664 lines
22 KiB
ReStructuredText
664 lines
22 KiB
ReStructuredText
.. _tut-structures:
|
|
|
|
***************
|
|
Data Structures
|
|
***************
|
|
|
|
This chapter describes some things you've learned about already in more detail,
|
|
and adds some new things as well.
|
|
|
|
|
|
.. _tut-morelists:
|
|
|
|
More on Lists
|
|
=============
|
|
|
|
The list data type has some more methods. Here are all of the methods of list
|
|
objects:
|
|
|
|
|
|
.. method:: list.append(x)
|
|
:noindex:
|
|
|
|
Add an item to the end of the list; equivalent to ``a[len(a):] = [x]``.
|
|
|
|
|
|
.. method:: list.extend(L)
|
|
:noindex:
|
|
|
|
Extend the list by appending all the items in the given list; equivalent to
|
|
``a[len(a):] = L``.
|
|
|
|
|
|
.. method:: list.insert(i, x)
|
|
:noindex:
|
|
|
|
Insert an item at a given position. The first argument is the index of the
|
|
element before which to insert, so ``a.insert(0, x)`` inserts at the front of
|
|
the list, and ``a.insert(len(a), x)`` is equivalent to ``a.append(x)``.
|
|
|
|
|
|
.. method:: list.remove(x)
|
|
:noindex:
|
|
|
|
Remove the first item from the list whose value is *x*. It is an error if there
|
|
is no such item.
|
|
|
|
|
|
.. method:: list.pop([i])
|
|
:noindex:
|
|
|
|
Remove the item at the given position in the list, and return it. If no index
|
|
is specified, ``a.pop()`` removes and returns the last item in the list. (The
|
|
square brackets around the *i* in the method signature denote that the parameter
|
|
is optional, not that you should type square brackets at that position. You
|
|
will see this notation frequently in the Python Library Reference.)
|
|
|
|
|
|
.. method:: list.index(x)
|
|
:noindex:
|
|
|
|
Return the index in the list of the first item whose value is *x*. It is an
|
|
error if there is no such item.
|
|
|
|
|
|
.. method:: list.count(x)
|
|
:noindex:
|
|
|
|
Return the number of times *x* appears in the list.
|
|
|
|
|
|
.. method:: list.sort()
|
|
:noindex:
|
|
|
|
Sort the items of the list, in place.
|
|
|
|
|
|
.. method:: list.reverse()
|
|
:noindex:
|
|
|
|
Reverse the elements of the list, in place.
|
|
|
|
An example that uses most of the list methods::
|
|
|
|
>>> a = [66.25, 333, 333, 1, 1234.5]
|
|
>>> print a.count(333), a.count(66.25), a.count('x')
|
|
2 1 0
|
|
>>> a.insert(2, -1)
|
|
>>> a.append(333)
|
|
>>> a
|
|
[66.25, 333, -1, 333, 1, 1234.5, 333]
|
|
>>> a.index(333)
|
|
1
|
|
>>> a.remove(333)
|
|
>>> a
|
|
[66.25, -1, 333, 1, 1234.5, 333]
|
|
>>> a.reverse()
|
|
>>> a
|
|
[333, 1234.5, 1, 333, -1, 66.25]
|
|
>>> a.sort()
|
|
>>> a
|
|
[-1, 1, 66.25, 333, 333, 1234.5]
|
|
|
|
|
|
.. _tut-lists-as-stacks:
|
|
|
|
Using Lists as Stacks
|
|
---------------------
|
|
|
|
.. sectionauthor:: Ka-Ping Yee <ping@lfw.org>
|
|
|
|
|
|
The list methods make it very easy to use a list as a stack, where the last
|
|
element added is the first element retrieved ("last-in, first-out"). To add an
|
|
item to the top of the stack, use :meth:`append`. To retrieve an item from the
|
|
top of the stack, use :meth:`pop` without an explicit index. For example::
|
|
|
|
>>> stack = [3, 4, 5]
|
|
>>> stack.append(6)
|
|
>>> stack.append(7)
|
|
>>> stack
|
|
[3, 4, 5, 6, 7]
|
|
>>> stack.pop()
|
|
7
|
|
>>> stack
|
|
[3, 4, 5, 6]
|
|
>>> stack.pop()
|
|
6
|
|
>>> stack.pop()
|
|
5
|
|
>>> stack
|
|
[3, 4]
|
|
|
|
|
|
.. _tut-lists-as-queues:
|
|
|
|
Using Lists as Queues
|
|
---------------------
|
|
|
|
.. sectionauthor:: Ka-Ping Yee <ping@lfw.org>
|
|
|
|
|
|
You can also use a list conveniently as a queue, where the first element added
|
|
is the first element retrieved ("first-in, first-out"). To add an item to the
|
|
back of the queue, use :meth:`append`. To retrieve an item from the front of
|
|
the queue, use :meth:`pop` with ``0`` as the index. For example::
|
|
|
|
>>> queue = ["Eric", "John", "Michael"]
|
|
>>> queue.append("Terry") # Terry arrives
|
|
>>> queue.append("Graham") # Graham arrives
|
|
>>> queue.pop(0)
|
|
'Eric'
|
|
>>> queue.pop(0)
|
|
'John'
|
|
>>> queue
|
|
['Michael', 'Terry', 'Graham']
|
|
|
|
|
|
.. _tut-functional:
|
|
|
|
Functional Programming Tools
|
|
----------------------------
|
|
|
|
There are three built-in functions that are very useful when used with lists:
|
|
:func:`filter`, :func:`map`, and :func:`reduce`.
