cpython/Modules/_sqlite/cursor.c

1117 lines
35 KiB
C

/* cursor.c - the cursor type
*
* Copyright (C) 2004-2010 Gerhard Häring <gh@ghaering.de>
*
* This file is part of pysqlite.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "cursor.h"
#include "module.h"
#include "util.h"
#include "sqlitecompat.h"
/* used to decide wether to call PyLong_FromLong or PyLong_FromLongLong */
#ifndef INT32_MIN
#define INT32_MIN (-2147483647 - 1)
#endif
#ifndef INT32_MAX
#define INT32_MAX 2147483647
#endif
PyObject* pysqlite_cursor_iternext(pysqlite_Cursor* self);
static char* errmsg_fetch_across_rollback = "Cursor needed to be reset because of commit/rollback and can no longer be fetched from.";
static pysqlite_StatementKind detect_statement_type(const char* statement)
{
char buf[20];
const char* src;
char* dst;
src = statement;
/* skip over whitepace */
while (*src == '\r' || *src == '\n' || *src == ' ' || *src == '\t') {
src++;
}
if (*src == 0)
return STATEMENT_INVALID;
dst = buf;
*dst = 0;
while (Py_ISALPHA(*src) && dst - buf < sizeof(buf) - 2) {
*dst++ = Py_TOLOWER(*src++);
}
*dst = 0;
if (!strcmp(buf, "select")) {
return STATEMENT_SELECT;
} else if (!strcmp(buf, "insert")) {
return STATEMENT_INSERT;
} else if (!strcmp(buf, "update")) {
return STATEMENT_UPDATE;
} else if (!strcmp(buf, "delete")) {
return STATEMENT_DELETE;
} else if (!strcmp(buf, "replace")) {
return STATEMENT_REPLACE;
} else {
return STATEMENT_OTHER;
}
}
static int pysqlite_cursor_init(pysqlite_Cursor* self, PyObject* args, PyObject* kwargs)
{
pysqlite_Connection* connection;
if (!PyArg_ParseTuple(args, "O!", &pysqlite_ConnectionType, &connection))
{
return -1;
}
Py_INCREF(connection);
self->connection = connection;
self->statement = NULL;
self->next_row = NULL;
self->in_weakreflist = NULL;
self->row_cast_map = PyList_New(0);
if (!self->row_cast_map) {
return -1;
}
Py_INCREF(Py_None);
self->description = Py_None;
Py_INCREF(Py_None);
self->lastrowid= Py_None;
self->arraysize = 1;
self->closed = 0;
self->reset = 0;
self->rowcount = -1L;
Py_INCREF(Py_None);
self->row_factory = Py_None;
if (!pysqlite_check_thread(self->connection)) {
return -1;
}
if (!pysqlite_connection_register_cursor(connection, (PyObject*)self)) {
return -1;
}
self->initialized = 1;
return 0;
}
static void pysqlite_cursor_dealloc(pysqlite_Cursor* self)
{
int rc;
/* Reset the statement if the user has not closed the cursor */
if (self->statement) {
rc = pysqlite_statement_reset(self->statement);
Py_DECREF(self->statement);
}
Py_XDECREF(self->connection);
Py_XDECREF(self->row_cast_map);
Py_XDECREF(self->description);
Py_XDECREF(self->lastrowid);
Py_XDECREF(self->row_factory);
Py_XDECREF(self->next_row);
if (self->in_weakreflist != NULL) {
PyObject_ClearWeakRefs((PyObject*)self);
}
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject* _pysqlite_get_converter(PyObject* key)
{
PyObject* upcase_key;
PyObject* retval;
upcase_key = PyObject_CallMethod(key, "upper", "");
if (!upcase_key) {
return NULL;
}
retval = PyDict_GetItem(converters, upcase_key);
Py_DECREF(upcase_key);
return retval;
}
int pysqlite_build_row_cast_map(pysqlite_Cursor* self)
{
int i;
const char* type_start = (const char*)-1;
const char* pos;
const char* colname;
const char* decltype;
PyObject* py_decltype;
PyObject* converter;
PyObject* key;
if (!self->connection->detect_types) {
return 0;
}
Py_XDECREF(self->row_cast_map);
self->row_cast_map = PyList_New(0);
for (i = 0; i < sqlite3_column_count(self->statement->st); i++) {
converter = NULL;
if (self->connection->detect_types & PARSE_COLNAMES) {
colname = sqlite3_column_name(self->statement->st, i);
if (colname) {
for (pos = colname; *pos != 0; pos++) {
if (*pos == '[') {
type_start = pos + 1;
} else if (*pos == ']' && type_start != (const char*)-1) {
key = PyUnicode_FromStringAndSize(type_start, pos - type_start);
if (!key) {
/* creating a string failed, but it is too complicated
* to propagate the error here, we just assume there is
* no converter and proceed */
break;
}
converter = _pysqlite_get_converter(key);
Py_DECREF(key);
break;
}
}
}
}
if (!converter && self->connection->detect_types & PARSE_DECLTYPES) {
decltype = sqlite3_column_decltype(self->statement->st, i);
if (decltype) {
for (pos = decltype;;pos++) {
/* Converter names are split at '(' and blanks.
