);
|
|
assert(n != OFFSET_UNKNOWN);
|
|
if (n == OFFSET_ERROR)
|
|
return -1;
|
|
|
|
/* Reduce this to a hash of another object. */
|
|
if (offset == 0) {
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_TIME_DATASIZE);
|
|
return self->hashcode;
|
|
}
|
|
else {
|
|
int hour;
|
|
int minute;
|
|
|
|
assert(n == OFFSET_AWARE);
|
|
assert(HASTZINFO(self));
|
|
hour = divmod(TIME_GET_HOUR(self) * 60 +
|
|
TIME_GET_MINUTE(self) - offset,
|
|
60,
|
|
&minute);
|
|
if (0 <= hour && hour < 24)
|
|
temp = new_time(hour, minute,
|
|
TIME_GET_SECOND(self),
|
|
TIME_GET_MICROSECOND(self),
|
|
Py_None);
|
|
else
|
|
temp = Py_BuildValue("iiii",
|
|
hour, minute,
|
|
TIME_GET_SECOND(self),
|
|
TIME_GET_MICROSECOND(self));
|
|
}
|
|
if (temp != NULL) {
|
|
self->hashcode = PyObject_Hash(temp);
|
|
Py_DECREF(temp);
|
|
}
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
time_replace(PyDateTime_Time *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *clone;
|
|
PyObject *tuple;
|
|
int hh = TIME_GET_HOUR(self);
|
|
int mm = TIME_GET_MINUTE(self);
|
|
int ss = TIME_GET_SECOND(self);
|
|
int us = TIME_GET_MICROSECOND(self);
|
|
PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO:replace",
|
|
time_kws,
|
|
&hh, &mm, &ss, &us, &tzinfo))
|
|
return NULL;
|
|
tuple = Py_BuildValue("iiiiO", hh, mm, ss, us, tzinfo);
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
clone = time_new(Py_TYPE(self), tuple, NULL);
|
|
Py_DECREF(tuple);
|
|
return clone;
|
|
}
|
|
|
|
static int
|
|
time_bool(PyDateTime_Time *self)
|
|
{
|
|
int offset;
|
|
int none;
|
|
|
|
if (TIME_GET_SECOND(self) || TIME_GET_MICROSECOND(self)) {
|
|
/* Since utcoffset is in whole minutes, nothing can
|
|
* alter the conclusion that this is nonzero.
|
|
*/
|
|
return 1;
|
|
}
|
|
offset = 0;
|
|
if (HASTZINFO(self) && self->tzinfo != Py_None) {
|
|
offset = call_utcoffset(self->tzinfo, Py_None, &none);
|
|
if (offset == -1 && PyErr_Occurred())
|
|
return -1;
|
|
}
|
|
return (TIME_GET_MINUTE(self) - offset + TIME_GET_HOUR(self)*60) != 0;
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* Let basestate be the non-tzinfo data string.
|
|
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
|
|
* So it's a tuple in any (non-error) case.
|
|
* __getstate__ isn't exposed.
|
|
*/
|
|
static PyObject *
|
|
time_getstate(PyDateTime_Time *self)
|
|
{
|
|
PyObject *basestate;
|
|
PyObject *result = NULL;
|
|
|
|
basestate = PyBytes_FromStringAndSize((char *)self->data,
|
|
_PyDateTime_TIME_DATASIZE);
|
|
if (basestate != NULL) {
|
|
if (! HASTZINFO(self) || self->tzinfo == Py_None)
|
|
result = PyTuple_Pack(1, basestate);
|
|
else
|
|
result = PyTuple_Pack(2, basestate, self->tzinfo);
|
|
Py_DECREF(basestate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_reduce(PyDateTime_Time *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self));
|
|
}
|
|
|
|
static PyMethodDef time_methods[] = {
|
|
|
|
{"isoformat", (PyCFunction)time_isoformat, METH_NOARGS,
|
|
PyDoc_STR("Return string in ISO 8601 format, HH:MM:SS[.mmmmmm]"
|
|
"[+HH:MM].")},
|
|
|
|
{"strftime", (PyCFunction)time_strftime, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("format -> strftime() style string.")},
|
|
|
|
{"__format__", (PyCFunction)date_format, METH_VARARGS,
|
|
PyDoc_STR("Formats self with strftime.")},
|
|
|
|
{"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
|
|
|
|
{"tzname", (PyCFunction)time_tzname, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.tzname(self).")},
|
|
|
|
{"dst", (PyCFunction)time_dst, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.dst(self).")},
|
|
|
|
{"replace", (PyCFunction)time_replace, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("Return time with new specified fields.")},
|
|
|
|
{"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static char time_doc[] =
|
|
PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
|
|
\n\
|
|
All arguments are optional. tzinfo may be None, or an instance of\n\
|
|
a tzinfo subclass. The remaining arguments may be ints or longs.\n");
|
|
|
|
static PyNumberMethods time_as_number = {
|
|
0, /* nb_add */
|
|
0, /* nb_subtract */
|
|
0, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
0, /* nb_negative */
|
|
0, /* nb_positive */
|
|
0, /* nb_absolute */
|
|
(inquiry)time_bool, /* nb_bool */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_TimeType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.time", /* tp_name */
|
|
sizeof(PyDateTime_Time), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)time_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)time_repr, /* tp_repr */
|
|
&time_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)time_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)time_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
time_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
time_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
time_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
time_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
time_alloc, /* tp_alloc */
|
|
time_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_DateTime implementation.
|
|
*/
|
|
|
|
/* Accessor properties. Properties for day, month, and year are inherited
|
|
* from date.
|
|
*/
|
|
|
|
static PyObject *
|
|
datetime_hour(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_HOUR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_minute(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_MINUTE(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_second(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_SECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_microsecond(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_MICROSECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyGetSetDef datetime_getset[] = {
|
|
{"hour", (getter)datetime_hour},
|
|
{"minute", (getter)datetime_minute},
|
|
{"second", (getter)datetime_second},
|
|
{"microsecond", (getter)datetime_microsecond},
|
|
{"tzinfo", (getter)datetime_tzinfo},
|
|
{NULL}
|
|
};
|
|
|
|
/*
|
|
* Constructors.