|
|
|
|
``filter(function, sequence)`` returns a sequence consisting of those items from
|
|
the sequence for which ``function(item)`` is true. If *sequence* is a
|
|
:class:`string` or :class:`tuple`, the result will be of the same type;
|
|
otherwise, it is always a :class:`list`. For example, to compute some primes::
|
|
|
|
>>> def f(x): return x % 2 != 0 and x % 3 != 0
|
|
...
|
|
>>> filter(f, range(2, 25))
|
|
[5, 7, 11, 13, 17, 19, 23]
|
|
|
|
``map(function, sequence)`` calls ``function(item)`` for each of the sequence's
|
|
items and returns a list of the return values. For example, to compute some
|
|
cubes::
|
|
|
|
>>> def cube(x): return x*x*x
|
|
...
|
|
>>> map(cube, range(1, 11))
|
|
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
|
|
|
|
More than one sequence may be passed; the function must then have as many
|
|
arguments as there are sequences and is called with the corresponding item from
|
|
each sequence (or ``None`` if some sequence is shorter than another). For
|
|
example::
|
|
|
|
>>> seq = range(8)
|
|
>>> def add(x, y): return x+y
|
|
...
|
|
>>> map(add, seq, seq)
|
|
[0, 2, 4, 6, 8, 10, 12, 14]
|
|
|
|
``reduce(function, sequence)`` returns a single value constructed by calling the
|
|
binary function *function* on the first two items of the sequence, then on the
|
|
result and the next item, and so on. For example, to compute the sum of the
|
|
numbers 1 through 10::
|
|
|
|
>>> def add(x,y): return x+y
|
|
...
|
|
>>> reduce(add, range(1, 11))
|
|
55
|
|
|
|
If there's only one item in the sequence, its value is returned; if the sequence
|
|
is empty, an exception is raised.
|
|
|
|
A third argument can be passed to indicate the starting value. In this case the
|
|
starting value is returned for an empty sequence, and the function is first
|
|
applied to the starting value and the first sequence item, then to the result
|
|
and the next item, and so on. For example, ::
|
|
|
|
>>> def sum(seq):
|
|
... def add(x,y): return x+y
|
|
... return reduce(add, seq, 0)
|
|
...
|
|
>>> sum(range(1, 11))
|
|
55
|
|
>>> sum([])
|
|
0
|
|
|
|
Don't use this example's definition of :func:`sum`: since summing numbers is
|
|
such a common need, a built-in function ``sum(sequence)`` is already provided,
|
|
and works exactly like this.
|
|
|
|
.. versionadded:: 2.3
|
|
|
|
|
|
List Comprehensions
|
|
-------------------
|
|
|
|
List comprehensions provide a concise way to create lists without resorting to
|
|
use of :func:`map`, :func:`filter` and/or :keyword:`lambda`. The resulting list
|
|
definition tends often to be clearer than lists built using those constructs.