* This allows 'INTEGER NOT NULL' to be treated as 'INTEGER' and
* 'NUMBER(10)' to be treated as 'NUMBER', for example.
* In other words, it will work as people expect it to work.*/
if (*pos == ' ' || *pos == '(' || *pos == 0) {
py_decltype = PyUnicode_FromStringAndSize(decltype, pos - decltype);
if (!py_decltype) {
return -1;
}
break;
}
}
converter = _pysqlite_get_converter(py_decltype);
Py_DECREF(py_decltype);
}
}
if (!converter) {
converter = Py_None;
}
if (PyList_Append(self->row_cast_map, converter) != 0) {
if (converter != Py_None) {
Py_DECREF(converter);
}
Py_XDECREF(self->row_cast_map);
self->row_cast_map = NULL;
return -1;
}
}
return 0;
}
PyObject* _pysqlite_build_column_name(const char* colname)
{
const char* pos;
if (!colname) {
Py_INCREF(Py_None);
return Py_None;
}
for (pos = colname;; pos++) {
if (*pos == 0 || *pos == '[') {
if ((*pos == '[') && (pos > colname) && (*(pos-1) == ' ')) {
pos--;
}
return PyUnicode_FromStringAndSize(colname, pos - colname);
}
}
}
PyObject* pysqlite_unicode_from_string(const char* val_str, Py_ssize_t size, int optimize)
{
return PyUnicode_FromStringAndSize(val_str, size);
}
/*
* Returns a row from the currently active SQLite statement
*
* Precondidition:
* - sqlite3_step() has been called before and it returned SQLITE_ROW.
*/
PyObject* _pysqlite_fetch_one_row(pysqlite_Cursor* self)
{
int i, numcols;
PyObject* row;
PyObject* item = NULL;
int coltype;
PY_LONG_LONG intval;
PyObject* converter;
PyObject* converted;
Py_ssize_t nbytes;
PyObject* buffer;
const char* val_str;
char buf[200];
const char* colname;
PyObject* buf_bytes;
PyObject* error_obj;
if (self->reset) {
PyErr_SetString(pysqlite_InterfaceError, errmsg_fetch_across_rollback);
return NULL;
}
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_data_count(self->statement->st);
Py_END_ALLOW_THREADS
row = PyTuple_New(numcols);
if (!row) {
return NULL;
}
for (i = 0; i < numcols; i++) {
if (self->connection->detect_types) {
converter = PyList_GetItem(self->row_cast_map, i);
if (!converter) {
converter = Py_None;
}
} else {
converter = Py_None;
}
if (converter != Py_None) {
nbytes = sqlite3_column_bytes(self->statement->st, i);
val_str = (const char*)sqlite3_column_blob(self->statement->st, i);
if (!val_str) {
Py_INCREF(Py_None);
converted = Py_None;
} else {
item = PyBytes_FromStringAndSize(val_str, nbytes);
if (!item) {
return NULL;
}
converted = PyObject_CallFunction(converter, "O", item);
Py_DECREF(item);
if (!converted) {
break;
}
}
} else {
Py_BEGIN_ALLOW_THREADS
coltype = sqlite3_column_type(self->statement->st, i);
Py_END_ALLOW_THREADS
if (coltype == SQLITE_NULL) {
Py_INCREF(Py_None);
converted = Py_None;
} else if (coltype == SQLITE_INTEGER) {
intval = sqlite3_column_int64(self->statement->st, i);
if (intval < INT32_MIN || intval > INT32_MAX) {
converted = PyLong_FromLongLong(intval);
} else {
converted = PyLong_FromLong((long)intval);
}
} else if (coltype == SQLITE_FLOAT) {
converted = PyFloat_FromDouble(sqlite3_column_double(self->statement->st, i));
} else if (coltype == SQLITE_TEXT) {
val_str = (const char*)sqlite3_column_text(self->statement->st, i);
nbytes = sqlite3_column_bytes(self->statement->st, i);
if ((self->connection->text_factory == (PyObject*)&PyUnicode_Type)
|| (self->connection->text_factory == pysqlite_OptimizedUnicode)) {
converted = pysqlite_unicode_from_string(val_str, nbytes,