|
|
*/
|
|
|
|
static char *datetime_kws[] = {
|
|
"year", "month", "day", "hour", "minute", "second",
|
|
"microsecond", "tzinfo", NULL
|
|
};
|
|
|
|
static PyObject *
|
|
datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
PyObject *state;
|
|
int year;
|
|
int month;
|
|
int day;
|
|
int hour = 0;
|
|
int minute = 0;
|
|
int second = 0;
|
|
int usecond = 0;
|
|
PyObject *tzinfo = Py_None;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) >= 1 &&
|
|
PyTuple_GET_SIZE(args) <= 2 &&
|
|
PyBytes_Check(state = PyTuple_GET_ITEM(args, 0)) &&
|
|
PyBytes_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
|
|
MONTH_IS_SANE(PyBytes_AS_STRING(state)[2]))
|
|
{
|
|
PyDateTime_DateTime *me;
|
|
char aware;
|
|
|
|
if (PyTuple_GET_SIZE(args) == 2) {
|
|
tzinfo = PyTuple_GET_ITEM(args, 1);
|
|
if (check_tzinfo_subclass(tzinfo) < 0) {
|
|
PyErr_SetString(PyExc_TypeError, "bad "
|
|
"tzinfo state arg");
|
|
return NULL;
|
|
}
|
|
}
|
|
aware = (char)(tzinfo != Py_None);
|
|
me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
|
|
if (me != NULL) {
|
|
char *pdata = PyBytes_AS_STRING(state);
|
|
|
|
memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
|
|
me->hashcode = -1;
|
|
me->hastzinfo = aware;
|
|
if (aware) {
|
|
Py_INCREF(tzinfo);
|
|
me->tzinfo = tzinfo;
|
|
}
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO", datetime_kws,
|
|
&year, &month, &day, &hour, &minute,
|
|
&second, &usecond, &tzinfo)) {
|
|
if (check_date_args(year, month, day) < 0)
|
|
return NULL;
|
|
if (check_time_args(hour, minute, second, usecond) < 0)
|
|
return NULL;
|
|
if (check_tzinfo_subclass(tzinfo) < 0)
|
|
return NULL;
|
|
self = new_datetime_ex(year, month, day,
|
|
hour, minute, second, usecond,
|
|
tzinfo, type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* TM_FUNC is the shared type of localtime() and gmtime(). */
|
|
typedef struct tm *(*TM_FUNC)(const time_t *timer);
|
|
|
|
/* Internal helper.
|
|
* Build datetime from a time_t and a distinct count of microseconds.
|
|
* Pass localtime or gmtime for f, to control the interpretation of timet.
|
|
*/
|
|
static PyObject *
|
|
datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
|
|
PyObject *tzinfo)
|
|
{
|
|
struct tm *tm;
|
|
PyObject *result = NULL;
|
|
|
|
tm = f(&timet);
|
|
if (tm) {
|
|
/* The platform localtime/gmtime may insert leap seconds,
|
|
* indicated by tm->tm_sec > 59. We don't care about them,
|
|
* except to the extent that passing them on to the datetime
|
|
* constructor would raise ValueError for a reason that
|
|
* made no sense to the user.
|
|
*/
|
|
if (tm->tm_sec > 59)
|
|
tm->tm_sec = 59;
|
|
result = PyObject_CallFunction(cls, "iiiiiiiO",
|
|
tm->tm_year + 1900,
|
|
tm->tm_mon + 1,
|
|
tm->tm_mday,
|
|
tm->tm_hour,
|
|
tm->tm_min,
|
|
tm->tm_sec,
|
|
us,
|
|
tzinfo);
|
|
}
|
|
else
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"timestamp out of range for "
|
|
"platform localtime()/gmtime() function");
|
|
return result;
|
|
}
|
|
|
|
/* Internal helper.
|
|
* Build datetime from a Python timestamp. Pass localtime or gmtime for f,
|
|
* to control the interpretation of the timestamp. Since a double doesn't
|
|
* have enough bits to cover a datetime's full range of precision, it's
|
|
* better to call datetime_from_timet_and_us provided you have a way
|
|
* to get that much precision (e.g., C time() isn't good enough).
|
|
*/
|
|
static PyObject *
|
|
datetime_from_timestamp(PyObject *cls, TM_FUNC f, double timestamp,
|
|
PyObject *tzinfo)
|
|
{
|
|
time_t timet;
|
|
double fraction;
|
|
int us;
|
|
|
|
timet = _PyTime_DoubleToTimet(timestamp);
|
|
if (timet == (time_t)-1 && PyErr_Occurred())
|
|
return NULL;
|
|
fraction = timestamp - (double)timet;
|
|
us = (int)round_to_long(fraction * 1e6);
|
|
if (us < 0) {
|
|
/* Truncation towards zero is not what we wanted
|
|
for negative numbers (Python's mod semantics) */
|
|
timet -= 1;
|
|
us += 1000000;
|
|
}
|
|
/* If timestamp is less than one microsecond smaller than a
|
|
* full second, round up. Otherwise, ValueErrors are raised
|
|
* for some floats. */
|
|
if (us == 1000000) {
|
|
timet += 1;
|
|
us = 0;
|
|
}
|
|
return datetime_from_timet_and_us(cls, f, timet, us, tzinfo);
|
|
}
|
|
|
|
/* Internal helper.
|
|
* Build most accurate possible datetime for current time. Pass localtime or
|
|
* gmtime for f as appropriate.
|
|
*/
|
|
static PyObject *
|
|
datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
|
|
{
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
struct timeval t;
|
|
|
|
#ifdef GETTIMEOFDAY_NO_TZ
|
|
gettimeofday(&t);
|
|
#else
|
|
gettimeofday(&t, (struct timezone *)NULL);
|
|
#endif
|
|
return datetime_from_timet_and_us(cls, f, t.tv_sec, (int)t.tv_usec,
|
|
tzinfo);
|
|
|
|
#else /* ! HAVE_GETTIMEOFDAY */
|
|
/* No flavor of gettimeofday exists on this platform. Python's
|
|
* time.time() does a lot of other platform tricks to get the
|
|
* best time it can on the platform, and we're not going to do
|
|
* better than that (if we could, the better code would belong
|
|
* in time.time()!) We're limited by the precision of a double,
|
|
* though.
|
|
*/
|
|
PyObject *time;
|
|
double dtime;
|
|
|
|
time = time_time();
|
|
if (time == NULL)
|
|
return NULL;
|
|
dtime = PyFloat_AsDouble(time);
|
|
Py_DECREF(time);
|
|
if (dtime == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
return datetime_from_timestamp(cls, f, dtime, tzinfo);
|
|
#endif /* ! HAVE_GETTIMEOFDAY */
|
|
}
|
|
|
|
/* Return best possible local time -- this isn't constrained by the
|
|
* precision of a timestamp.