|
|
Each list comprehension consists of an expression followed by a :keyword:`for`
|
|
clause, then zero or more :keyword:`for` or :keyword:`if` clauses. The result
|
|
will be a list resulting from evaluating the expression in the context of the
|
|
:keyword:`for` and :keyword:`if` clauses which follow it. If the expression
|
|
would evaluate to a tuple, it must be parenthesized. ::
|
|
|
|
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
|
|
>>> [weapon.strip() for weapon in freshfruit]
|
|
['banana', 'loganberry', 'passion fruit']
|
|
>>> vec = [2, 4, 6]
|
|
>>> [3*x for x in vec]
|
|
[6, 12, 18]
|
|
>>> [3*x for x in vec if x > 3]
|
|
[12, 18]
|
|
>>> [3*x for x in vec if x < 2]
|
|
[]
|
|
>>> [[x,x**2] for x in vec]
|
|
[[2, 4], [4, 16], [6, 36]]
|
|
>>> [x, x**2 for x in vec] # error - parens required for tuples
|
|
File "<stdin>", line 1, in ?
|
|
[x, x**2 for x in vec]
|
|
^
|
|
SyntaxError: invalid syntax
|
|
>>> [(x, x**2) for x in vec]
|
|
[(2, 4), (4, 16), (6, 36)]
|
|
>>> vec1 = [2, 4, 6]
|
|
>>> vec2 = [4, 3, -9]
|
|
>>> [x*y for x in vec1 for y in vec2]
|
|
[8, 6, -18, 16, 12, -36, 24, 18, -54]
|
|
>>> [x+y for x in vec1 for y in vec2]
|
|
[6, 5, -7, 8, 7, -5, 10, 9, -3]
|
|
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
|
|
[8, 12, -54]
|
|
|
|
List comprehensions are much more flexible than :func:`map` and can be applied
|
|
to complex expressions and nested functions::
|
|
|
|
>>> [str(round(355/113.0, i)) for i in range(1,6)]
|
|
['3.1', '3.14', '3.142', '3.1416', '3.14159']
|
|
|
|
|
|
Nested List Comprehensions
|
|
--------------------------
|
|
|
|
If you've got the stomach for it, list comprehensions can be nested. They are a
|
|
powerful tool but -- like all powerful tools -- they need to be used carefully,
|
|
if at all.
|
|
|
|
Consider the following example of a 3x3 matrix held as a list containing three
|
|
lists, one list per row::
|
|
|
|
>>> mat = [
|
|
... [1, 2, 3],
|
|
... [4, 5, 6],
|
|
... [7, 8, 9],
|
|
... ]
|
|
|
|
Now, if you wanted to swap rows and columns, you could use a list
|
|
comprehension::
|
|
|
|
>>> print [[row[i] for row in mat] for i in [0, 1, 2]]
|
|
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
|
|
|
|
Special care has to be taken for the *nested* list comprehension:
|
|
|
|
To avoid apprehension when nesting list comprehensions, read from right to
|
|
left.
|
|
|
|
A more verbose version of this snippet shows the flow explicitly::
|
|
|
|
for i in [0, 1, 2]:
|
|
for row in mat:
|
|
print row[i],
|
|
print
|
|
|
|
In real world, you should prefer built-in functions to complex flow statements.
|
|
The :func:`zip` function would do a great job for this use case::
|
|
|
|
>>> zip(*mat)
|
|
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
|
|
|
|
See :ref:`tut-unpacking-arguments` for details on the asterisk in this line.
|
|
|
|
.. _tut-del:
|
|
|
|
The :keyword:`del` statement
|
|
============================
|
|
|
|
There is a way to remove an item from a list given its index instead of its
|
|
value: the :keyword:`del` statement. This differs from the :meth:`pop` method
|
|
which returns a value. The :keyword:`del` statement can also be used to remove
|
|
slices from a list or clear the entire list (which we did earlier by assignment
|
|
of an empty list to the slice). For example::
|
|
|
|
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
|
|
>>> del a[0]
|
|
>>> a
|
|
[1, 66.25, 333, 333, 1234.5]
|
|
>>> del a[2:4]
|
|
>>> a
|
|
[1, 66.25, 1234.5]
|
|
>>> del a[:]
|
|
>>> a
|
|
[]
|
|
|
|
:keyword:`del` can also be used to delete entire variables::
|
|
|
|
>>> del a
|
|
|
|
Referencing the name ``a`` hereafter is an error (at least until another value
|
|
is assigned to it). We'll find other uses for :keyword:`del` later.
|
|
|
|
|
|
.. _tut-tuples:
|
|
|
|
Tuples and Sequences
|
|
====================
|
|
|
|
We saw that lists and strings have many common properties, such as indexing and
|
|
slicing operations. They are two examples of *sequence* data types (see
|
|
:ref:`typesseq`). Since Python is an evolving language, other sequence data
|
|
types may be added. There is also another standard sequence data type: the
|
|
*tuple*.