self->connection->text_factory == pysqlite_OptimizedUnicode ? 1 : 0);
if (!converted) {
colname = sqlite3_column_name(self->statement->st, i);
if (!colname) {
colname = "<unknown column name>";
}
PyOS_snprintf(buf, sizeof(buf) - 1, "Could not decode to UTF-8 column '%s' with text '%s'",
colname , val_str);
buf_bytes = PyByteArray_FromStringAndSize(buf, strlen(buf));
if (!buf_bytes) {
PyErr_SetString(pysqlite_OperationalError, "Could not decode to UTF-8");
} else {
error_obj = PyUnicode_FromEncodedObject(buf_bytes, "ascii", "replace");
if (!error_obj) {
PyErr_SetString(pysqlite_OperationalError, "Could not decode to UTF-8");
} else {
PyErr_SetObject(pysqlite_OperationalError, error_obj);
Py_DECREF(error_obj);
}
Py_DECREF(buf_bytes);
}
}
} else if (self->connection->text_factory == (PyObject*)&PyBytes_Type) {
converted = PyBytes_FromStringAndSize(val_str, nbytes);
} else if (self->connection->text_factory == (PyObject*)&PyByteArray_Type) {
converted = PyByteArray_FromStringAndSize(val_str, nbytes);
} else {
converted = PyObject_CallFunction(self->connection->text_factory, "y#", val_str, nbytes);
}
} else {
/* coltype == SQLITE_BLOB */
nbytes = sqlite3_column_bytes(self->statement->st, i);
buffer = PyBytes_FromStringAndSize(
sqlite3_column_blob(self->statement->st, i), nbytes);
if (!buffer) {
break;
}
converted = buffer;
}
}
if (converted) {
PyTuple_SetItem(row, i, converted);
} else {
Py_INCREF(Py_None);
PyTuple_SetItem(row, i, Py_None);
}
}
if (PyErr_Occurred()) {
Py_DECREF(row);
row = NULL;
}
return row;
}
/*
* Checks if a cursor object is usable.
*
* 0 => error; 1 => ok
*/
static int check_cursor(pysqlite_Cursor* cur)
{
if (!cur->initialized) {
PyErr_SetString(pysqlite_ProgrammingError, "Base Cursor.__init__ not called.");
return 0;
}
if (cur->closed) {
PyErr_SetString(pysqlite_ProgrammingError, "Cannot operate on a closed cursor.");
return 0;
}
if (cur->locked) {
PyErr_SetString(pysqlite_ProgrammingError, "Recursive use of cursors not allowed.");
return 0;
}
return pysqlite_check_thread(cur->connection) && pysqlite_check_connection(cur->connection);
}
PyObject* _pysqlite_query_execute(pysqlite_Cursor* self, int multiple, PyObject* args)
{
PyObject* operation;
const char* operation_cstr;
Py_ssize_t operation_len;
PyObject* parameters_list = NULL;
PyObject* parameters_iter = NULL;
PyObject* parameters = NULL;
int i;
int rc;
PyObject* func_args;
PyObject* result;
int numcols;
PY_LONG_LONG lastrowid;
int statement_type;
PyObject* descriptor;
PyObject* second_argument = NULL;
int allow_8bit_chars;
if (!check_cursor(self)) {
goto error;
}
self->locked = 1;
self->reset = 0;
/* Make shooting yourself in the foot with not utf-8 decodable 8-bit-strings harder */
allow_8bit_chars = ((self->connection->text_factory != (PyObject*)&PyUnicode_Type) &&
(self->connection->text_factory != pysqlite_OptimizedUnicode));
Py_XDECREF(self->next_row);
self->next_row = NULL;
if (multiple) {
/* executemany() */
if (!PyArg_ParseTuple(args, "OO", &operation, &second_argument)) {
goto error;
}
if (!PyUnicode_Check(operation)) {
PyErr_SetString(PyExc_ValueError, "operation parameter must be str");
goto error;
}
if (PyIter_Check(second_argument)) {
/* iterator */
Py_INCREF(second_argument);
parameters_iter = second_argument;
} else {
/* sequence */
parameters_iter = PyObject_GetIter(second_argument);
if (!parameters_iter) {
goto error;
}
}
} else {
/* execute() */