|
|
*/
|
|
static PyObject *
|
|
datetime_now(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self;
|
|
PyObject *tzinfo = Py_None;
|
|
static char *keywords[] = {"tz", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:now", keywords,
|
|
&tzinfo))
|
|
return NULL;
|
|
if (check_tzinfo_subclass(tzinfo) < 0)
|
|
return NULL;
|
|
|
|
self = datetime_best_possible(cls,
|
|
tzinfo == Py_None ? localtime : gmtime,
|
|
tzinfo);
|
|
if (self != NULL && tzinfo != Py_None) {
|
|
/* Convert UTC to tzinfo's zone. */
|
|
PyObject *temp = self;
|
|
self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
|
|
Py_DECREF(temp);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return best possible UTC time -- this isn't constrained by the
|
|
* precision of a timestamp.
|
|
*/
|
|
static PyObject *
|
|
datetime_utcnow(PyObject *cls, PyObject *dummy)
|
|
{
|
|
return datetime_best_possible(cls, gmtime, Py_None);
|
|
}
|
|
|
|
/* Return new local datetime from timestamp (Python timestamp -- a double). */
|
|
static PyObject *
|
|
datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self;
|
|
double timestamp;
|
|
PyObject *tzinfo = Py_None;
|
|
static char *keywords[] = {"timestamp", "tz", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "d|O:fromtimestamp",
|
|
keywords, ×tamp, &tzinfo))
|
|
return NULL;
|
|
if (check_tzinfo_subclass(tzinfo) < 0)
|
|
return NULL;
|
|
|
|
self = datetime_from_timestamp(cls,
|
|
tzinfo == Py_None ? localtime : gmtime,
|
|
timestamp,
|
|
tzinfo);
|
|
if (self != NULL && tzinfo != Py_None) {
|
|
/* Convert UTC to tzinfo's zone. */
|
|
PyObject *temp = self;
|
|
self = PyObject_CallMethod(tzinfo, "fromutc", "O", self);
|
|
Py_DECREF(temp);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return new UTC datetime from timestamp (Python timestamp -- a double). */
|
|
static PyObject *
|
|
datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
|
|
{
|
|
double timestamp;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_ParseTuple(args, "d:utcfromtimestamp", ×tamp))
|
|
result = datetime_from_timestamp(cls, gmtime, timestamp,
|
|
Py_None);
|
|
return result;
|
|
}
|
|
|
|
/* Return new datetime from time.strptime(). */
|
|
static PyObject *
|
|
datetime_strptime(PyObject *cls, PyObject *args)
|
|
{
|
|
static PyObject *module = NULL;
|
|
PyObject *result = NULL, *obj, *st = NULL, *frac = NULL;
|
|
const Py_UNICODE *string, *format;
|
|
|
|
if (!PyArg_ParseTuple(args, "uu:strptime", &string, &format))
|
|
return NULL;
|
|
|
|
if (module == NULL &&
|
|
(module = PyImport_ImportModuleNoBlock("_strptime")) == NULL)
|
|
return NULL;
|
|
|
|
/* _strptime._strptime returns a two-element tuple. The first
|
|
element is a time.struct_time object. The second is the
|
|
microseconds (which are not defined for time.struct_time). */
|
|
obj = PyObject_CallMethod(module, "_strptime", "uu", string, format);
|
|
if (obj != NULL) {
|
|
int i, good_timetuple = 1;
|
|
long int ia[7];
|
|
if (PySequence_Check(obj) && PySequence_Size(obj) == 2) {
|
|
st = PySequence_GetItem(obj, 0);
|
|
frac = PySequence_GetItem(obj, 1);
|
|
if (st == NULL || frac == NULL)
|
|
good_timetuple = 0;
|
|
/* copy y/m/d/h/m/s values out of the
|
|
time.struct_time */
|
|
if (good_timetuple &&
|
|
PySequence_Check(st) &&
|
|
PySequence_Size(st) >= 6) {
|
|
for (i=0; i < 6; i++) {
|
|
PyObject *p = PySequence_GetItem(st, i);
|
|
if (p == NULL) {
|
|
good_timetuple = 0;
|
|
break;
|
|
}
|
|
if (PyLong_Check(p))
|
|
ia[i] = PyLong_AsLong(p);
|
|
else
|
|
good_timetuple = 0;
|
|
Py_DECREF(p);
|
|
}
|
|
/* if (PyLong_CheckExact(p)) {
|
|
ia[i] = PyLong_AsLongAndOverflow(p, &overflow);
|
|
if (overflow)
|
|
good_timetuple = 0;
|
|
}
|
|
else
|
|
good_timetuple = 0;
|
|
Py_DECREF(p);
|
|
*/ }
|
|
else
|
|
good_timetuple = 0;
|
|
/* follow that up with a little dose of microseconds */
|
|
if (PyLong_Check(frac))
|
|
ia[6] = PyLong_AsLong(frac);
|
|
else
|
|
good_timetuple = 0;
|
|
}
|
|
else
|
|
good_timetuple = 0;
|
|
if (good_timetuple)
|
|
result = PyObject_CallFunction(cls, "iiiiiii",
|
|
ia[0], ia[1], ia[2],
|
|
ia[3], ia[4], ia[5],
|
|
ia[6]);
|
|
else
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"unexpected value from _strptime._strptime");
|
|
}
|
|
Py_XDECREF(obj);
|
|
Py_XDECREF(st);
|
|
Py_XDECREF(frac);
|
|
return result;
|
|
}
|
|
|
|
/* Return new datetime from date/datetime and time arguments. */
|
|
static PyObject *
|
|
datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
static char *keywords[] = {"date", "time", NULL};
|
|
PyObject *date;
|
|
PyObject *time;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!:combine", keywords,
|
|
&PyDateTime_DateType, &date,
|
|
&PyDateTime_TimeType, &time)) {
|
|
PyObject *tzinfo = Py_None;
|
|
|
|
if (HASTZINFO(time))
|
|
tzinfo = ((PyDateTime_Time *)time)->tzinfo;
|
|
result = PyObject_CallFunction(cls, "iiiiiiiO",
|
|
GET_YEAR(date),
|
|
GET_MONTH(date),
|
|
GET_DAY(date),
|
|
TIME_GET_HOUR(time),
|
|
TIME_GET_MINUTE(time),
|
|
TIME_GET_SECOND(time),
|
|
TIME_GET_MICROSECOND(time),
|
|
tzinfo);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Destructor.
|
|
*/
|
|
|
|
static void
|
|
datetime_dealloc(PyDateTime_DateTime *self)
|
|
{
|
|
if (HASTZINFO(self)) {
|
|
Py_XDECREF(self->tzinfo);
|
|
}
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
}
|
|
|
|
/*
|
|
* Indirect access to tzinfo methods.