|
|
|
|
A tuple consists of a number of values separated by commas, for instance::
|
|
|
|
>>> t = 12345, 54321, 'hello!'
|
|
>>> t[0]
|
|
12345
|
|
>>> t
|
|
(12345, 54321, 'hello!')
|
|
>>> # Tuples may be nested:
|
|
... u = t, (1, 2, 3, 4, 5)
|
|
>>> u
|
|
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
|
|
|
|
As you see, on output tuples are always enclosed in parentheses, so that nested
|
|
tuples are interpreted correctly; they may be input with or without surrounding
|
|
parentheses, although often parentheses are necessary anyway (if the tuple is
|
|
part of a larger expression).
|
|
|
|
Tuples have many uses. For example: (x, y) coordinate pairs, employee records
|
|
from a database, etc. Tuples, like strings, are immutable: it is not possible
|
|
to assign to the individual items of a tuple (you can simulate much of the same
|
|
effect with slicing and concatenation, though). It is also possible to create
|
|
tuples which contain mutable objects, such as lists.
|
|
|
|
A special problem is the construction of tuples containing 0 or 1 items: the
|
|
syntax has some extra quirks to accommodate these. Empty tuples are constructed
|
|
by an empty pair of parentheses; a tuple with one item is constructed by
|
|
following a value with a comma (it is not sufficient to enclose a single value
|
|
in parentheses). Ugly, but effective. For example::
|
|
|
|
>>> empty = ()
|
|
>>> singleton = 'hello', # <-- note trailing comma
|
|
>>> len(empty)
|
|
0
|
|
>>> len(singleton)
|
|
1
|
|
>>> singleton
|
|
('hello',)
|
|
|
|
The statement ``t = 12345, 54321, 'hello!'`` is an example of *tuple packing*:
|
|
the values ``12345``, ``54321`` and ``'hello!'`` are packed together in a tuple.
|
|
The reverse operation is also possible::
|
|
|
|
>>> x, y, z = t
|
|
|
|
This is called, appropriately enough, *sequence unpacking* and works for any
|
|
sequence on the right-hand side. Sequence unpacking requires the list of
|
|
variables on the left to have the same number of elements as the length of the
|
|
sequence. Note that multiple assignment is really just a combination of tuple
|
|
packing and sequence unpacking.
|
|
|
|
.. XXX Add a bit on the difference between tuples and lists.
|
|
|
|
|
|
.. _tut-sets:
|
|
|
|
Sets
|
|
====
|
|
|
|
Python also includes a data type for *sets*. A set is an unordered collection
|
|
with no duplicate elements. Basic uses include membership testing and
|
|
eliminating duplicate entries. Set objects also support mathematical operations
|
|
like union, intersection, difference, and symmetric difference.
|
|
|
|
Here is a brief demonstration::
|
|
|
|
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
|
|
>>> fruit = set(basket) # create a set without duplicates
|
|
>>> fruit
|
|
set(['orange', 'pear', 'apple', 'banana'])
|
|
>>> 'orange' in fruit # fast membership testing
|
|
True
|
|
>>> 'crabgrass' in fruit
|
|
False
|
|
|
|
>>> # Demonstrate set operations on unique letters from two words
|
|
...
|
|
>>> a = set('abracadabra')
|
|
>>> b = set('alacazam')
|
|
>>> a # unique letters in a
|
|
set(['a', 'r', 'b', 'c', 'd'])
|
|
>>> a - b # letters in a but not in b
|
|
set(['r', 'd', 'b'])
|
|
>>> a | b # letters in either a or b
|
|
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
|
|
>>> a & b # letters in both a and b
|
|
set(['a', 'c'])
|
|
>>> a ^ b # letters in a or b but not both
|
|
set(['r', 'd', 'b', 'm', 'z', 'l'])
|
|
|
|
|
|
.. _tut-dictionaries:
|
|
|
|
Dictionaries
|
|
============
|
|
|
|
Another useful data type built into Python is the *dictionary* (see
|
|
:ref:`typesmapping`). Dictionaries are sometimes found in other languages as
|
|
"associative memories" or "associative arrays". Unlike sequences, which are
|
|
indexed by a range of numbers, dictionaries are indexed by *keys*, which can be
|
|
any immutable type; strings and numbers can always be keys. Tuples can be used
|
|
as keys if they contain only strings, numbers, or tuples; if a tuple contains
|
|
any mutable object either directly or indirectly, it cannot be used as a key.