if (!PyArg_ParseTuple(args, "O|O", &operation, &second_argument)) {
goto error;
}
if (!PyUnicode_Check(operation)) {
PyErr_SetString(PyExc_ValueError, "operation parameter must be str");
goto error;
}
parameters_list = PyList_New(0);
if (!parameters_list) {
goto error;
}
if (second_argument == NULL) {
second_argument = PyTuple_New(0);
if (!second_argument) {
goto error;
}
} else {
Py_INCREF(second_argument);
}
if (PyList_Append(parameters_list, second_argument) != 0) {
Py_DECREF(second_argument);
goto error;
}
Py_DECREF(second_argument);
parameters_iter = PyObject_GetIter(parameters_list);
if (!parameters_iter) {
goto error;
}
}
if (self->statement != NULL) {
/* There is an active statement */
rc = pysqlite_statement_reset(self->statement);
}
operation_cstr = _PyUnicode_AsStringAndSize(operation, &operation_len);
if (operation_cstr == NULL)
goto error;
/* reset description and rowcount */
Py_DECREF(self->description);
Py_INCREF(Py_None);
self->description = Py_None;
self->rowcount = -1L;
func_args = PyTuple_New(1);
if (!func_args) {
goto error;
}
Py_INCREF(operation);
if (PyTuple_SetItem(func_args, 0, operation) != 0) {
goto error;
}
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_DECREF(self->statement);
}
self->statement = (pysqlite_Statement*)pysqlite_cache_get(self->connection->statement_cache, func_args);
Py_DECREF(func_args);
if (!self->statement) {
goto error;
}
if (self->statement->in_use) {
Py_DECREF(self->statement);
self->statement = PyObject_New(pysqlite_Statement, &pysqlite_StatementType);
if (!self->statement) {
goto error;
}
rc = pysqlite_statement_create(self->statement, self->connection, operation);
if (rc != SQLITE_OK) {
Py_CLEAR(self->statement);
goto error;
}
}
pysqlite_statement_reset(self->statement);
pysqlite_statement_mark_dirty(self->statement);
statement_type = detect_statement_type(operation_cstr);
if (self->connection->begin_statement) {
switch (statement_type) {
case STATEMENT_UPDATE:
case STATEMENT_DELETE:
case STATEMENT_INSERT:
case STATEMENT_REPLACE:
if (!self->connection->inTransaction) {
result = _pysqlite_connection_begin(self->connection);
if (!result) {
goto error;
}
Py_DECREF(result);
}
break;
case STATEMENT_OTHER:
/* it's a DDL statement or something similar
- we better COMMIT first so it works for all cases */
if (self->connection->inTransaction) {
result = pysqlite_connection_commit(self->connection, NULL);
if (!result) {
goto error;
}
Py_DECREF(result);
}
break;
case STATEMENT_SELECT:
if (multiple) {
PyErr_SetString(pysqlite_ProgrammingError,
"You cannot execute SELECT statements in executemany().");
goto error;
}
break;
}
}
while (1) {
parameters = PyIter_Next(parameters_iter);
if (!parameters) {
break;
}
pysqlite_statement_mark_dirty(self->statement);
pysqlite_statement_bind_parameters(self->statement, parameters, allow_8bit_chars);
if (PyErr_Occurred()) {
goto error;
}
/* Keep trying the SQL statement until the schema stops changing. */
while (1) {
/* Actually execute the SQL statement. */
rc = pysqlite_step(self->statement->st, self->connection);
if (rc == SQLITE_DONE || rc == SQLITE_ROW) {
/* If it worked, let's get out of the loop */
break;
}
/* Something went wrong. Re-set the statement and try again. */
rc = pysqlite_statement_reset(self->statement);
if (rc == SQLITE_SCHEMA) {
/* If this was a result of the schema changing, let's try
again. */
rc = pysqlite_statement_recompile(self->statement, parameters);