|
|
*/
|
|
|
|
/* These are all METH_NOARGS, so don't need to check the arglist. */
|
|
static PyObject *
|
|
datetime_utcoffset(PyDateTime_DateTime *self, PyObject *unused) {
|
|
return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
"utcoffset", (PyObject *)self);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_dst(PyDateTime_DateTime *self, PyObject *unused) {
|
|
return offset_as_timedelta(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
"dst", (PyObject *)self);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_tzname(PyDateTime_DateTime *self, PyObject *unused) {
|
|
return call_tzname(HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
(PyObject *)self);
|
|
}
|
|
|
|
/*
|
|
* datetime arithmetic.
|
|
*/
|
|
|
|
/* factor must be 1 (to add) or -1 (to subtract). The result inherits
|
|
* the tzinfo state of date.
|
|
*/
|
|
static PyObject *
|
|
add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
|
|
int factor)
|
|
{
|
|
/* Note that the C-level additions can't overflow, because of
|
|
* invariant bounds on the member values.
|
|
*/
|
|
int year = GET_YEAR(date);
|
|
int month = GET_MONTH(date);
|
|
int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
|
|
int hour = DATE_GET_HOUR(date);
|
|
int minute = DATE_GET_MINUTE(date);
|
|
int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
|
|
int microsecond = DATE_GET_MICROSECOND(date) +
|
|
GET_TD_MICROSECONDS(delta) * factor;
|
|
|
|
assert(factor == 1 || factor == -1);
|
|
if (normalize_datetime(&year, &month, &day,
|
|
&hour, &minute, &second, µsecond) < 0)
|
|
return NULL;
|
|
else
|
|
return new_datetime(year, month, day,
|
|
hour, minute, second, microsecond,
|
|
HASTZINFO(date) ? date->tzinfo : Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_add(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left)) {
|
|
/* datetime + ??? */
|
|
if (PyDelta_Check(right))
|
|
/* datetime + delta */
|
|
return add_datetime_timedelta(
|
|
(PyDateTime_DateTime *)left,
|
|
(PyDateTime_Delta *)right,
|
|
1);
|
|
}
|
|
else if (PyDelta_Check(left)) {
|
|
/* delta + datetime */
|
|
return add_datetime_timedelta((PyDateTime_DateTime *) right,
|
|
(PyDateTime_Delta *) left,
|
|
1);
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDateTime_Check(left)) {
|
|
/* datetime - ??? */
|
|
if (PyDateTime_Check(right)) {
|
|
/* datetime - datetime */
|
|
naivety n1, n2;
|
|
int offset1, offset2;
|
|
int delta_d, delta_s, delta_us;
|
|
|
|
if (classify_two_utcoffsets(left, &offset1, &n1, left,
|
|
right, &offset2, &n2,
|
|
right) < 0)
|
|
return NULL;
|
|
assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
|
|
if (n1 != n2) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't subtract offset-naive and "
|
|
"offset-aware datetimes");
|
|
return NULL;
|
|
}
|
|
delta_d = ymd_to_ord(GET_YEAR(left),
|
|
GET_MONTH(left),
|
|
GET_DAY(left)) -
|
|
ymd_to_ord(GET_YEAR(right),
|
|
GET_MONTH(right),
|
|
GET_DAY(right));
|
|
/* These can't overflow, since the values are
|
|
* normalized. At most this gives the number of
|
|
* seconds in one day.
|
|
*/
|
|
delta_s = (DATE_GET_HOUR(left) -
|
|
DATE_GET_HOUR(right)) * 3600 +
|
|
(DATE_GET_MINUTE(left) -
|
|
DATE_GET_MINUTE(right)) * 60 +
|
|
(DATE_GET_SECOND(left) -
|
|
DATE_GET_SECOND(right));
|
|
delta_us = DATE_GET_MICROSECOND(left) -
|
|
DATE_GET_MICROSECOND(right);
|
|
/* (left - offset1) - (right - offset2) =
|
|
* (left - right) + (offset2 - offset1)
|
|
*/
|
|
delta_s += (offset2 - offset1) * 60;
|
|
result = new_delta(delta_d, delta_s, delta_us, 1);
|
|
}
|
|
else if (PyDelta_Check(right)) {
|
|
/* datetime - delta */
|
|
result = add_datetime_timedelta(
|
|
(PyDateTime_DateTime *)left,
|
|
(PyDateTime_Delta *)right,
|
|
-1);
|
|
}
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
/* Various ways to turn a datetime into a string. */
|
|
|
|
static PyObject *
|
|
datetime_repr(PyDateTime_DateTime *self)
|
|
{
|
|
const char *type_name = Py_TYPE(self)->tp_name;
|
|
PyObject *baserepr;
|
|
|
|
if (DATE_GET_MICROSECOND(self)) {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self));
|
|
}
|
|
else if (DATE_GET_SECOND(self)) {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self));
|
|
}
|
|
else {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
|
|
}
|
|
if (baserepr == NULL || ! HASTZINFO(self))
|
|
return baserepr;
|
|
return append_keyword_tzinfo(baserepr, self->tzinfo);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_str(PyDateTime_DateTime *self)
|
|
{
|
|
return PyObject_CallMethod((PyObject *)self, "isoformat", "(s)", " ");
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
|
|
{
|
|
int sep = 'T';
|
|
static char *keywords[] = {"sep", NULL};
|
|
char buffer[100];
|
|
PyObject *result;
|
|
int us = DATE_GET_MICROSECOND(self);
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "|C:isoformat", keywords, &sep))
|
|
return NULL;
|
|
if (us)
|
|
result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d.%06d",
|
|
GET_YEAR(self), GET_MONTH(self),
|
|
GET_DAY(self), (int)sep,
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self), us);
|
|
else
|
|
result = PyUnicode_FromFormat("%04d-%02d-%02d%c%02d:%02d:%02d",
|
|
GET_YEAR(self), GET_MONTH(self),
|
|
GET_DAY(self), (int)sep,
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self));
|
|
|
|
if (!result || !HASTZINFO(self))
|
|
return result;
|
|
|
|
/* We need to append the UTC offset. */
|
|
if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
|
|
(PyObject *)self) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buffer));
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_ctime(PyDateTime_DateTime *self)
|
|
{
|
|
return format_ctime((PyDateTime_Date *)self,
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self));
|
|
}
|
|
|
|
/* Miscellaneous methods. */
|
|
|
|
static PyObject *
|
|
datetime_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
int diff;
|
|
naivety n1, n2;
|
|
int offset1, offset2;
|
|
|
|
if (! PyDateTime_Check(other)) {
|
|
if (PyDate_Check(other)) {
|
|
/* Prevent invocation of date_richcompare. We want to
|
|
return NotImplemented here to give the other object
|
|
a chance. But since DateTime is a subclass of
|
|
Date, if the other object is a Date, it would
|
|
compute an ordering based on the date part alone,
|
|
and we don't want that. So force unequal or
|
|
uncomparable here in that case. */
|
|
if (op == Py_EQ)
|
|
Py_RETURN_FALSE;
|
|
if (op == Py_NE)
|
|
Py_RETURN_TRUE;
|
|
return cmperror(self, other);
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
if (classify_two_utcoffsets(self, &offset1, &n1, self,
|
|
other, &offset2, &n2, other) < 0)
|
|
return NULL;
|
|
assert(n1 != OFFSET_UNKNOWN && n2 != OFFSET_UNKNOWN);
|
|
/* If they're both naive, or both aware and have the same offsets,
|
|
* we get off cheap. Note that if they're both naive, offset1 ==
|
|
* offset2 == 0 at this point.