|
|
You can't use lists as keys, since lists can be modified in place using index
|
|
assignments, slice assignments, or methods like :meth:`append` and
|
|
:meth:`extend`.
|
|
|
|
It is best to think of a dictionary as an unordered set of *key: value* pairs,
|
|
with the requirement that the keys are unique (within one dictionary). A pair of
|
|
braces creates an empty dictionary: ``{}``. Placing a comma-separated list of
|
|
key:value pairs within the braces adds initial key:value pairs to the
|
|
dictionary; this is also the way dictionaries are written on output.
|
|
|
|
The main operations on a dictionary are storing a value with some key and
|
|
extracting the value given the key. It is also possible to delete a key:value
|
|
pair with ``del``. If you store using a key that is already in use, the old
|
|
value associated with that key is forgotten. It is an error to extract a value
|
|
using a non-existent key.
|
|
|
|
The :meth:`keys` method of a dictionary object returns a list of all the keys
|
|
used in the dictionary, in arbitrary order (if you want it sorted, just apply
|
|
the :meth:`sort` method to the list of keys). To check whether a single key is
|
|
in the dictionary, use the :keyword:`in` keyword.
|
|
|
|
Here is a small example using a dictionary::
|
|
|
|
>>> tel = {'jack': 4098, 'sape': 4139}
|
|
>>> tel['guido'] = 4127
|
|
>>> tel
|
|
{'sape': 4139, 'guido': 4127, 'jack': 4098}
|
|
>>> tel['jack']
|
|
4098
|
|
>>> del tel['sape']
|
|
>>> tel['irv'] = 4127
|
|
>>> tel
|
|
{'guido': 4127, 'irv': 4127, 'jack': 4098}
|
|
>>> tel.keys()
|
|
['guido', 'irv', 'jack']
|
|
>>> 'guido' in tel
|
|
True
|
|
|
|
The :func:`dict` constructor builds dictionaries directly from lists of
|
|
key-value pairs stored as tuples. When the pairs form a pattern, list
|
|
comprehensions can compactly specify the key-value list. ::
|
|
|
|
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
|
|
{'sape': 4139, 'jack': 4098, 'guido': 4127}
|
|
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
|
|
{2: 4, 4: 16, 6: 36}
|
|
|
|
Later in the tutorial, we will learn about Generator Expressions which are even
|
|
better suited for the task of supplying key-values pairs to the :func:`dict`
|
|
constructor.
|
|
|
|
When the keys are simple strings, it is sometimes easier to specify pairs using
|
|
keyword arguments::
|
|
|
|
>>> dict(sape=4139, guido=4127, jack=4098)
|
|
{'sape': 4139, 'jack': 4098, 'guido': 4127}
|
|
|
|
|
|
.. _tut-loopidioms:
|
|
|
|
Looping Techniques
|
|
==================
|
|
|
|
When looping through dictionaries, the key and corresponding value can be
|
|
retrieved at the same time using the :meth:`iteritems` method. ::
|
|
|
|
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
|
|
>>> for k, v in knights.iteritems():
|
|
... print k, v
|
|
...
|
|
gallahad the pure
|
|
robin the brave
|
|
|
|
When looping through a sequence, the position index and corresponding value can
|
|
be retrieved at the same time using the :func:`enumerate` function. ::
|
|
|
|
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
|
|
... print i, v
|
|
...
|
|
0 tic
|
|
1 tac
|
|
2 toe
|
|
|
|
To loop over two or more sequences at the same time, the entries can be paired
|
|
with the :func:`zip` function. ::
|
|
|
|
>>> questions = ['name', 'quest', 'favorite color']
|
|
>>> answers = ['lancelot', 'the holy grail', 'blue']
|
|
>>> for q, a in zip(questions, answers):
|
|
... print 'What is your {0}? It is {1}.'.format(q, a)
|
|
...
|
|
What is your name? It is lancelot.
|
|
What is your quest? It is the holy grail.
|
|
What is your favorite color? It is blue.
|
|
|
|
To loop over a sequence in reverse, first specify the sequence in a forward
|
|
direction and then call the :func:`reversed` function. ::
|
|
|
|
>>> for i in reversed(xrange(1,10,2)):
|
|
... print i
|
|
...