if (rc == SQLITE_OK) {
continue;
} else {
/* If the database gave us an error, promote it to Python. */
(void)pysqlite_statement_reset(self->statement);
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
} else {
if (PyErr_Occurred()) {
/* there was an error that occurred in a user-defined callback */
if (_enable_callback_tracebacks) {
PyErr_Print();
} else {
PyErr_Clear();
}
}
(void)pysqlite_statement_reset(self->statement);
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
}
if (pysqlite_build_row_cast_map(self) != 0) {
PyErr_SetString(pysqlite_OperationalError, "Error while building row_cast_map");
goto error;
}
if (rc == SQLITE_ROW || (rc == SQLITE_DONE && statement_type == STATEMENT_SELECT)) {
if (self->description == Py_None) {
Py_BEGIN_ALLOW_THREADS
numcols = sqlite3_column_count(self->statement->st);
Py_END_ALLOW_THREADS
Py_DECREF(self->description);
self->description = PyTuple_New(numcols);
if (!self->description) {
goto error;
}
for (i = 0; i < numcols; i++) {
descriptor = PyTuple_New(7);
if (!descriptor) {
goto error;
}
PyTuple_SetItem(descriptor, 0, _pysqlite_build_column_name(sqlite3_column_name(self->statement->st, i)));
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 1, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 2, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 3, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 4, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 5, Py_None);
Py_INCREF(Py_None); PyTuple_SetItem(descriptor, 6, Py_None);
PyTuple_SetItem(self->description, i, descriptor);
}
}
}
if (rc == SQLITE_ROW) {
if (multiple) {
PyErr_SetString(pysqlite_ProgrammingError, "executemany() can only execute DML statements.");
goto error;
}
self->next_row = _pysqlite_fetch_one_row(self);
} else if (rc == SQLITE_DONE && !multiple) {
pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
switch (statement_type) {
case STATEMENT_UPDATE:
case STATEMENT_DELETE:
case STATEMENT_INSERT:
case STATEMENT_REPLACE:
if (self->rowcount == -1L) {
self->rowcount = 0L;
}
self->rowcount += (long)sqlite3_changes(self->connection->db);
}
Py_DECREF(self->lastrowid);
if (!multiple && statement_type == STATEMENT_INSERT) {
Py_BEGIN_ALLOW_THREADS
lastrowid = sqlite3_last_insert_rowid(self->connection->db);
Py_END_ALLOW_THREADS
self->lastrowid = PyLong_FromLong((long)lastrowid);
} else {
Py_INCREF(Py_None);
self->lastrowid = Py_None;
}
if (multiple) {
rc = pysqlite_statement_reset(self->statement);
}
Py_XDECREF(parameters);
}
error:
/* just to be sure (implicit ROLLBACKs with ON CONFLICT ROLLBACK/OR
* ROLLBACK could have happened */
#ifdef SQLITE_VERSION_NUMBER
#if SQLITE_VERSION_NUMBER >= 3002002
if (self->connection && self->connection->db)
self->connection->inTransaction = !sqlite3_get_autocommit(self->connection->db);
#endif
#endif
Py_XDECREF(parameters);
Py_XDECREF(parameters_iter);
Py_XDECREF(parameters_list);
self->locked = 0;
if (PyErr_Occurred()) {
self->rowcount = -1L;
return NULL;
} else {
Py_INCREF(self);
return (PyObject*)self;
}
}
PyObject* pysqlite_cursor_execute(pysqlite_Cursor* self, PyObject* args)
{
return _pysqlite_query_execute(self, 0, args);
}
PyObject* pysqlite_cursor_executemany(pysqlite_Cursor* self, PyObject* args)
{
return _pysqlite_query_execute(self, 1, args);
}
PyObject* pysqlite_cursor_executescript(pysqlite_Cursor* self, PyObject* args)
{
PyObject* script_obj;