|
|
*/
|
|
if (n1 == n2 && offset1 == offset2) {
|
|
diff = memcmp(((PyDateTime_DateTime *)self)->data,
|
|
((PyDateTime_DateTime *)other)->data,
|
|
_PyDateTime_DATETIME_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
|
|
if (n1 == OFFSET_AWARE && n2 == OFFSET_AWARE) {
|
|
PyDateTime_Delta *delta;
|
|
|
|
assert(offset1 != offset2); /* else last "if" handled it */
|
|
delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
|
|
other);
|
|
if (delta == NULL)
|
|
return NULL;
|
|
diff = GET_TD_DAYS(delta);
|
|
if (diff == 0)
|
|
diff = GET_TD_SECONDS(delta) |
|
|
GET_TD_MICROSECONDS(delta);
|
|
Py_DECREF(delta);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
|
|
assert(n1 != n2);
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't compare offset-naive and "
|
|
"offset-aware datetimes");
|
|
return NULL;
|
|
}
|
|
|
|
static long
|
|
datetime_hash(PyDateTime_DateTime *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
naivety n;
|
|
int offset;
|
|
PyObject *temp;
|
|
|
|
n = classify_utcoffset((PyObject *)self, (PyObject *)self,
|
|
&offset);
|
|
assert(n != OFFSET_UNKNOWN);
|
|
if (n == OFFSET_ERROR)
|
|
return -1;
|
|
|
|
/* Reduce this to a hash of another object. */
|
|
if (n == OFFSET_NAIVE) {
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_DATETIME_DATASIZE);
|
|
return self->hashcode;
|
|
}
|
|
else {
|
|
int days;
|
|
int seconds;
|
|
|
|
assert(n == OFFSET_AWARE);
|
|
assert(HASTZINFO(self));
|
|
days = ymd_to_ord(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self));
|
|
seconds = DATE_GET_HOUR(self) * 3600 +
|
|
(DATE_GET_MINUTE(self) - offset) * 60 +
|
|
DATE_GET_SECOND(self);
|
|
temp = new_delta(days,
|
|
seconds,
|
|
DATE_GET_MICROSECOND(self),
|
|
1);
|
|
}
|
|
if (temp != NULL) {
|
|
self->hashcode = PyObject_Hash(temp);
|
|
Py_DECREF(temp);
|
|
}
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_replace(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *clone;
|
|
PyObject *tuple;
|
|
int y = GET_YEAR(self);
|
|
int m = GET_MONTH(self);
|
|
int d = GET_DAY(self);
|
|
int hh = DATE_GET_HOUR(self);
|
|
int mm = DATE_GET_MINUTE(self);
|
|
int ss = DATE_GET_SECOND(self);
|
|
int us = DATE_GET_MICROSECOND(self);
|
|
PyObject *tzinfo = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "|iiiiiiiO:replace",
|
|
datetime_kws,
|
|
&y, &m, &d, &hh, &mm, &ss, &us,
|
|
&tzinfo))
|
|
return NULL;
|
|
tuple = Py_BuildValue("iiiiiiiO", y, m, d, hh, mm, ss, us, tzinfo);
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
clone = datetime_new(Py_TYPE(self), tuple, NULL);
|
|
Py_DECREF(tuple);
|
|
return clone;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
|
|
{
|
|
int y, m, d, hh, mm, ss, us;
|
|
PyObject *result;
|
|
int offset, none;
|
|
|
|
PyObject *tzinfo;
|
|
static char *keywords[] = {"tz", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "O!:astimezone", keywords,
|
|
&PyDateTime_TZInfoType, &tzinfo))
|
|
return NULL;
|
|
|
|
if (!HASTZINFO(self) || self->tzinfo == Py_None)
|
|
goto NeedAware;
|
|
|
|
/* Conversion to self's own time zone is a NOP. */
|
|
if (self->tzinfo == tzinfo) {
|
|
Py_INCREF(self);
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
/* Convert self to UTC. */
|
|
offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
|
|
if (offset == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
if (none)
|
|
goto NeedAware;
|
|
|
|
y = GET_YEAR(self);
|
|
m = GET_MONTH(self);
|
|
d = GET_DAY(self);
|
|
hh = DATE_GET_HOUR(self);
|
|
mm = DATE_GET_MINUTE(self);
|
|
ss = DATE_GET_SECOND(self);
|
|
us = DATE_GET_MICROSECOND(self);
|
|
|
|
mm -= offset;
|
|
if ((mm < 0 || mm >= 60) &&
|
|
normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us) < 0)
|
|
return NULL;
|
|
|
|
/* Attach new tzinfo and let fromutc() do the rest. */
|
|
result = new_datetime(y, m, d, hh, mm, ss, us, tzinfo);
|
|
if (result != NULL) {
|
|
PyObject *temp = result;
|
|
|
|
result = PyObject_CallMethod(tzinfo, "fromutc", "O", temp);
|
|
Py_DECREF(temp);
|
|
}
|
|
return result;
|
|
|
|
NeedAware:
|
|
PyErr_SetString(PyExc_ValueError, "astimezone() cannot be applied to "
|
|
"a naive datetime");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_timetuple(PyDateTime_DateTime *self)
|
|
{
|
|
int dstflag = -1;
|
|
|
|
if (HASTZINFO(self) && self->tzinfo != Py_None) {
|
|
int none;
|
|
|
|
dstflag = call_dst(self->tzinfo, (PyObject *)self, &none);
|
|
if (dstflag == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
|
|
if (none)
|
|
dstflag = -1;
|
|
else if (dstflag != 0)
|
|
dstflag = 1;
|
|
|
|
}
|
|
return build_struct_time(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
dstflag);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_getdate(PyDateTime_DateTime *self)
|
|
{
|
|
return new_date(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_gettime(PyDateTime_DateTime *self)
|
|
{
|
|
return new_time(DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self),
|
|
Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_gettimetz(PyDateTime_DateTime *self)
|
|
{
|
|
return new_time(DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self),
|
|
HASTZINFO(self) ? self->tzinfo : Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_utctimetuple(PyDateTime_DateTime *self)
|
|
{
|
|
int y = GET_YEAR(self);
|
|
int m = GET_MONTH(self);
|
|
int d = GET_DAY(self);
|
|
int hh = DATE_GET_HOUR(self);
|
|
int mm = DATE_GET_MINUTE(self);
|
|
int ss = DATE_GET_SECOND(self);
|
|
int us = 0; /* microseconds are ignored in a timetuple */
|
|
int offset = 0;
|
|
|
|
if (HASTZINFO(self) && self->tzinfo != Py_None) {
|
|
int none;
|
|
|
|
offset = call_utcoffset(self->tzinfo, (PyObject *)self, &none);
|
|
if (offset == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
/* Even if offset is 0, don't call timetuple() -- tm_isdst should be
|
|
* 0 in a UTC timetuple regardless of what dst() says.