|
|
9
|
|
7
|
|
5
|
|
3
|
|
1
|
|
|
|
To loop over a sequence in sorted order, use the :func:`sorted` function which
|
|
returns a new sorted list while leaving the source unaltered. ::
|
|
|
|
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
|
|
>>> for f in sorted(set(basket)):
|
|
... print f
|
|
...
|
|
apple
|
|
banana
|
|
orange
|
|
pear
|
|
|
|
|
|
.. _tut-conditions:
|
|
|
|
More on Conditions
|
|
==================
|
|
|
|
The conditions used in ``while`` and ``if`` statements can contain any
|
|
operators, not just comparisons.
|
|
|
|
The comparison operators ``in`` and ``not in`` check whether a value occurs
|
|
(does not occur) in a sequence. The operators ``is`` and ``is not`` compare
|
|
whether two objects are really the same object; this only matters for mutable
|
|
objects like lists. All comparison operators have the same priority, which is
|
|
lower than that of all numerical operators.
|
|
|
|
Comparisons can be chained. For example, ``a < b == c`` tests whether ``a`` is
|
|
less than ``b`` and moreover ``b`` equals ``c``.
|
|
|
|
Comparisons may be combined using the Boolean operators ``and`` and ``or``, and
|
|
the outcome of a comparison (or of any other Boolean expression) may be negated
|
|
with ``not``. These have lower priorities than comparison operators; between
|
|
them, ``not`` has the highest priority and ``or`` the lowest, so that ``A and
|
|
not B or C`` is equivalent to ``(A and (not B)) or C``. As always, parentheses
|
|
can be used to express the desired composition.
|
|
|
|
The Boolean operators ``and`` and ``or`` are so-called *short-circuit*
|
|
operators: their arguments are evaluated from left to right, and evaluation
|
|
stops as soon as the outcome is determined. For example, if ``A`` and ``C`` are
|
|
true but ``B`` is false, ``A and B and C`` does not evaluate the expression
|
|
``C``. When used as a general value and not as a Boolean, the return value of a
|
|
short-circuit operator is the last evaluated argument.
|
|
|
|
It is possible to assign the result of a comparison or other Boolean expression
|
|
to a variable. For example, ::
|
|
|
|
>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
|
|
>>> non_null = string1 or string2 or string3
|
|
>>> non_null
|
|
'Trondheim'
|
|
|
|
Note that in Python, unlike C, assignment cannot occur inside expressions. C
|
|
programmers may grumble about this, but it avoids a common class of problems
|
|
encountered in C programs: typing ``=`` in an expression when ``==`` was
|
|
intended.
|
|
|
|
|
|
.. _tut-comparing:
|
|
|
|
Comparing Sequences and Other Types
|
|
===================================
|
|
|
|
Sequence objects may be compared to other objects with the same sequence type.
|
|
The comparison uses *lexicographical* ordering: first the first two items are
|
|
compared, and if they differ this determines the outcome of the comparison; if
|
|
they are equal, the next two items are compared, and so on, until either
|
|
sequence is exhausted. If two items to be compared are themselves sequences of
|
|
the same type, the lexicographical comparison is carried out recursively. If
|
|
all items of two sequences compare equal, the sequences are considered equal.
|
|
If one sequence is an initial sub-sequence of the other, the shorter sequence is
|
|
the smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
|
|
ordering for individual characters. Some examples of comparisons between
|
|
sequences of the same type::
|
|
|
|
(1, 2, 3) < (1, 2, 4)
|
|
[1, 2, 3] < [1, 2, 4]
|
|
'ABC' < 'C' < 'Pascal' < 'Python'
|
|
(1, 2, 3, 4) < (1, 2, 4)
|
|
(1, 2) < (1, 2, -1)
|
|
(1, 2, 3) == (1.0, 2.0, 3.0)
|
|
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
|
|
|
|
Note that comparing objects of different types is legal. The outcome is
|
|
deterministic but arbitrary: the types are ordered by their name. Thus, a list
|
|
is always smaller than a string, a string is always smaller than a tuple, etc.
|
|
[#]_ Mixed numeric types are compared according to their numeric value, so 0
|
|
equals 0.0, etc.
|
|
|
|
|
|
.. rubric:: Footnotes
|
|
|
|
.. [#] The rules for comparing objects of different types should not be relied upon;
|
|
they may change in a future version of the language.
|
|
|