PyObject* script_str = NULL;
const char* script_cstr;
sqlite3_stmt* statement;
int rc;
PyObject* result;
if (!PyArg_ParseTuple(args, "O", &script_obj)) {
return NULL;
}
if (!check_cursor(self)) {
return NULL;
}
self->reset = 0;
if (PyUnicode_Check(script_obj)) {
script_cstr = _PyUnicode_AsString(script_obj);
if (!script_cstr) {
return NULL;
}
} else {
PyErr_SetString(PyExc_ValueError, "script argument must be unicode.");
return NULL;
}
/* commit first */
result = pysqlite_connection_commit(self->connection, NULL);
if (!result) {
goto error;
}
Py_DECREF(result);
while (1) {
Py_BEGIN_ALLOW_THREADS
rc = sqlite3_prepare(self->connection->db,
script_cstr,
-1,
&statement,
&script_cstr);
Py_END_ALLOW_THREADS
if (rc != SQLITE_OK) {
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
/* execute statement, and ignore results of SELECT statements */
rc = SQLITE_ROW;
while (rc == SQLITE_ROW) {
rc = pysqlite_step(statement, self->connection);
/* TODO: we probably need more error handling here */
}
if (rc != SQLITE_DONE) {
(void)sqlite3_finalize(statement);
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
rc = sqlite3_finalize(statement);
if (rc != SQLITE_OK) {
_pysqlite_seterror(self->connection->db, NULL);
goto error;
}
if (*script_cstr == (char)0) {
break;
}
}
error:
Py_XDECREF(script_str);
if (PyErr_Occurred()) {
return NULL;
} else {
Py_INCREF(self);
return (PyObject*)self;
}
}
PyObject* pysqlite_cursor_getiter(pysqlite_Cursor *self)
{
Py_INCREF(self);
return (PyObject*)self;
}
PyObject* pysqlite_cursor_iternext(pysqlite_Cursor *self)
{
PyObject* next_row_tuple;
PyObject* next_row;
int rc;
if (!check_cursor(self)) {
return NULL;
}
if (self->reset) {
PyErr_SetString(pysqlite_InterfaceError, errmsg_fetch_across_rollback);
return NULL;
}
if (!self->next_row) {
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_DECREF(self->statement);
self->statement = NULL;
}
return NULL;
}
next_row_tuple = self->next_row;
self->next_row = NULL;
if (self->row_factory != Py_None) {
next_row = PyObject_CallFunction(self->row_factory, "OO", self, next_row_tuple);
Py_DECREF(next_row_tuple);
} else {
next_row = next_row_tuple;
}
if (self->statement) {
rc = pysqlite_step(self->statement->st, self->connection);
if (rc != SQLITE_DONE && rc != SQLITE_ROW) {
(void)pysqlite_statement_reset(self->statement);
Py_DECREF(next_row);
_pysqlite_seterror(self->connection->db, NULL);
return NULL;
}
if (rc == SQLITE_ROW) {
self->next_row = _pysqlite_fetch_one_row(self);
}
}
return next_row;
}
PyObject* pysqlite_cursor_fetchone(pysqlite_Cursor* self, PyObject* args)
{
PyObject* row;
row = pysqlite_cursor_iternext(self);
if (!row && !PyErr_Occurred()) {
Py_INCREF(Py_None);
return Py_None;
}
return row;
}
PyObject* pysqlite_cursor_fetchmany(pysqlite_Cursor* self, PyObject* args, PyObject* kwargs)
{
static char *kwlist[] = {"size", NULL, NULL};
PyObject* row;
PyObject* list;
int maxrows = self->arraysize;
int counter = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|i:fetchmany", kwlist, &maxrows)) {
return NULL;
}
list = PyList_New(0);
if (!list) {
return NULL;
}
/* just make sure we enter the loop */
row = Py_None;
while (row) {
row = pysqlite_cursor_iternext(self);
if (row) {
PyList_Append(list, row);
Py_DECREF(row);
} else {
break;
}
if (++counter == maxrows) {
break;
}
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