|
|
*/
|
|
if (offset) {
|
|
/* Subtract offset minutes & normalize. */
|
|
int stat;
|
|
|
|
mm -= offset;
|
|
stat = normalize_datetime(&y, &m, &d, &hh, &mm, &ss, &us);
|
|
if (stat < 0) {
|
|
/* At the edges, it's possible we overflowed
|
|
* beyond MINYEAR or MAXYEAR.
|
|
*/
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError))
|
|
PyErr_Clear();
|
|
else
|
|
return NULL;
|
|
}
|
|
}
|
|
return build_struct_time(y, m, d, hh, mm, ss, 0);
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* Let basestate be the non-tzinfo data string.
|
|
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
|
|
* So it's a tuple in any (non-error) case.
|
|
* __getstate__ isn't exposed.
|
|
*/
|
|
static PyObject *
|
|
datetime_getstate(PyDateTime_DateTime *self)
|
|
{
|
|
PyObject *basestate;
|
|
PyObject *result = NULL;
|
|
|
|
basestate = PyBytes_FromStringAndSize((char *)self->data,
|
|
_PyDateTime_DATETIME_DATASIZE);
|
|
if (basestate != NULL) {
|
|
if (! HASTZINFO(self) || self->tzinfo == Py_None)
|
|
result = PyTuple_Pack(1, basestate);
|
|
else
|
|
result = PyTuple_Pack(2, basestate, self->tzinfo);
|
|
Py_DECREF(basestate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self));
|
|
}
|
|
|
|
static PyMethodDef datetime_methods[] = {
|
|
|
|
/* Class methods: */
|
|
|
|
{"now", (PyCFunction)datetime_now,
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("[tz] -> new datetime with tz's local day and time.")},
|
|
|
|
{"utcnow", (PyCFunction)datetime_utcnow,
|
|
METH_NOARGS | METH_CLASS,
|
|
PyDoc_STR("Return a new datetime representing UTC day and time.")},
|
|
|
|
{"fromtimestamp", (PyCFunction)datetime_fromtimestamp,
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
|
|
|
|
{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("timestamp -> UTC datetime from a POSIX timestamp "
|
|
"(like time.time()).")},
|
|
|
|
{"strptime", (PyCFunction)datetime_strptime,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("string, format -> new datetime parsed from a string "
|
|
"(like time.strptime()).")},
|
|
|
|
{"combine", (PyCFunction)datetime_combine,
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("date, time -> datetime with same date and time fields")},
|
|
|
|
/* Instance methods: */
|
|
|
|
{"date", (PyCFunction)datetime_getdate, METH_NOARGS,
|
|
PyDoc_STR("Return date object with same year, month and day.")},
|
|
|
|
{"time", (PyCFunction)datetime_gettime, METH_NOARGS,
|
|
PyDoc_STR("Return time object with same time but with tzinfo=None.")},
|
|
|
|
{"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
|
|
PyDoc_STR("Return time object with same time and tzinfo.")},
|
|
|
|
{"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
|
|
PyDoc_STR("Return ctime() style string.")},
|
|
|
|
{"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
|
|
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
|
|
|
|
{"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
|
|
PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
|
|
|
|
{"isoformat", (PyCFunction)datetime_isoformat, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("[sep] -> string in ISO 8601 format, "
|
|
"YYYY-MM-DDTHH:MM:SS[.mmmmmm][+HH:MM].\n\n"
|
|
"sep is used to separate the year from the time, and "
|
|
"defaults to 'T'.")},
|
|
|
|
{"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
|
|
|
|
{"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.tzname(self).")},
|
|
|
|
{"dst", (PyCFunction)datetime_dst, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.dst(self).")},
|
|
|
|
{"replace", (PyCFunction)datetime_replace, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("Return datetime with new specified fields.")},
|
|
|
|
{"astimezone", (PyCFunction)datetime_astimezone, METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
|
|
|
|
{"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static char datetime_doc[] =
|
|
PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
|
|
\n\
|
|
The year, month and day arguments are required. tzinfo may be None, or an\n\
|
|
instance of a tzinfo subclass. The remaining arguments may be ints or longs.\n");
|
|
|
|
static PyNumberMethods datetime_as_number = {
|
|
datetime_add, /* nb_add */
|
|
datetime_subtract, /* nb_subtract */
|
|
0, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
0, /* nb_negative */
|
|
0, /* nb_positive */
|
|
0, /* nb_absolute */
|
|
0, /* nb_bool */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DateTimeType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.datetime", /* tp_name */
|
|
sizeof(PyDateTime_DateTime), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)datetime_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)datetime_repr, /* tp_repr */
|
|
&datetime_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)datetime_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)datetime_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
datetime_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
datetime_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
datetime_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
datetime_getset, /* tp_getset */
|
|
&PyDateTime_DateType, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
datetime_alloc, /* tp_alloc */
|
|
datetime_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Module methods and initialization.
|
|
*/
|
|
|
|
static PyMethodDef module_methods[] = {
|
|
{NULL, NULL}
|
|
};
|
|
|
|
/* C API. Clients get at this via PyDateTime_IMPORT, defined in
|
|
* datetime.h.
|
|
*/
|
|
static PyDateTime_CAPI CAPI = {
|
|
&PyDateTime_DateType,
|
|
&PyDateTime_DateTimeType,
|
|
&PyDateTime_TimeType,
|
|
&PyDateTime_DeltaType,
|
|
&PyDateTime_TZInfoType,
|
|
new_date_ex,
|
|
new_datetime_ex,
|
|
new_time_ex,
|
|
new_delta_ex,
|
|
datetime_fromtimestamp,
|
|
date_fromtimestamp
|
|
};
|
|
|
|
|
|
|
|
static struct PyModuleDef datetimemodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"datetime",
|
|
"Fast implementation of the datetime type.",
|
|
-1,
|
|
module_methods,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit_datetime(void)
|
|
{
|
|
PyObject *m; /* a module object */
|
|
PyObject *d; /* its dict */
|
|
PyObject *x;
|
|
|
|
m = PyModule_Create(&datetimemodule);
|
|
if (m == NULL)
|
|
return NULL;
|
|
|
|
if (PyType_Ready(&PyDateTime_DateType) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&PyDateTime_DateTimeType) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&PyDateTime_DeltaType) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&PyDateTime_TimeType) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&PyDateTime_TZInfoType) < 0)
|
|
return NULL;
|
|
|
|
/* timedelta values */
|
|
d = PyDateTime_DeltaType.tp_dict;
|
|
|
|
x = new_delta(0, 0, 1, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_delta(-MAX_DELTA_DAYS, 0, 0, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
/* date values */
|
|
d = PyDateTime_DateType.tp_dict;
|
|
|
|
x = new_date(1, 1, 1);
|
|
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_date(MAXYEAR, 12, 31);
|
|
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_delta(1, 0, 0, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
/* time values */
|
|
d = PyDateTime_TimeType.tp_dict;
|
|
|
|
x = new_time(0, 0, 0, 0, Py_None);
|
|
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_time(23, 59, 59, 999999, Py_None);
|
|
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_delta(0, 0, 1, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
/* datetime values */
|
|
d = PyDateTime_DateTimeType.tp_dict;
|
|
|
|
x = new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None);
|
|
if (x == NULL || PyDict_SetItemString(d, "min", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, Py_None);
|
|
if (x == NULL || PyDict_SetItemString(d, "max", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
x = new_delta(0, 0, 1, 0);
|
|
if (x == NULL || PyDict_SetItemString(d, "resolution", x) < 0)
|
|
return NULL;
|
|
Py_DECREF(x);
|
|
|
|
/* module initialization */
|
|
PyModule_AddIntConstant(m, "MINYEAR", MINYEAR);
|
|
PyModule_AddIntConstant(m, "MAXYEAR", MAXYEAR);
|
|
|
|
Py_INCREF(&PyDateTime_DateType);
|
|
PyModule_AddObject(m, "date", (PyObject *) &PyDateTime_DateType);
|
|
|
|
Py_INCREF(&PyDateTime_DateTimeType);
|
|
PyModule_AddObject(m, "datetime",
|
|
(PyObject *)&PyDateTime_DateTimeType);
|
|
|
|
Py_INCREF(&PyDateTime_TimeType);
|
|
PyModule_AddObject(m, "time", (PyObject *) &PyDateTime_TimeType);
|
|
|
|
Py_INCREF(&PyDateTime_DeltaType);
|
|
PyModule_AddObject(m, "timedelta", (PyObject *) &PyDateTime_DeltaType);
|
|
|
|
Py_INCREF(&PyDateTime_TZInfoType);
|
|
PyModule_AddObject(m, "tzinfo", (PyObject *) &PyDateTime_TZInfoType);
|
|
|
|
x = PyCapsule_New(&CAPI, PyDateTime_CAPSULE_NAME, NULL);
|
|
if (x == NULL)
|
|
return NULL;
|
|
PyModule_AddObject(m, "datetime_CAPI", x);
|
|
|
|
/* A 4-year cycle has an extra leap day over what we'd get from
|
|
* pasting together 4 single years.
|
|
*/
|
|
assert(DI4Y == 4 * 365 + 1);
|
|
assert(DI4Y == days_before_year(4+1));
|
|
|
|
/* Similarly, a 400-year cycle has an extra leap day over what we'd
|
|
* get from pasting together 4 100-year cycles.
|
|
*/
|
|
assert(DI400Y == 4 * DI100Y + 1);
|
|
assert(DI400Y == days_before_year(400+1));
|
|
|
|
/* OTOH, a 100-year cycle has one fewer leap day than we'd get from
|
|
* pasting together 25 4-year cycles.
|
|
*/
|
|
assert(DI100Y == 25 * DI4Y - 1);
|
|
assert(DI100Y == days_before_year(100+1));
|
|
|
|
us_per_us = PyLong_FromLong(1);
|
|
us_per_ms = PyLong_FromLong(1000);
|
|
us_per_second = PyLong_FromLong(1000000);
|
|
us_per_minute = PyLong_FromLong(60000000);
|
|
seconds_per_day = PyLong_FromLong(24 * 3600);
|
|
if (us_per_us == NULL || us_per_ms == NULL || us_per_second == NULL ||
|
|
us_per_minute == NULL || seconds_per_day == NULL)
|
|
return NULL;
|
|
|
|
/* The rest are too big for 32-bit ints, but even
|
|
* us_per_week fits in 40 bits, so doubles should be exact.
|
|
*/
|
|
us_per_hour = PyLong_FromDouble(3600000000.0);
|
|
us_per_day = PyLong_FromDouble(86400000000.0);
|
|
us_per_week = PyLong_FromDouble(604800000000.0);
|
|
if (us_per_hour == NULL || us_per_day == NULL || us_per_week == NULL)
|
|
return NULL;
|
|
return m;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
Some time zone algebra. For a datetime x, let
|
|
x.n = x stripped of its timezone -- its naive time.
|
|
x.o = x.utcoffset(), and assuming that doesn't raise an exception or
|
|
return None
|
|
x.d = x.dst(), and assuming that doesn't raise an exception or
|
|
return None
|
|
x.s = x's standard offset, x.o - x.d
|
|
|
|
Now some derived rules, where k is a duration (timedelta).
|
|
|
|
1. x.o = x.s + x.d
|
|
This follows from the definition of x.s.
|
|
|
|
2. If x and y have the same tzinfo member, x.s = y.s.
|
|
This is actually a requirement, an assumption we need to make about
|
|
sane tzinfo classes.
|
|
|
|
3. The naive UTC time corresponding to x is x.n - x.o.
|
|
This is again a requirement for a sane tzinfo class.
|
|
|
|
4. (x+k).s = x.s
|
|
This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
|
|
|
|
5. (x+k).n = x.n + k
|
|
Again follows from how arithmetic is defined.