PyObject* pysqlite_cursor_fetchall(pysqlite_Cursor* self, PyObject* args)
{
PyObject* row;
PyObject* list;
list = PyList_New(0);
if (!list) {
return NULL;
}
/* just make sure we enter the loop */
row = (PyObject*)Py_None;
while (row) {
row = pysqlite_cursor_iternext(self);
if (row) {
PyList_Append(list, row);
Py_DECREF(row);
}
}
if (PyErr_Occurred()) {
Py_DECREF(list);
return NULL;
} else {
return list;
}
}
PyObject* pysqlite_noop(pysqlite_Connection* self, PyObject* args)
{
/* don't care, return None */
Py_INCREF(Py_None);
return Py_None;
}
PyObject* pysqlite_cursor_close(pysqlite_Cursor* self, PyObject* args)
{
if (!pysqlite_check_thread(self->connection) || !pysqlite_check_connection(self->connection)) {
return NULL;
}
if (self->statement) {
(void)pysqlite_statement_reset(self->statement);
Py_CLEAR(self->statement);
}
self->closed = 1;
Py_INCREF(Py_None);
return Py_None;
}
static PyMethodDef cursor_methods[] = {
{"execute", (PyCFunction)pysqlite_cursor_execute, METH_VARARGS,
PyDoc_STR("Executes a SQL statement.")},
{"executemany", (PyCFunction)pysqlite_cursor_executemany, METH_VARARGS,
PyDoc_STR("Repeatedly executes a SQL statement.")},
{"executescript", (PyCFunction)pysqlite_cursor_executescript, METH_VARARGS,
PyDoc_STR("Executes a multiple SQL statements at once. Non-standard.")},
{"fetchone", (PyCFunction)pysqlite_cursor_fetchone, METH_NOARGS,
PyDoc_STR("Fetches one row from the resultset.")},
{"fetchmany", (PyCFunction)pysqlite_cursor_fetchmany, METH_VARARGS|METH_KEYWORDS,
PyDoc_STR("Fetches several rows from the resultset.")},
{"fetchall", (PyCFunction)pysqlite_cursor_fetchall, METH_NOARGS,
PyDoc_STR("Fetches all rows from the resultset.")},
{"close", (PyCFunction)pysqlite_cursor_close, METH_NOARGS,
PyDoc_STR("Closes the cursor.")},
{"setinputsizes", (PyCFunction)pysqlite_noop, METH_VARARGS,
PyDoc_STR("Required by DB-API. Does nothing in pysqlite.")},
{"setoutputsize", (PyCFunction)pysqlite_noop, METH_VARARGS,
PyDoc_STR("Required by DB-API. Does nothing in pysqlite.")},
{NULL, NULL}
};
static struct PyMemberDef cursor_members[] =
{
{"connection", T_OBJECT, offsetof(pysqlite_Cursor, connection), READONLY},
{"description", T_OBJECT, offsetof(pysqlite_Cursor, description), READONLY},
{"arraysize", T_INT, offsetof(pysqlite_Cursor, arraysize), 0},
{"lastrowid", T_OBJECT, offsetof(pysqlite_Cursor, lastrowid), READONLY},
{"rowcount", T_LONG, offsetof(pysqlite_Cursor, rowcount), READONLY},
{"row_factory", T_OBJECT, offsetof(pysqlite_Cursor, row_factory), 0},
{NULL}
};
static char cursor_doc[] =
PyDoc_STR("SQLite database cursor class.");
PyTypeObject pysqlite_CursorType = {
PyVarObject_HEAD_INIT(NULL, 0)
MODULE_NAME ".Cursor", /* tp_name */
sizeof(pysqlite_Cursor), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)pysqlite_cursor_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT|Py_TPFLAGS_BASETYPE, /* tp_flags */
cursor_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(pysqlite_Cursor, in_weakreflist), /* tp_weaklistoffset */
(getiterfunc)pysqlite_cursor_getiter, /* tp_iter */
(iternextfunc)pysqlite_cursor_iternext, /* tp_iternext */
cursor_methods, /* tp_methods */
cursor_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)pysqlite_cursor_init, /* tp_init */
0, /* tp_alloc */
0, /* tp_new */
0 /* tp_free */
};
extern int pysqlite_cursor_setup_types(void)
{
pysqlite_CursorType.tp_new = PyType_GenericNew;
return PyType_Ready(&pysqlite_CursorType);
}