|
|
|
|
Now we can explain tz.fromutc(x). Let's assume it's an interesting case
|
|
(meaning that the various tzinfo methods exist, and don't blow up or return
|
|
None when called).
|
|
|
|
The function wants to return a datetime y with timezone tz, equivalent to x.
|
|
x is already in UTC.
|
|
|
|
By #3, we want
|
|
|
|
y.n - y.o = x.n [1]
|
|
|
|
The algorithm starts by attaching tz to x.n, and calling that y. So
|
|
x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
|
|
becomes true; in effect, we want to solve [2] for k:
|
|
|
|
(y+k).n - (y+k).o = x.n [2]
|
|
|
|
By #1, this is the same as
|
|
|
|
(y+k).n - ((y+k).s + (y+k).d) = x.n [3]
|
|
|
|
By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
|
|
Substituting that into [3],
|
|
|
|
x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
|
|
k - (y+k).s - (y+k).d = 0; rearranging,
|
|
k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
|
|
k = y.s - (y+k).d
|
|
|
|
On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
|
|
approximate k by ignoring the (y+k).d term at first. Note that k can't be
|
|
very large, since all offset-returning methods return a duration of magnitude
|
|
less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
|
|
be 0, so ignoring it has no consequence then.
|
|
|
|
In any case, the new value is
|
|
|
|
z = y + y.s [4]
|
|
|
|
It's helpful to step back at look at [4] from a higher level: it's simply
|
|
mapping from UTC to tz's standard time.
|
|
|
|
At this point, if
|
|
|
|
z.n - z.o = x.n [5]
|
|
|
|
we have an equivalent time, and are almost done. The insecurity here is
|
|
at the start of daylight time. Picture US Eastern for concreteness. The wall
|
|
time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
|
|
sense then. The docs ask that an Eastern tzinfo class consider such a time to
|
|
be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
|
|
on the day DST starts. We want to return the 1:MM EST spelling because that's
|
|
the only spelling that makes sense on the local wall clock.
|
|
|
|
In fact, if [5] holds at this point, we do have the standard-time spelling,
|
|
but that takes a bit of proof. We first prove a stronger result. What's the
|
|
difference between the LHS and RHS of [5]? Let
|
|
|
|
diff = x.n - (z.n - z.o) [6]
|
|
|
|
Now
|
|
z.n = by [4]
|
|
(y + y.s).n = by #5
|
|
y.n + y.s = since y.n = x.n
|
|
x.n + y.s = since z and y are have the same tzinfo member,
|
|
y.s = z.s by #2
|
|
x.n + z.s
|
|
|
|
Plugging that back into [6] gives
|
|
|
|
diff =
|
|
x.n - ((x.n + z.s) - z.o) = expanding
|
|
x.n - x.n - z.s + z.o = cancelling
|
|
- z.s + z.o = by #2
|
|
z.d
|
|
|
|
So diff = z.d.
|
|
|
|
If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
|
|
spelling we wanted in the endcase described above. We're done. Contrarily,
|
|
if z.d = 0, then we have a UTC equivalent, and are also done.
|
|
|
|
If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
|
|
add to z (in effect, z is in tz's standard time, and we need to shift the
|
|
local clock into tz's daylight time).
|
|
|
|
Let
|
|
|
|
z' = z + z.d = z + diff [7]
|
|
|
|
and we can again ask whether
|
|
|
|
z'.n - z'.o = x.n [8]
|
|
|
|
If so, we're done. If not, the tzinfo class is insane, according to the
|
|
assumptions we've made. This also requires a bit of proof. As before, let's
|
|
compute the difference between the LHS and RHS of [8] (and skipping some of
|
|
the justifications for the kinds of substitutions we've done several times
|
|
already):
|
|
|
|
diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
|
|
x.n - (z.n + diff - z'.o) = replacing diff via [6]
|
|
x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
|
|
x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
|
|
- z.n + z.n - z.o + z'.o = cancel z.n
|
|
- z.o + z'.o = #1 twice
|
|
-z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
|
|
z'.d - z.d
|
|
|
|
So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
|
|
we've found the UTC-equivalent so are done. In fact, we stop with [7] and
|
|
return z', not bothering to compute z'.d.
|
|
|
|
How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
|
|
a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
|
|
would have to change the result dst() returns: we start in DST, and moving
|
|
a little further into it takes us out of DST.
|
|
|
|
There isn't a sane case where this can happen. The closest it gets is at
|
|
the end of DST, where there's an hour in UTC with no spelling in a hybrid
|
|
tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
|
|
that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
|
|
UTC) because the docs insist on that, but 0:MM is taken as being in daylight
|
|
time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
|
|
clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
|
|
standard time. Since that's what the local clock *does*, we want to map both
|
|
UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
|
|
in local time, but so it goes -- it's the way the local clock works.
|
|
|
|
When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
|
|
so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
|
|
z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
|
|
(correctly) concludes that z' is not UTC-equivalent to x.
|
|
|
|
Because we know z.d said z was in daylight time (else [5] would have held and
|
|
we would have stopped then), and we know z.d != z'.d (else [8] would have held
|
|
and we would have stopped then), and there are only 2 possible values dst() can
|
|
return in Eastern, it follows that z'.d must be 0 (which it is in the example,
|
|
but the reasoning doesn't depend on the example -- it depends on there being
|
|
two possible dst() outcomes, one zero and the other non-zero). Therefore
|
|
z' must be in standard time, and is the spelling we want in this case.
|
|
|
|
Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
|
|
concerned (because it takes z' as being in standard time rather than the
|
|
daylight time we intend here), but returning it gives the real-life "local
|
|
clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
|
|
tz.
|
|
|
|
When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
|
|
the 1:MM standard time spelling we want.
|
|
|
|
So how can this break? One of the assumptions must be violated. Two
|
|
possibilities:
|
|
|
|
1) [2] effectively says that y.s is invariant across all y belong to a given
|
|
time zone. This isn't true if, for political reasons or continental drift,
|
|
a region decides to change its base offset from UTC.
|
|
|
|
2) There may be versions of "double daylight" time where the tail end of
|
|
the analysis gives up a step too early. I haven't thought about that
|
|
enough to say.
|
|
|
|
In any case, it's clear that the default fromutc() is strong enough to handle
|
|
"almost all" time zones: so long as the standard offset is invariant, it
|
|
doesn't matter if daylight time transition points change from year to year, or
|
|
if daylight time is skipped in some years; it doesn't matter how large or
|
|
small dst() may get within its bounds; and it doesn't even matter if some
|
|
perverse time zone returns a negative dst()). So a breaking case must be
|
|
pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
|
|
--------------------------------------------------------------------------- */
|